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Abstract. One of the biggest challenges while migrating from a monolith archi-
tecture to a microservice architecture is to define a proper communication technol-
ogy. In monolith applications, communication between components is performed
using the in-process method or function calls, while different communication meth-
ods have to be established to achieve the same functionality in a microservice ar-
chitecture. A microservices-based application is a distributed system running on
multiple processes or services. Therefore, microservices must interact using inter-
process communication technologies. This research aims to evaluate synchronous
and asynchronous communication technologies and determine particular cases for
their application while decomposing monolith into cloud-native applications. Five
communication technologies, such as HTTP Rest, RabbitMQ, Kafka, gRPC, and
GraphQL, have been evaluated and compared by proposed evaluation criteria. The
advantages and disadvantages of each communication technology were identified in
the context of microservices architecture.
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1 INTRODUCTION

A microservice architectural style is an approach to developing an application as
a suite of small services where every service communicates with other services via
light-weight mechanisms such as Hypertext Transfer Protocol (HTTP) Application
Programming Interface (API). Services are built around business capabilities and
are independently deployable by fully automated deployment machinery. There
is a bare minimum of centralized management of services that may be written in
different programming languages and use diverse data storage technologies [1].

International Data Corporation predicts that 90% of all new applications in 2022
will be developed based on microservices architectures. Microservice architecture,
as well as software development and IT operations (DevOps) practice, improve soft-
ware development agility and flexibility. Enterprises can bring their digital products
and services to a very competitive market faster [2, 3, 4]. Microservice architecture
is becoming a design standard for modern cloud-based software systems because it
helps develop a cloud-native application [5, 6]. Using microservices and embracing
cloud-native technologies is the way to reduce development time and increase deploy-
ment speed [2]. Each microservice is an independent process and could be developed
and deployed independently to a container or virtual machine in the cloud. Many
different solutions are used to support microservices in a cloud environment, such as
Docker or Rocket containers, Docker Swarm, Mesos and Kubernetes orchestration
tools, etc. [5].

This research aims to analyze and evaluate different communication technolo-
gies between microservices and determine particular cases for their application while
decomposing monolith into cloud-native applications. This article is part of our
research on legacy monolith software migration to microservices architecture. Lit-
erature review, monolith decomposition into microservices methods and database
decomposition were analyzed in previous papers (studies) [7, 8, 9]. This paper pro-
vides an analysis of how proper communication between decomposed microservices
could be established. A set of criteria that is important while decomposing mono-
liths to microservices was identified. The benefits and drawbacks of communication
technologies as well as the impact on communication between microservices, were
evaluated based on these criteria.

Five technologies were chosen for analysis, i.e., HTTP Representational State
(Rest) API, RabbitMQ, Kafka, gRPC, and GraphQL. Rest API represents asyn-
chronous communication style and has become a de facto standard synchronous
communication technology. RabbitMQ and Kafka represent asynchronous commu-
nication based on message broker. GraphQL and gRPC have been selected for
the investigation because of the rapidly growing popularity. GraphQL provides
client-side applications functionality to query databases at server-side applications,
while gRPC is a technology to implement remote procedure call (RPC) API. It uses
HTTP 2.0 as its underlying transport protocol and is provided as a data structure.
Various criteria were taken into account while analyzing selected communication
technologies, including influence on microservice topology, the performance of re-
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mote procedure call, message size, memory consumption, storage usage, boot time,
and availability of the corresponding libraries.

The main contribution of this work is a unique set of criteria used to compare
five communication technologies and evaluate their advantages and disadvantages in
the context of monolith decomposition to microservices. The key findings identified
during this research are provided as a guideline for the researchers and industry that
can help to speed up legacy monolith decomposition to microservices and make this
complex procedure more obvious.

The rest of this paper is organized as follows: Section 2 gives a review of microser-
vice communication technologies and patterns. Section 3 describes the research
methodology. Section 4 reports investigation results of HTTP Rest, RabbitMQ,
Kafka, gRPC, and GraphQL communication technologies. Section 5 provides an
analysis and comparison of the results. Finally, Section 6 concludes this work.

2 RELATED WORKS

There are many different studies performed to determine which communication tech-
nology or pattern is faster, more secure, more robust, etc. But none of them have
investigated communication technologies from the perspective of legacy monolith
decomposition into microservices and a cloud-native application. This section re-
views the research performed on communication technologies, orchestration archi-
tecture patterns, streaming, performance, distributed cache, and differences between
microservices and service-oriented architecture (SOA) communication. A research
plan was created based on literature findings, and previous work in this domain and
a set of criteria for communication evaluation was introduced.

2.1 Communication Technologies

Communication between components in a monolithic application is implemented
using in-process based methods or function calls. Microservices-based application is
a distributed system running multiple processes and services, so different communi-
cation technologies must be used. Design of communication between microservices
is one of the most significant challenge while migrating from a monolithic software
to a microservices architecture [10].

Microservices can communicate using different ways, but all of them can be clas-
sified into two groups – synchronous and asynchronous. The client sends a request
and waits for a response from the service in a synchronous communication style. It
results in tight runtime coupling because both the client and service must be avail-
able for the duration of the request. Usually, HTTP/HTTPS protocols are used for
synchronous communication. The main advantage of this communication is that
system is simple and easily implemented. Also, there is no intermediate component,
such as a message broker. In asynchronous communication, microservices commu-
nicate by exchanging messages over messaging channels based on advanced message
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queuing protocol (AMQP). All counter parties can send messages, and senders do
not wait for the response message. There are several different asynchronous com-
munication patterns, such as request-response, publish-subscribe, and notification.
Asynchronous communication has the following benefits as loose runtime coupling
and improved availability. However, it has a more complex implementation. The
following message-based technologies as RabbitMQ, Apache Kafka, etc., are the im-
plementation of asynchronous communication between microservices [9, 10]. It must
be noted that the most popular communications technologies used for microservices
are based on HTTP protocol and asynchronous message patterns [1, 10, 11, 12].

gRPC is an open-source Remote Procedure Call (RPC) framework developed by
Google. It enables to establish communication between server and client applications
transparently in any environment. Before gRPC became open source in March 2015,
it had been used as a single general-purpose RPC infrastructure to connect the large
number of microservices running within and across Google data centers for over
a decade [13, 14].

