
Computing and Informatics, Vol. 42, 2023, 191–209, doi: 10.31577/cai 2023 1 191

SEMANTIC SIMILARITY IN A TAXONOMY
BY REFINING THE RELATEDNESS
OF CONCEPT INTENDED SENSES

Anna Formica, Francesco Taglino

Istituto di Analisi dei Sistemi ed Informatica (IASI) “Antonio Ruberti”
National Research Council
Via dei Taurini 19, I-00185, Rome, Italy
e-mail: {anna.formica, francesco.taglino}@iasi.cnr.it

Abstract. In this paper, we present an evolution of a novel approach for evaluating
semantic similarity in a taxonomy, based on the well-known notion of information
content. Such an approach takes into account not only the generic sense of a concept
but also its intended sense in a given context. In this work semantic similarity is
evaluated according to a refined relatedness measure between the generic sense and
the intended sense of a concept, leading to higher correlation values with human
judgment with respect to the original proposal.
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1 INTRODUCTION

The similarity measures based on the information content approach defined by
Resnik [1] and Lin [2] have been extensively investigated in the literature and, in
general, have shown higher correlation values with human judgment with respect to
other proposals which do not originate from it [3, 4, 5, 6].

In [7] a novel approach has been presented that allows semantic similarity to
be computed by taking into account not only the information contents of the con-
cepts but also the context, i.e., the meanings of the concepts in the given application

https://doi.org/10.31577/cai_2023_1_191


192 A. Formica, F. Taglino

domain. As shown in [7], the context (or perspective [2]) is fundamental in eval-
uating semantic similarity, and different contexts can lead to different similarity
degrees among the same concepts. The role of context is more evident if we fo-
cus on siblings, i.e., concepts of the taxonomy with the same parent, which share
the same information content. Note that also the approach proposed by Lin is
based on the notion of perspective, but it does not allow for evaluating similarity
by addressing a single perspective at a time, and the information-theoretic defini-
tion of similarity between concepts is interpreted as “a weighted average of their
similarities computed from different perspectives”. For this reason in this work,
analogously to [7], we distinguish the notion of concept generic sense, i.e., the sense
of the concept that is not related to any specific context, from the concept intended
sense, i.e., the meaning of the concept in a specific context. In order to compute
semantic similarity between concepts, the essential activity consists in evaluating
the relatedness [8] between the generic sense and the intended sense of a given con-
cept. With this regard, in this paper, we refine the original proposal of the authors
by addressing the ASRMPm relatedness measure proposed in [9], which shows the
best correlation with the human judgment concerning other methods defined in the
literature [10]. The new experiment leads, for each method addressed in [7], to
an average increment of the average correlation with the human judgment of about
0.04.

The paper is organized as follows. In Section 2 the problem is informally recalled,
and in Section 3 the enriched similarity measure is given, with a subsection describing
the ASRMPm measure. In Section 4 the new experiment is presented. The related
work follows in Section 5, and Section 6 presents the conclusion.

2 SEMANTIC SIMILARITY IN A TAXONOMY

In this section, the informal presentation of the method given in [7] is recalled.

According to Resnik [1], the notion of semantic similarity between concepts
organized according to a taxonomy relies on concept frequencies in text corpora,
e.g., gross collections of text samples of American English. As mentioned above,
the basic assumption of the approach is the following: the more information two
concepts share the more similar they are, and the similarity between concepts is
given by the maximum information content shared by them, which is represented
by the information content of theirmost informative subsumer (i.e., the most specific
concept in the taxonomy that is more general than both of them). The root of the
taxonomy is the concept where the information content is null by definition since it
represents the most abstract concept.

For the sake of simplicity, in this section we address an example involving sib-
lings, i.e., concepts that in the taxonomy are direct descendants of the same node,
that is their parent. Figure 1 shows a fragment of a taxonomy where the concept
person is the parent of the three concepts student, employee, and planter (chil-
dren).
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Figure 1. A simple taxonomy

The similarity between siblings is given by the information content associated
with their parent, which is the maximum shared between them. For this reason
siblings, in pairs, all have the same semantic similarity degrees. Therefore, in the
example, the maximum information content shared by the pairs (employee, student)
and (employee, planter) is the one associated with their parent, person, and the
following holds:

sim(employee, student) = sim(employee, planter),

where sim stands for the similarity degree of the pair. Of course, this value also
coincides with the one of the pair (student, planter).

As a result, according to Resnik, siblings are indistinguishable from a similarity
point of view, and the approach does not allow for further semantic aspects of the
concepts to be captured, in order to have different pairs of siblings with different
similarity degrees.