GraphQL is a query language for APIs and a runtime for fulfilling those queries
with existing data. GraphQL was developed internally by Facebook in 2012 and
was published to the community in 2015. The key functionality of the GraphQL
framework is a query language that allows clients to define the structure of the data
required, and the same structure of the data is returned from the server [15, 16,
17].

It must be noted that it is common practice to use several communication tech-
nologies to develop the microservices-based application.

2.2 Architecture Patterns

Taibi et al. conducted a systematic literature review and identified three microservice
orchestration architecture patterns that also include communication and coordina-
tion of the microservices. Patterns were classified as API Gateway, service discovery,
and hybrid. A summary of the advantages, disadvantages of each architecture pat-
tern was presented in the paper as well.

API Gateway operates as the entry point of the system that routes the requests
to the appropriate microservices. This pattern is technology agnostic but usually
is implemented using the HTTP protocol. API Gateway has the following advan-
tages as ease of extension, market-centric architecture, and backward compatibility.
The high complexity of implementation, low reusability, and low scalability can be
mentioned as disadvantages of the pattern [18, 19].

The service discovery pattern uses a different approach, i.e., the client can com-
municate with each service directly without an intermediate layer. Domain name
system (DNS) address resolution into internet protocol (IP) address must be sup-
ported to achieve end-to-end communication between services. Pattern relies on
Service Register service that performs similarly as DNS. Advantages of service dis-
covery patterns are ease of development, maintainability, migration, communication,
health management. As pattern disadvantages, it can be mentioned high coupling
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between the client and the service registry, high complexity of Service Registry, high
complexity of distributed system [18, 19].

The Hybrid pattern combines Service Registry and API-Gateway and replaces
the API-gateway with the message bus. Clients communicate only with the message
bus that operates as a registry and gateway. Services communicate with each other
via message bus, and direct communication between microservices is not used. Ad-
vantages of the pattern are ease of migration while disadvantages are high coupling
between services and message bus [18].

2.3 Streaming and Distributed Cache

Smid et al. discussed the balance between the performance and coupling and pointed
out situations where suggested architectures were appropriate. The authors intro-
duced a streaming platform based on the message bus (Kafka) and data change
capture platform (Debezium) to synchronize data between different databases effec-
tively. Streaming is a totally different approach than orchestration and communica-
tion patterns mentioned in the previous chapter. Service generating event notifies
other services by using streaming events to the message bus. Therefore, almost all
communication is performed by consuming events from the message bus or database.
The proposed solution has the following limitations as overhead for deployment and
maintenance for applying the streaming platform. The microservices need to be
synchronized under a similar data model with the master system, and additional
source code must be introduced [19]. A distributed cache was introduced to im-
prove communication performance. The advantages of using a distributed cache
are performance, scalability, and ease of migration, while a disadvantage is high
complexity. The communication performance decreases significantly when data fre-
quently changes. The authors concluded that the message broker is an efficient way
of communication between microservices, and the publish/subscribe model is very
flexible and provides a faster mechanism than HTTP request with the benefit of
persistent messages [20].

2.4 Microservices and SOA Communication

Černy et al. performed a detailed study analyzing differences between microservices
architecture and SOA. Microservices provide decomposition preferring smart ser-
vices while considering simple routing mechanisms without the global governance
notable in SOA. This leads to higher service autonomy and decoupling since services
do not need to make agreements on the global level [21]. In general, there are two
well-defined approaches used to coordinate services, i.e., using a central orchestrator
or decentralized distributed way. The centrally orchestrated approach is the typical
SOA pattern, while the distributed approach is dominant for microservices-based
applications. These approaches are named orchestration and choreography, respec-
tively. Service orchestration works as a centralized business process, coordinating
activities over different services and combining the outcomes. The choreography
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works without a centralized element. The control logic is described by message ex-
changes and rules of interactions as well as agreements among interacting services.
Both SOA and microservice use the same communication technologies, i.e., HTTP
(Rest) and messaging [21].

2.5 Communication Security

Yarygina et al. analyzed security challenges in a microservice architecture. Poten-
tial threats in microservice communication were identified that are attacks on the
network stack and protocols, attacks against protocols specific to the service inte-
gration style (SOAP, RESTful Web Services). Security threat mitigation techniques
were proposed. The authors highlighted the leading microservice security indus-
try practices such as Mutual Authentication of Services using Mutual Transport
Layer Security, Principal Propagation via Security Tokens. The authors proposed
the method that combined both techniques and presented proof-of-concept eval-
uation results [22]. Walsh et al. introduced new comprehensive, automated, and
fine-grained mutual authentication mechanisms. To ensure a secure connection be-
tween microservices, the authors suggested using a combination of authentication
and attestation. The proposed attestation mechanisms were built on top of standard
transport layer security channels and certificates [23].

2.6 Performance Evaluation

Hong et al. provided a detailed study on the performance evaluation of RESTful
API and RabbitMQ for Microservice Web Application. Experimental results showed
that when a large number of users sent requests to the web application in parallel,
RabbitMQ as the Message-oriented middleware provided more stable results com-
pared to the RESTful API. On the other hand, the RESTful API has shown better
request-response performance results [24].

Fernandes et al. performed a comparison study between a RESTful Web service
and the AMQP protocol for exchanging messages between clients and servers. The
final results showed that for applications that exchange a large amount of data, the
best approach is to use the RabbitMQ server and Back-End Service to consume the
messages, process them, and send them to the database. As a result, fewer messages
per second were sent, time for exchange increased, and even more resources were
used evaluating RESTful Web service [25].

It can be summarized that different factors like request load, IT environment
and network technologies determine communication performance between microser-
vices. It cannot be unambiguously defined which of the communication technology
is faster. It depends on the specific application. It can be stated that asynchronous
communication is a more robust and stable communication mechanism than HTTP
(Rest) and enforces the microservice autonomy.
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3 RESEARCH METHODOLOGY

This section describes the research methodology used to evaluate and compare cho-
sen communication technologies:

• The experimental design is provided in Section 3.1.

• Criteria and metrics used for the evaluation and comparison are described in
Section 3.2.

• Topologies used for the evaluation and comparison are described in Section 3.3.

• Tools, libraries, and IT equipment used to perform experiments are listed in
Section 3.4.

3.1 Experimental Design

A set of five microservices were created and connected in a line topology to evaluate
and compare communication technologies (Figure 1). RPC technique was used for
communication between microservices. Only pure server and client functionality
were implemented in each microservice, and the server component exposes API,
and the client component is used for executing RPC. The experiment aimed to
evaluate and compare communication based on the remote procedure call (RPC).
RPC technique was chosen because it supports the same functionally as a function
call and in-process-based communication.

M1 M2 M3 M4 M5

R
e
s
.

R
e
q
.

Figure 1. The topology of microservices used for the experiment. Where: Req. is request,
Res. is response and Mi is microservice.

The full flow of message processing in the experiment is defined as follows:

t =

(
n=4∑
i=1

Mi → Mi+1

)
+

(
n=3∑
i=0

M5−i → M5−i−1

)
, (1)

where: t is the time used to process the message, Mi is microservice with index i, and
arrow (→) is request/response operation. Different size and complexity messages
were sent to evaluate and compare the impact of message size, message complexity
and request load on the latency and throughput of each technology. The time
duration between requests sent from M1 to M5 and the response received from M5
to M1 was measured and used to calculate latency and throughput.
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Different data models were used (Figure 2) for messages to measure message size
and complexity impact on latency and throughput. The TestModelOnlyText data
model was used to measure impact on message size, the TextField value was set
to 10, 1 000, 100 000, 1 000 000 characters. The TestModelAllTypes data model was
used to measure impact on message complexity, especially on serialization. Messages
with 10, 100, 1 000 and 10 000 properties were used.

Figure 2. Data models used in experiment

The latency was measured by processing different size and complexity messages
while requesting with 1 client. The throughput was measured by processing the same
messages as it was processed in latency tests, but with the increased request load.
During the experiment the request load started with 10 clients and was constantly
increased by 10 clients each 30 seconds until it reached 200 clients.

3.2 Criteria

This section provides information about criteria that were taken into account while
analyzing different communication technologies. Previous research performed by
different authors was mainly focused on performance evaluations and comparison.
In order to cover more communication aspects that can potentially be a challenge
during legacy monolith application decomposition to microservices, a set of new
criteria was introduced. These criteria were chosen to compare each communication
technology in the context of communication between microservices decomposed from
monolith application.

Performance: communication technology performance is measured and analyzed
by latency and throughput. Latency was measured by time in milliseconds since
the request was sent till the response was received. Throughput was measured
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by number successful request per second (RPS). The successful request was
considered if response was received within 1 second.

Messages size: to determine the potential technology impact on network load re-
quests and response size in bytes were measured.

Memory size: to evaluate how much memory is needed to run an application with
each communication technology, application memory usage in bytes was mea-
sured.

Storage size: to evaluate how much storage is needed to store an application with
each communication technology, storage usage in bytes was measured.

Boot time: application boot time in seconds was measured to determine how much
time is needed to start the application.

Architecture: to highlight the specific impact of each technology regarding appli-
cation architecture.

Topology: technology impact on the topology of microservices. More details about
the topology used in the experiment are provided in Section 3.3.

Used applications and libraries: to analyze the availability of the particular li-
brary.

3.3 Tools

All microservices were written using C Sharp and .Net Core [26]. All coding and
testing were done using Microsoft Visual Studio 2022 IDE [27]. All libraries used in
the research were downloaded from NuGet gallery [28]. Latency tests were conducted
using BenchmarkDotNet library [29]. Throughput tests were executed by using
NBomber library [30]. Network data was analyzed by Wireshark application [31].

All experiments were performed on a computer with the following specification:
CPU – Core i7 9850H, memory – 30GB RAM, storage – 512GB SSD, and OS –
Windows 10 Enterprise (20H2). All applications were run on a computer, no external
devices or networks were used.

The experiment can be reproduced on a computer with Visual Studio 2022
IDE, RabbitMQ (3.10.0 version) and Kafka (3.2.0) installed. The source code
used in the experiment and experiment results are freely accessible and can be
found under the following link https://bitbucket.org/justas_kazanavicius/

communicationexperiment.

3.4 Topology

Three different topologies of microservices were chosen to analyze how communica-
tion technology influences topology criteria defined in the previous section (Figure 2).
Linear (single receiver) topology – request processing flow has only one way in, and
each microservice is involved in request processing. Tree type topology – request
processing flow has a few ways. Middleware microservices work as gateways. Star

https://bitbucket.org/justas_kazanavicius/communicationexperiment
https://bitbucket.org/justas_kazanavicius/communicationexperiment
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type topology (multiple receivers) – first microservice works as a gateway and routes
request to specific microservice. Those topologies were chosen because each of them
represents a different way how data can be processed and communication between
microservices can be established.

M1

M2

M3

M4

M5

M6

M1

M2M3

M4 M5 M6

M1

M2

M3

M4

M5

M6

Line Tree Star

Figure 3. Topologies used in the research

4 RESULTS OF EXPERIMENT

This section provides results obtained during the evaluation of five communication
technologies: HTTP (Rest API), RabbitMQ, Kafka, gRPC, and GraphQL. Deeper
discussions on results are provided in Section 5. Each technology subsection is
divided into four subsections to provide more details in terms of experiment results:

• Latency test results are provided in table.

• Throughput test results are provided in chart.

• Results of other metrics : Request/Response size, Microservice application size,
Memory usage size, Boot time.