In the approach proposed by Lin [2], the notion of semantic similarity proposed
by Resnik has been refined by also addressing the information contents of the com-
pared concepts and, therefore, the related concept frequencies (or probabilities). Let
us consider again the pairs of concepts (employee, student) and (employee, planter).
Assume that the frequency of the concept student in a text corpus is greater than
the one of the concept planter (but the opposite hypothesis can be taken as well).
According to this assumption, the similarity degree between the concepts employee
and student is greater than the one between employee and planter (see Section 3
where the similarity measure of Lin is formally recalled in Equation (1)), i.e.:

sim(employee, student) > sim(employee, planter).

Therefore, following this approach, given a set of sibling concepts in a taxonomy,
one of them, in this case employee, is more similar to the “most frequent” sibling
in a given corpus, i.e., student in the example. With respect to the previous ap-
proach, pairs of siblings do not have the same similarity degrees, however similarity
is evaluated by considering only concept frequencies and, in particular, the more
frequent two siblings are the more similar they are. Indeed, as mentioned in the
Introduction, this approach relies on the concept generic senses, i.e., meanings that
are not related to any specific context.
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Assume now that siblings have the same frequencies, consider again the taxon-
omy of Figure 1, and suppose we have an application domain for which an important
requirement for people is to spend several hours per day in a building. According to
this perspective, we expect employee to be more similar to student rather than to
planter, because an employee and a student are both characterized by the mentioned
requirement better than the concepts employee and planter. Therefore, we expect
that the following holds:

sim(employee, student) > sim(employee, planter).

This is not the case if we consider another perspective, or application domain, where
for instance, it is more important to focus on people’s income. Of course, in this
second case, we expect that employee will be more similar to planter rather than to
student, since the first two concepts share some form of payment. Therefore, in this
second case, it is reasonable to expect the following:

sim(employee, student) < sim(employee, planter).

Figure 2. A simple taxonomy including concept senses

For these reasons, we propose to compute semantic similarity by also addressing
the meanings that concepts have in the given domain, i.e., their intended senses in
that domain. For instance, consider in Figure 2 an extension of the fragment of the
taxonomy shown in Figure 1, where the concept building has office and college as
children, and payment is the parent of reward and salary. Now, in line with the
first perspective illustrated above, suppose we have an application domain, say D1,
where it is important to characterize people on the basis of the time they spend in
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an edifice per day. Let SD1 be the function associating the concepts of the taxonomy
with their intended senses in the domain D1, defined as follows:

SD1(employee) = office,

SD1(student) = college,

SD1(planter) = reward.

In the proposed approach, concept similarity is evaluated by addressing not only the
maximum information content shared by the compared concepts but also the one
shared by their intended senses. Therefore, consider again the two pairs of siblings in
our example. The intended senses of the concepts employee and student are office
and college, respectively, which have building, their parent, as maximum shared
information content (see Figure 2). Whereas, with regard to employee and planter,
the most specific concept in the taxonomy that is more general than their meanings
office and reward is the root, whose information content is null by definition. For
this reason, for the related similarity degrees, we expect the following:

sim(employee, student) > sim(employee, planter).

In order to address the second scenario, where earnings are more relevant than
workplaces, consider another application domain, say D2, for which the intended
sense of employee is defined by the function SD2 as follows:

SD2(employee) = salary

while keeping the same definition for the concepts student and planter, i.e.:

SD2(student) = college,

SD2(planter) = reward.

In this second perspective, since salary and reward share payment as concept with
maximum information content, whereas salary and college share only the root, as
shown in Figure 2, we expect that:

sim(employee, student) < sim(employee, planter).

In the next section the similarity measure relying on this novel approach is formally
recalled [7].

3 THE ENRICHED SEMANTIC SIMILARITY MEASURE

Consider a set of concepts C of a tree-shaped ISA taxonomy (taxonomy for short),
and a function p:

p : C → [0, 1]
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such that, for any c ∈ C, p(c) is the probability of the concept c computed on the
basis of the relative concept frequency, freq(c), evaluated from large collections of
multidisciplinary texts, such as the Brown Corpus of American English. In partic-
ular, the probability of a concept c is defined as:

p(c) = freq(c)/N,

where N is the total number of concepts in the corpus. Hence, the information
content of a concept c, indicated as IC(c), is computed as:

IC(c) = − log p(c),

which means that, intuitively, as the probability increases the informativeness de-
creases and, therefore, the more abstract a concept the lower its information con-
tent. Given two concepts ci, cj ∈ C, the notion of semantic similarity proposed
by Resnik [1], simR(ci, cj), relies on the assumption that the more information two
concepts share, the more similar they are, and is defined as follows:

simR(ci, cj) = max
c∈S(ci,cj)

[− log p(c)],

where S(ci, cj) is the set of concepts that subsume (are more general of) both ci,
cj. The concept corresponding to the maximum value above is referred to as the
least common subsumer (lcs) (the most informative subsumer in [1]) of the con-
cepts ci, cj.