• Architecture – technology and libraries impact to the architecture.

• Topology – technology and libraries impact to the topology.

• Libraries – a list of libraries that were used in the experiment to establish a con-
nection between microservices via particular technology.
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4.1 HTTP (Rest API)

Latency results: Results of the latency test are shown in Table 1. The best results,
7.265ms, were achieved processing 1 000 characters messages. The worst results,
31.410ms, were achieved processing 1 000 000 characters messages.

Message Size Mean Median Min Max

10 characters 7.527ms 7.404ms 5.801ms 9.923ms

1 000 characters 7.265ms 7.149ms 5.685ms 9.459ms

100 000 characters 11.745ms 11.356ms 9.543ms 15.875ms

1 000 000 characters 31.410ms 30.563ms 25.304ms 44.212ms

10 properties 8.236ms 8.055ms 6.465ms 11.516ms

100 properties 8.459ms 8.408ms 6.396ms 10.940ms

1 000 properties 9.826ms 9.726ms 7.567ms 13.284ms

10 000 properties 21.779ms 21.096ms 19.010ms 26.546ms

Table 1. Latency test results for message processing with HTTP Rest

Throughput results: Throughput results of the load test are shown in Figure 4.
The best average results, 99.7 RPS, were achieved processing 10 properties mes-
sages. The worst average results, 4.7 RPS, were achieved processing 1 000 000
characters messages.
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Figure 4. Load test results for message processing with HTTP Rest

Results of other metrics: Other results obtained during the experiment are pre-
sented in Table 2.
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Metric Result

Request/Response size 172B/185B (payload 26B)

Microservice application size 4.71MB (empty 159 kB)

Memory usage size 69MB (empty 9MB)

Boot time 3.1 s

Table 2. Results of HTTP Rest experiment measurements

Architecture: In order to communicate via Rest API, microservice has to have at
least 3 additional components: Rest API, Controller, and Rest Client (Figure 5).
Rest API component is exposing the HTTP server and routes requests to the
Controller component, which operates as a facade for business logic. Rest Client
is needed to make requests to Rest APIs exposed by other microservices.

Rest API Controller
Microservice

business logic
Rest client

Rest API 
y

Rest client 
x

HTTP HTTP

Figure 5. The architecture of Rest API in microservice

Topology: Microservices M1–M5 have to know how to reach the next microservice
(M1 → M2, M2 → M3 etc.) when a linear topology is used. Microservice M6
only exposes Rest API. The tree type topology shows that microservices M1,
M2, and M3 each have two dependencies (M1 should know URLs of M2 and
M3). M4, M5, and M6 only expose the Rest API. In the star type topology, the
M1 microservice has to know the URLs of all micro-services.

Libraries: The list of libraries that were used in the experiment to establish a con-
nection between microservices via HTTP Rest technology is provided bellow:

• Microsoft.AspNetCore.App (Version 6.0.7),

• Microsoft.NETCore.App (Version 6.0.7),

• Swashbuckle.AspNetCore (Version 6.2.3),

• System.Net.Http.Json (Version 6.0.0).

4.2 RabbitMQ

Latency results: Results of the latency test are shown in Table 3. The best results,
2.976ms, were achieved processing 1 000 characters messages. The worst results,
118.657ms, were achieved processing 1 000 000 characters messages.

Throughput results: Throughput results of the load test are shown in Figure 6.
The best average results, 231.5 RPS, were achieved processing 10 characters mes-
sages. The worst average results, 0.01 RPS, were achieved processing 1 000 000
characters messages.
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Message Size Mean Median Min Max

10 characters 2.982ms 2.946ms 2.551ms 3.491ms

1 000 characters 2.976ms 2.939ms 2.721ms 3.712ms

100 000 characters 5.166ms 5.023ms 4.674ms 6.360ms

1 000 000 characters 118.657ms 116.824ms 73.740ms 157.821ms

10 properties 4.354ms 4.265ms 3.059ms 6.605ms

100 properties 3.197ms 3.108ms 2.843ms 4.387ms

1 000 properties 4.752ms 4.670ms 4.278ms 5.875ms

10 000 properties 20.310ms 19.974ms 19.529ms 23.098ms

Table 3. Latency test results for message processing with RabbitMQ
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Figure 6. Load test results for message processing with RabbitMQ

Results of other metrics: Other results obtained during the experiment are pre-
sented in Table 4.

Metric Result

Request/Response size 206B/225B (payload 26B)

Microservice application size 2.26MB (empty 159 kB)

Memory usage size 23MB (empty 9MB)

Boot time 3.8 s

Table 4. Results of RabbitMQ experiment measurements
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Architecture: In order to utilize RabbitMQ as RPC, microservices have to contain
two additional components: Rabbit server and Rabbit client (Figure 7). Rabbit
server consumes messages from queue x1 and routes them to business logic where
messages are processed and moved to rabbit client to publish them to queue y1.
After pushing messages to queue y1 Rabbit client starts listening to queue y2
for a response. A message which is consumed from queue y2 goes from Rabbit
client through business logic to Rabbit server where it is published to queue x2.

Rabbit server
Microservice

business logic
Rabbit client

Rabbit client 
x

Queue x1
Rabbit server 

y
Queue x2 Queue y2

Queue y1

Figure 7. The architecture of RabbitMQ in microservice

Topology: Similar to HTTP communication Rabbit server component is not need-
ed for those microservices which are only used as clients, and the client com-
ponent is not needed for those microservices which are only used as servers.
The most significant difference using RabbitMQ is that there is no need for
microservices to know about each other’s endpoints, such as IP address or host-
name. Instead of communicating directly with each other microservices are
communicating through RabbitMQ, which acts as a router. Clients are produc-
ers and produce messages to the RabbitMQ queue while servers are consumers
and consume messages from the same RabbitMQ queue.

Libraries: The list of libraries that were used in the experiment to establish a con-
nection between microservices via RabbitMQ technology is provided bellow:

• Microsoft.NETCore.App (Version 6.0.7),

• RabbitMQ.Client (Version 6.3.0),

• Nito.AsyncEx (Version 5.1.2).

4.3 Kafka

Latency results: Results of the latency test are shown in Table 5. The best results,
7.191ms, were achieved processing 10 characters messages. The worst results,
42.600ms, were achieved processing 1 000 000 characters messages.

Throughput results: Throughput results of the load test are shown in Figure 8.
The best average results, 93.3 RPS, were achieved processing 10 characters mes-
sages. The worst average results, 1.6 RPS, were achieved processing 1 000 000
characters messages.

Results of other metrics: Other results obtained during the experiment are pre-
sented in Table 6.

Architecture: In order to utilize Kafka as RPC, microservices have to contain
two additional components: Kafka server and Kafka client (Figure 9). Kafka
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Message Size Mean Median Min Max

10 characters 7.191ms 7.130ms 6.836ms 8.023ms

1 000 characters 8.073ms 8.016ms 5.398ms 11.428ms

100 000 characters 11.643ms 11.397ms 8.811ms 15.241ms

1 000 000 characters 42.600ms 42.187ms 35.172ms 54.572ms

10 properties 8.183ms 8.115ms 6.009ms 11.441ms

100 properties 7.761ms 7.605ms 5.782ms 10.627ms

1 000 properties 12.116ms 11.566ms 8.704ms 16.905ms

10 000 properties 28.612ms 28.366ms 24.451ms 34.667ms

Table 5. Latency test results for message processing with Kafka
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Figure 8. Load test results for message processing with Kafka

server consumes messages from topic x1 and routes them to business logic where
messages are processed and moved to Kafka client to publish them to topic y1.
After pushing messages to topic y1 Kafka client starts listening to topic y2 for
a response. A message which is consumed from topic y2 goes from Kafka client
through business logic to Kafka server where it is published to topic x2.

Kafka server
Microservice

business logic
Kafka client

Kafka client 
x

Topic x1
Kafka server 

y
Topic x2 Topic y2

Topic y1

Figure 9. The architecture of Kafka in microservice
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Metric Result

Request/Response size 219B/252B (payload 26B)

Microservice application size 2.18MB (empty 159 kB)

Memory usage size 40MB (empty 9MB)

Boot time 2.6 s

Table 6. Results of Kafka experiment measurements

Topology: Kafka server component is not needed for those microservices which
are only used as clients, and the client component is not needed for those mi-
croservices which are only used as servers. Similar to the RabbitMQ, the most
significant difference comparing to HTTP Rest, gRPC and GraphQL is that
there is no need for microservices to know about each other’s endpoints, such
as IP address or hostname. Instead of communicating directly with each other
microservices are communicating through Kafka, which acts as a router. Clients
are producers and produce messages to the Kafka topic while servers are con-
sumers and consume messages from the same Kafka topic.

Libraries: The list of libraries that were used in the experiment to establish a con-
nection between microservices via Kafka technology is provided bellow:

• Microsoft.NETCore.App (Version 6.0.7),

• Simple.Kafka.Rpc (Version 1.8.3).

4.4 gRPC

Latency results: Results of the latency test are shown in Table 7. The best results,
6.761ms, were achieved processing 1 000 characters messages. The worst results,
35.384ms, were achieved processing 1 000 000 characters messages.

Message Size Mean Median Min Max

10 characters 7.004ms 6.787ms 5.336ms 9.455ms

1 000 characters 6.716ms 6.729ms 5.396ms 8.136ms

100 000 characters 10.188ms 10.021ms 7.976ms 13.537ms

1 000 000 characters 35.384ms 34.262ms 25.406ms 52.120ms

10 properties 8.022ms 7.929ms 6.651ms 9.874ms

100 properties 8.183ms 8.211ms 6.692ms 10.243ms

1 000 properties 8.501ms 8.487ms 7.354ms 10.228ms

10 000 properties 14.855ms 14.562ms 12.778ms 18.263ms

Table 7. Latency test results for message processing with gRPC

Throughput results: Throughput results of the load test are shown in Figure 10.
The best average results, 170.1 RPS, were achieved processing 1 000 characters
messages. The worst average results, 5.0 RPS, were achieved processing 1 000 000
characters messages.
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Figure 10. Load test results for message processing with gRPC

Results of other metrics: Other results obtained during the experiment are pre-
sented in Table 8.

Metric Result

Request/Response size 363B/162B (payload 12B)

Microservice application size 1.85MB (empty 159 kB)

Memory usage size 70MB (empty 9MB)

Boot time 3.4 s

Table 8. Results of gRPC experiment measurements

Architecture: In order to communicate via gRPC microservice has to have at least
three additional components: gRPC server, Service, and gRPC Client (Fig-
ure 11). gRPC server component is exposing gRPC server and sends requests
to Service component which acts as a facade for business logic. gRPC Client
sends a request to gRPC server y. The components and flow are very similar to
the Rest API case.

gRPC server Service
Microservice

business logic
gRPC client

gRPC server 
y

gRPC client 
x

gRPC gRPC

Figure 11. The architecture of gRPC in microservice
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Topology: In terms of topology, gRPC and Rest API have no difference. Microser-
vices M1–M5 have to know how to reach the next microservice when a linear
topology is used. Micro-service M6 only exposes the gRPC server. Microservices
M1, M2, and M3 have two dependencies in the tree type topology. Microservices
M4, M5, and M6 only expose the gRPC server. In the star type topology, the
M1 microservice has to know all microservices URLs.

Libraries: The list of libraries that were used in the experiment to establish a con-
nection between microservices via gRPC technology is provided bellow:

• Microsoft.NETCore.App (Version 6.0.7),

• protobuf-net.Grpc (Version 1.0.152),

• protobuf-net.Grpc.AspNetCore (Version 1.0.152),

• Grpc.Net.Client (Version 2.45.0).