Therefore:
simR(ci, cj) = − log p(lcs(ci, cj))

and therefore:
simR(ci, cj) = IC(lcs(ci, cj)).

Successively, in [2] this notion has been refined and, in particular, given two
concepts ci, cj ∈ C, the concept semantic similarity proposed by Lin, simL(ci, cj),
is defined as follows:

simL(ci, cj) =
2× IC(lcs(ci, cj))

IC(ci) + IC(cj)
=

2× simR(ci, cj)

IC(ci) + IC(cj)
, (1)

where, with respect to the approach proposed by Resnik, the information contents
of the compared concepts are both considered as an essential contribution in the
evaluation of their semantic similarity.

However, both the Resnik’s and Lin’s approaches, as well as the similarity meth-
ods originating from them that will be addressed in the experiment of Section 4,
do not consider the semantic similarity of the meanings of concepts according to
a given context. In this direction, in [7] an enrichment of the information content-
based methods has been proposed, by characterizing the meanings of the compared
concepts with respect to a given application domain.



Semantic Similarity in a Taxonomy 197

Suppose we have an application domain, say Dk, the semantic similarity of the
concepts ci, cj ∈ C, indicated as simDk(ci, cj), is defined as follows:

simDk(ci, cj) = sim(ci, cj)× (1− ωk) + sim(SDk
(ci),SDk

(cj)))× ωk, (2)

where sim is a similarity measure (e.g., simR or simL), ωk is a weight, 0 ≤ ωk ≤ 1,
defined by the domain expert according to Dk, and SDk

is a function from C to C,
referred to as the intended sense function, associating a concept with its meaning
according to Dk, i.e.:

SDk
: C → C

and

SDk
(c) =

s, if s ∈ C is the intended sense of c in Dk,

c, otherwise.

Note that the weight ωk, depending on Dk, allows a balance between the roles of
the generic senses and the intended senses of the concepts, according to the relevance
they have in the domain Dk.

3.1 Evaluating the Relatedness of Concept Intended Senses

ASRMPm [9] is a family of semantic relatedness measures, originating from a previ-
ous proposal of the authors referred to as Weighted Semantic Relatedness Measure
(WSRM). Such measures have been conceived in order to:

1. have a formal semantics,

2. have reasonable computational costs,

3. be transitive.

This family relies on the assumption that the more edges between nodes, the stronger
their relatedness. Let us start by recalling the WSRM measure.

Consider a graph G, and the set N of nodes of such a graph. Given two nodes
ni, nj ∈ N , WSRM(ni, nj) between ni, and nj is defined by the following Equa-
tion (3):

WSRM(ni, nj) =
|{p|(ni, p, nj) ∈ G}|∑

n′∈N |{p′|(ni, p′, n′) ∈ G}|
, (3)

where for any set S, |S| is the cardinality of S. According to the mentioned pa-
per, the authors propose three different strategies in order to compute semantic
relatedness between two nodes of the graph.

The first measure, referred to as ASRMPa
m, considers all the paths between

the compared nodes of length equal to m. In particular, given the nodes ni, nj,
ASRMPa

m(ni, nj) is defined as shown in Equation (4):

ASRMPa
m(ni, nj) = ⊕p∈ni⇝nj ,|p|=m ⊗m

k=1 WSRM(nk, nk+1), (4)
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where:

• ni ⇝ nj is the set of the directed paths between ni and nj with length equal
to m,

• nk is the kth node of the path p (therefore n1 = ni, and nm+1 = nj),

• ⊗ and ⊕ are the t-norm and the related s-norm aggregators, respectively, the
former for the edges of a given path, and the latter for different paths of lengthm.

Among the different aggregators defined in the literature, the fuzzy logic operator
t-norm selected by the authors for ⊗ (and the corresponding s-norm for ⊕) is the
Hamacher operator, which ensures transitivity and is defined as follows:

TH,0(x, y) =
xy

x+ y − xy
. (5)

The second measure proposed by the authors is ASRMP b
m that, with respect

to the previous one, aggregates all the paths of length less than or equal to m, as
defined in the following Equation (6).