4.5 GraphQL

Latency results: Results of the latency test are shown in Table 9. The best results,
7.711ms, were achieved processing 1 000 characters messages. The worst results,
51.170ms, were achieved processing 10 000 properties messages.

Message Size Mean Median Min Max

10 characters 7.755ms 7.718ms 5.945ms 10.69ms

1 000 characters 7.711ms 7.376ms 5.846ms 12.02ms

100 000 characters 12.349ms 11.392ms 9.083ms 18.83ms

1 000 000 characters 29.575ms 29.137ms 24.780ms 38.70ms

10 properties 10.498ms 10.302ms 7.652ms 14.67ms

100 properties 9.860ms 9.624ms 8.383ms 12.63ms

1 000 properties 13.262ms 13.261ms 10.921ms 15.73ms

10 000 properties 51.170ms 49.828ms 44.979ms 65.10ms

Table 9. Latency test results for message processing with GraphQL

Throughput results: Throughput results of the load test are shown in Figure 12.
The best average results, 185.5 RPS, were achieved processing 10 properties
messages. The worst average results, 4.8 RPS, were achieved processing 1 000 000
characters messages.

Results of other metrics: Other results obtained during the experiment are pre-
sented in Table 10.

Topology: GraphQL, gRPC, and Rest API have no big difference in terms of topol-
ogy. All technologies use client/server synchronous communication model. In
order to establish communication, a client has to know the server endpoints such
as IP address or host name.

GraphQL is also a query language for APIs – a client has the ability to re-
quest very specific data from the server. Queries in GraphQL can be written in
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Figure 12. Load test results for message processing with GraphQL

Metric Result

Request/Response size 390B/843B (payload 49B)

Microservice application size 5.53MB (empty 159 kB)

Memory usage size 65MB (empty 9MB)

Boot time 4.4 s

Table 10. Results of GraphQL experiment measurements

such a manner that would not only access separate properties but also follow
references between them. Star type topology best utilizes this GraphQL feature.

Architecture: GraphQL flow is quite similar to REST API. Three additional com-
ponents are needed to communicate via GraphQL: GraphQL Server, GraphQL
abstraction layer, and GraphQL client (Figure 13). GraphQL is transport-layer
agnostic, but the most common technology used for transport is HTML.

GraphQL server
GraphQL

abstraction layer
Microservice

business logic
GraphQL client

GraphQL server 
y

GraphQL client 
x

JSON JSON

Figure 13. The architecture of GraphQL in microservice

Libraries: The list of libraries that were used in the experiment to establish a con-
nection between microservices via GraphQL technology is provided bellow:
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• Microsoft.NETCore.App (Version 6.0.7),

• GraphQL (Version 4.6.1),

• GraphQL.Client (Version 4.0.2),

• GraphQL.Client.Serializer.SystemTextJson (Version 4.2.2).

5 COMPARISON OF COMMUNICATION TECHNOLOGIES

This section compares communication technologies in different aspects based on the
obtained results of the executed experiments. Section 5.1 provides details about
available libraries for each technology. Section 5.2 gives an overview of the compo-
nents used for each technology and highlights specific requirements for some tech-
nologies. Section 5.3 analyses the impact of the communication technology on the
topology. Performance evaluation is presented in Section 5.4 using different aspects.
The last section evaluates different metrics of each technology.

5.1 Libraries

Many different libraries can be chosen for HTTP Rest implementation mainly be-
cause it is the oldest and relatively simple technology. RabbitMQ and Kafka are
also very popular technologies, so it also have quite a few libraries. GraphQL and
gRPC are quite new technologies, and not so many libraries exist in the market. Mi-
crosoft .Net framework has built-in support and provides libraries for HTTP Rest
and gRPC communication technologies.

5.2 Architecture

HTTP Rest, gRPC, and GraphQL communication technologies have very similar
architecture: one component is used to expose a server, the second one to translate
from technology-specific message to business-specific, and the last component is used
to send a message.

Communication models and methods have to be defined in *proto files and
shared between microservices in order to use gRPC communication technology.
Similar to gRPC *proto files, GraphQL has a schema. GraphQL schema contains
information about server methods and data types.

RabbitMQ and Kafka are a message based technologies, and they are different
than others used in the research. Communication between microservices is not point-
to-point like in HTTP Rest, gRPC, and GraphQL. All communication in RabbitMQ
is implemented via queues: microservices can publish to and consume from the
queue. Similar to RabbitMQ, Kafka uses topics to implement communication. Two
queues, or two topics in Kafka case, have to be created in order to implement RPC
call between microservices: one for a request and the second for a response.
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5.3 Topology

HTTP Rest, gRPC, and GraphQL technologies are independent of topology. Mi-
croservice has to know how to reach other microservice in order to establish com-
munication i.e. it has to know the addresses of other microservices. It is a known
problem, and there are many solutions how to solve it, but all of them increase the
complexity of the solution, especially if scalability is needed.

RabbitMQ and Kafka technologies do not have this challenge because it works as
an intermediary communication layer and all communication between microservices
happens through it. Communication in RabbitMQ and Kafka is based on queues
and topics. A microservice has to know only the name of the queue, or topic name in
Kafka case, in order to communicate with other microservice. A few microservices
can publish and consume the same queue or topic. It is a powerful feature to support
scalability.

GraphQL best utilizes its features in star-type topology where one microservice
acts as a gateway and others as data sources. Powerful GraphQL query language
allows creating a specific request in such a way that it can fetch data from multiple
data sources in one API call. This feature can potentially reduce the number of calls
between microservices needed to implement the functionality.

5.4 Performance

Performance tests were executed to compare latency and throughput in the case of
RPC calls between five microservices. No performance optimizations were applied
to any technology during this experiment. Latency results based on message size in
characters are shown in Figure 14. Latency results based on number of properties
are shown in Figure 15.