ASRMP b
m(ni, nj) = ⊕p∈ni⇝nj ,|p|≤m ⊗|p|

k=1 WSRM(nk, nk+1), (6)

where ni ⇝ nj is the set of the directed paths between ni and nj of length less
than or equal to m. However, the authors state that direct links should represent
stronger relations, whereas indirect ones should account for weaker relations and,
therefore, the longer the path, the weaker the relation. For this reason, they propose
the following third measure where paths are weighted on the basis of their length l,
l = 1, . . . ,m, as shown in Equation (7):

ASRMP c
m(ni, nj) =

m∑
l=1

∑
p∈ni⇝nj ,|p|=l

zl ⊗|p|
k=1 WSRM(nk, nk+1), (7)

where the directed paths between ni and nj with length equal to l are addressed,
and zl is a length-dependent weight, approximately corresponding to the percentage
of paths of length l.

In order to achieve symmetry, the three strategies above are reformulated ac-
cording to the ψx

m(ni, nj) relatedness measure, x ∈ {a, b, c}, defined in the following
Equation (8):

ψx
m(ni, nj) =

1

2
(ASRMPx

m(ni, nj) + ASRMPx
m(nj, ni)). (8)

Among these measures the authors state that, according to their experiments,
the ASRMPa

m provides the best performances, and this is the strategy we have
adopted in order to evaluate the weight ωk of Equation (2), in the experiment
presented in the next section.
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4 EXPERIMENTAL RESULTS

As mentioned in [7], the measure addressed in this paper relies on a novel approach
for which the experimentation requires, besides the dataset composed of a set of pairs
of concepts, further pairs of concepts representing the concept senses. Therefore,
in order to compare the new experimental results with the ones of the original
proposal, the Miller&Charles (M&C) dataset [11] has been addressed and, for
each pair of concepts of this dataset, all the pairs of concepts of the same dataset
have been considered as possible contexts. Furthermore, the same six information
content-based approaches discussed in [7] have been analyzed and, in particular,
besides Resnik (simR) and Lin (simL), also Jiang and Conrath (simJ &C) [12], Pirrò
(simP &S) [13], Adhikari et al. (simA) [3], and the measure proposed by Adhikari
et al. with the information content model computed as Meng (simA&M) [14]. The
Wu and Palmer method (simW &P ) [15] has also been addressed, as representative
of the edge-counting approach [16].

Consider the 28 pairs of concepts of the M&C dataset, and the same dataset in
order to associate each pair with 28 possible application domains Dk, k = 1, . . . , 28,
in the following referred to as contexts (therefore we have 28 × 28 = 784 similar-
ity scores). For instance, for the pair of concepts (coast, shore), the 28 contexts
are:

SD1(coast) = car,

SD1(shore) = automobile,

SD2(coast) = gem,

SD2(shore) = gewel,

...

SD28(coast) = rooster,

SD28(shore) = voyage.

As mentioned in Section 3, in general, the intended senses of concepts are sup-
posed to be estimated by domain experts, together with the related weight ωk in the
given context Dk (see Equation (2)). In the experiment presented in [7], in order to
quantify such a weight, which represents the relevance of a pair of senses with respect
to the pair of contrasted concepts, we used the method proposed in [17]. Indeed,
in [10] an extensive experiment has been presented in order to compare the methods
for evaluating concept relatedness in knowledge graphs, showing that the ASRMPm

approach [9] (recalled in Subsection 3.1) provides the best correlation with human
judgment with respect to others methods, including [17]. For this reason, in this
experiment, given a pair of concepts ci, cj and a context Dk, we assume that ωk is
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defined as follows:

ωk = (r1 + r2)/2,

where r1 = rel(ci,SDk
(ci)) and r2 = rel(cj,SDk

(cj)), and rel is the relatedness
degree computed according to [9].

It is important to recall that in order to compute the 28 tables, one for each
pair of the M&C dataset, each table containing 28 possible contexts for that
pair, a disambiguation step has to be performed. In fact, it is well-known that
in Wikipedia, and consequently in DBpedia, terms are addressed with the possible
meanings they have, i.e., a term is associated with multiple senses. For this rea-
son, in the experiment the disambiguation is necessary in order to address senses
in line with the HJ evaluation in the M&C experiment. For instance, crane
in Wikipedia has two main senses, that are bird and machine, therefore when
paired for instance with implement, it is disambiguated by using the sense ma-
chine.