The lowest latency results for string up to 1 000 000 characters were obtained
by RabbitMQ technology. RabbitMQ RPC calls were 2 times faster than other
technologies. It showed best results processing smallest messages (10 and 1 000
characters), the results were 2 times better than processing 100 000 character’s mes-
sages. HTTP Rest, Kafka, gRPC and GraphQL showed similar latency results,
however results obtained by gRPC were slightly better.

On the other hand, the RabbitMQ had the highest latency results while pro-
cessing messages which consisted of 10 000 000 characters. It was from 3 to 4 times
slower than the others. The best latency results for 10 000 000 characters messages
were obtained by GraphQL and HTTP Rest technologies. Kafka was 40% and
gRPC was 16% and slower than GraphQL and HTTP Rest technologies.

The lowest latency results for messages containing up to 1 000 properties were
also obtained by RabbitMQ technology. RabbitMQ RPC calls were from 2 to 3 times
faster than other technologies. It showed best results processing messages containing
100 properties, the results were 37% better than processing messages containing
1 000 properties and 47% better than processing messages containing 10 properties.
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Figure 14. Latency tests results based on string size

HTTP Rest, Kafka and gRPC showed similar results for messages containing 10 and
100 properties.

The best results for communicating via messages containing 10 000 properties
were obtained by gRPC technology. The binary serialization used by gRPC tech-
nology is faster than JSON serialization, which has been used by other technologies
during the experiment, hence the more properties the message contains, the greater
advantage gRPC has.

The GraphQL showed worst latency results for messages containing at least 10
properties. The more properties the message contained, the greater difference was
comparing to other technologies. It was from 2 to 4 times slower than others while
communicating via messages containing 10 000 properties.

Analyzing results it can be seen that the best RPC call latency results were
achieved by RabbitMQ in 6 of 8 cases. However, the RabbitMQ was the slowest
technology processing 10 000 000 characters messages. It can be summarized that
the RabbitMQ has the lowest latency in case the message size is not bigger than
0.1MB and data model contains up to 1 000 properties.

Throughput results for 10 characters size message are shown in Figure 16.
The best throughput results were obtained by RabbitMQ technology, with aver-
age 231.6 RPS. The maximum result, 315.1 RPS, was reached while requesting with
10 clients. The worst RPC throughput test results were obtained by HTTP Rest
technology with average 89.8 RPS and 140 clients limit.

Throughput results for 1 000 characters size message are shown in Figure 17.
The best throughput results were obtained by RabbitMQ technology, with average
219.5 RPS. The maximum result, 300.1 RPS, was reached while requesting with
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Figure 15. Latency tests results based on number of properties

10 clients. The worst RPC throughput test results were obtained by HTTP Rest
technology with average 89.9 RPS and 140 clients limit.

Throughput results for 100 000 characters size message are shown in Figure 18.
The best throughput results were obtained by RabbitMQ technology, with average
93.3 RPS. The maximum result, 179.3 RPS, was reached while requesting with 10
clients. The worst RPC throughput test results were obtained by Kafka technology
with average 36.2 RPS and 80 clients limit.

Throughput results for 10 000 000 characters size message are shown in Fig-
ure 19. The best throughput results were obtained by gRPC technology, with aver-
age 5.0 RPS and 40 clients limit. The maximum result, 37.1 RPS, was reached while
requesting with 10 clients. The worst RPC throughput test results were obtained
by RabbitMQ technology with average 0.01 RPS.

Throughput results for 10 properties size message are shown in Figure 20.
The best throughput results were obtained by RabbitMQ technology, with average
200.4 RPS. The maximum result, 291.5 RPS, was reached while requesting with 10
clients. The worst RPC throughput test results were obtained by Kafka technology
with average 87.0 RPS and 140 clients limit.

Throughput results for 100 properties size message are shown in Figure 21.
The best throughput results were obtained by RabbitMQ technology, with average
203.5 RPS. The maximum result, 295.5 RPS, was reached while requesting with 10
clients. The worst RPC throughput test results were obtained by Kafka technology
with average 72.2 RPS and 130 clients limit.

Throughput results for 1 000 properties size message are shown in Figure 22. The
best throughput results were obtained by gRPC technology, with average 161.9 RPS.
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Figure 16. Throughput tests results for 10 characters size messages
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Figure 17. Throughput tests results for 1 000 characters size messages
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Figure 18. Throughput tests results for 100 000 characters size messages
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Figure 19. Throughput tests results for 10 000 000 characters size messages
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Figure 20. Throughput tests results for 10 properties size messages
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Figure 21. Throughput tests results for 100 properties size messages
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Figure 22. Throughput tests results for 1 000 properties size messages

The maximum result, 227.0 RPS, was reached while requesting with 10 clients. The
worst RPC throughput test results were obtained by Kafka technology with average
43.7 RPS and 100 clients limit.

Throughput results for 10 000 properties size message are shown in Figure 23.
The best throughput results were obtained by gRPC technology, with average
83.3 RPS. The maximum result, 146.6 RPS, was reached while requesting with
20 clients. The worst RPC throughput test results were obtained by Kafka technol-
ogy with average 3.9 RPS and 30 clients limit.

It can be summarized that the best RPC call throughput results for smaller
messages, up to 0.1MB and up to 100 properties, were achieved by RabbitMQ tech-
nology. The best RPC call throughput results for bigger messages were achieved by
gRPC communication technology. The worst throughput results in 5 of 8 cases were
achieved by Kafka. The slowest technology processing biggest messages, 1 000 000
characters, was RabbitMQ.

However, if we compare latency distribution results (Figures 24, 25, 26, 27 28) we
will see, that both Kafka and RabbitMQ can process more messages (with latency
higher than 1 second) and works more stable when dealing with more then 50 clients
load, comparing to HTTP Rest, gRPC and GraphQL technologies.

5.5 Metrics

The smallest size of request/response was obtained by HTTP Rest technology with
total size 357B. The GraphQL request/response was approximately 2–3 times big-
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Figure 23. Throughput tests results for 10 000 properties size messages
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Figure 24. Kafka latency distribution for 1000 000 characters size messages

ger than others (Figure 29). If the message size is important criteria for choosing
communication technology, then HTTP Rest is a recommended technology. On the
other hand, GraphQL supports remote querying, so potentially, one GraphQL re-
quest/response could transfer as much information as a few requests/responses using
other technologies.

A comparison of application size is presented in Figure 30. It can be seen
that the biggest application size of 5 530 kB was obtained when GraphQL libraries
were used for microservices. The smallest application size of 1 850 kB was when
GraphQL libraries were included. Application size is independent of communication
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Figure 25. RabbitMQ latency distribution for 1000 000 characters size messages
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Figure 26. HTTP Rest latency distribution for 1 000 000 characters size messages
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Figure 27. gRPC latency distribution for 1 000 000 characters size messages
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Figure 28. GraphQL latency distribution for 1 000 000 characters size messages
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Figure 29. Request/Response size measured during experiment

technology. It depends on the way how it was implemented in the library. If the
library size is too big, then the microservice developer can implement it by him
selves.

The smallest amount of memory of 23MB was allocated using RabbitMQ li-
braries, while gRPC used 70MB of memory and it is almost three times more
than RabbitMQ (Figure 31). It can be noted that if an application is running in
an environment where memory is limited, then the best solution for implementing
communication is between RabbitMQ and Kafka. Also, it must be pointed out that
RabbitMQ and Kafka do require additional applications installed compared to other
communication technologies.

A comparison of microservice boot time is shown in Figure 32. The longest boot
time was spotted using GraphQL technology and it took 4.4 seconds while the short-
est boot time of 2.6 seconds was obtained using Kafka technology. Boot time as well
as the microservice size mostly depend on implementation, but not on communi-
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cation technology itself and can be potentially improved by tuning implementation
details.

6 DISCUSSION

One of the most significant challenge during monolith application transition into mi-
croservice architecture is data communication management. How to migrate from
in-process method or function calls to inter-process communication? The high com-
plexity, variety of architectural aspects, technological stack, and business objects
make every application different and create challenges during monolith application
decomposition to microservices. The introduced criteria allowed us to evaluate var-
ious aspects of communication technologies that are important while designing mi-
croservices. The key findings discovered in this study are provided below.

• If latency and throughput are main criteria during the transition from a monolith
architecture to a microservice architecture, then RabbitMQ and gRPC are the
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most suitable technologies. RabbitMQ showed best results in RPC latency and
throughput tests for small messages (up to 0.1MB and data model up to 100
properties), while gRPC showed best results in RPC latency and throughput
tests for big messages. The worst result were obtained by HTTP Rest and
Kafka technologies.

• Kafka and RabbitMQ showed best throughput results in the most loaded con-
ditions: requested by more than 100 clients at the same time and processing
1 000 000 characters messages. However, latency of RPC was high, more than
1 second.

• If horizontal scalability is important aspect, Kafka and RabbitMQ are the best
candidates as they have built in cluster functionality. It must be noted that
others technologies can be scaled horizontally as well, but it requires additional
tools and effort.

• HTTP Rest has the smallest request and response message size. If the message
size is important criteria for choosing communication technology, then HTTP
Rest is a recommended technology. On the other hand, gRPC has the smallest
payload as it uses binary serialization. Theoretically, at some point of complex-
ity, for complex data models with many properties, gRPC request and response
message size should become smaller than HTTP Rest. A deeper research is
needed to determine exact complexity threshold.

• gRPC library is using the least amount of storage. If microservices are running in
an environment with limited storage, then gRPC must be used. The maximum
amount of storage is allocated for GraphQL libraries. It must be pointed out
that storage size weakly depends on technology. It mostly depends on how
it was implemented in the particular library. If the library size is too big,
then microservice developers can implement it by themselves, but there is no
guarantee that the new library will be smaller.

• RabbitMQ and Kafka consume the smallest amount of memory. Therefore, if
memory size is one of the essential criteria, then RabbitMQ and Kafka must
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be used for implementation. On the other hand, HTTP Rest consumes the
largest amount of memory. Memory size and storage usage depend on library
implementation so that a similar recommendation can be provided as in the
previous list item.

• Microservice implemented using Kafka library boots up in the fastest way, while
using GraphQL library boots up in the slowest way. If the boot time or restart
time of microservice is essential, then Kafka must be used for microservice com-
munication.

• HTTP Rest and RabbitMQ are prevalent communication technologies, and
many different libraries exist in the market to choose from, while GraphQL
and gRPC are relatively new and rapidly growing communication technologies
with fewer libraries to choose from.

• Synchronous communication style communication technologies gRPC, HTTP
Rest, and GraphQL do not require any additional components to communicate,
while asynchronous communication technologies RabbitMQ and Kafka requires
service as interim communication layer. Hence, additional components increase
solution complexity and maintenance cost. On the other hand, if a solution
contains many microservices and scalability is a challenge, RabbitMQ and Kafka
as an interim layer can provide centralized communication routing functionality.

Known limitations and threats to validity of the research are provided below:

• Experiment was conducted using programming language: C Sharp. Measured
results can be different using other programming languages and libraries.

• Experiment was conducted using computer with Windows OS. Measured results
can be different using different environment such as Linux, Docker, OpenShift,
public cloud, and etc., due to their specifics and implementation details of the
libraries.

7 CONCLUSIONS

The aim of this paper was to analyze and evaluate different communication tech-
nologies for communication between microservices. A set of new criteria including
influence on microservice topology, the performance of remote procedure call, mes-
sage size, memory consumption, storage usage, boot time, and availability of the
corresponding libraries was introduced to evaluate a variety of aspects that can
potentially be a challenge during legacy monolith application decomposition to mi-
croservices. Five communication technologies, such as HTTP Rest, RabbitMQ,
Kafka, gRPC, and GraphQL, have been evaluated and compared by proposed eval-
uation criteria.

The key advantages and disadvantages of each communication technology have
been identified and provided in Section 6.

The results found in this research will be used for algorithm development of
automatic monolith decomposition to the microservices.
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