Furthermore, in the experiment, in associating a given pair of concepts with
a pair of possible concept senses, in some cases the weight ωk, for a given con-
text Dk, is null. In addition, there are some particular situations for which both
the concept senses do not have any relevance with the concepts to be compared,
i.e., both the values r1, r2 above are null. In other words, for some pairs of con-
cepts, there are contexts (or perspectives) that do not apply to both the compared
concepts, i.e., they do not correspond to any specific point of view and, for this
reason, in the experimentation these contexts have been ignored. This is for in-
stance the case of the pair of concepts (coast, shore), when associated with the pairs
of senses (brother,monk), or (boy, lad). The same also holds in the case of con-
cept senses with low similarity values, such as for instance the pair (chord, smile),
or (noon, string). Therefore, in order to analyze significant contexts, a thresh-
old for HJ has been introduced, in this case equal to 0.5 (on a scale from 0
to 4).

In Table 1, for reader’s convenience, the average correlations for all the 28 pairs
according to the experimental results presented in [7] are given, where the related-
ness degrees have been computed by leveraging the semantic relatedness measure
presented in [17]. In Table 2 the corresponding values obtained by relying on the
semantic relatedness approach proposed in [9] are shown, with an average increment
for each method of the average correlation with the human judgment of about 0.04.
These relatedness measures are based on different weighting methods, however, it
is worth mentioning that one of the key differences between them is the following:
according to [17], semantic relatedness is computed by considering all the undirected
paths connecting the compared entities, whereas according to [9], it is evaluated by
addressing all the directed paths linking the compared resources (see Equation (4).
The experimental results of this work show that the employment of the ASRMPm

strategy has a direct impact on the increment of the semantic similarity correla-
tion values, and the combination of the measure defined in Equation (2) with the
approach proposed in [9] provides the best strategy in order to evaluate seman-
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concept1, concept2 simR simW &P simL simJ &C simP &S simA simA&M

car, automobile 0.84 0.77 0.86 0.85 0.87 0.87 0.87

gem, jewel 0.76 0.68 0.79 0.77 0.82 0.82 0.83

journey, voyage 0.90 0.81 0.91 0.90 0.92 0.92 0.92

boy, lad 0.85 0.75 0.89 0.85 0.92 0.89 0.89

coast, shore 0.82 0.79 0.87 0.85 0.81 0.88 0.88

asylum, madhouse 0.88 0.75 0.90 0.89 0.92 0.89 0.88

magician, wizard 0.80 0.69 0.85 0.87 0.89 0.86 0.85

midday, noon 0.86 0.71 0.88 0.88 0.88 0.87 0.87

furnace, stove 0.63 0.45 0.61 0.57 0.64 0.66 0.67

food, fruit 0.78 0.52 0.81 0.82 0.82 0.84 0.84

bird, cock 0.83 0.69 0.86 0.84 0.85 0.88 0.88

bird, crane 0.78 0.72 0.82 0.80 0.84 0.84 0.84

tool, implement 0.77 0.62 0.81 0.80 0.82 0.80 0.80

brother, monk 0.78 0.70 0.82 0.83 0.89 0.86 0.86

crane, implement 0.72 0.63 0.75 0.72 0.77 0.76 0.77

lad, brother 0.80 0.73 0.87 0.83 0.90 0.88 0.88

journey, car 0.89 0.84 0.90 0.88 0.90 0.91 0.91

monk, oracle 0.76 0.63 0.80 0.75 0.84 0.83 0.83

food, rooster 0.75 0.53 0.81 0.84 0.81 0.79 0.80

coast, hill 0.67 0.63 0.76 0.69 0.76 0.73 0.73

forest, graveyard 0.78 0.71 0.81 0.76 0.81 0.84 0.84

monk, slave 0.75 0.66 0.79 0.74 0.82 0.82 0.82

coast, forest 0.75 0.67 0.79 0.76 0.79 0.77 0.77

lad, wizard 0.77 0.72 0.85 0.79 0.88 0.86 0.85

chord, smile 0.74 0.71 0.85 0.80 0.89 0.82 0.81

glass, magician 0.87 0.85 0.92 0.92 0.90 0.89 0.88

noon, string 0.93 0.85 0.94 0.92 0.94 0.94 0.94

rooster, voyage 0.90 0.85 0.90 0.93 0.93 0.92 0.91

Avg Correl. 0.80 0.70 0.84 0.82 0.85 0.84 0.84

Table 1. Average Pearson’s correlations in the 28 contexts according to the experiment
presented in [7]

tic similarity in a taxonomy by addressing the concept intended senses in a given
context.

The data concerning the new experiment are available at [18], where also the
Spearman’s correlations are provided. In Table 3 the average correlations for all 28
pairs according to Spearman are also shown, which do not differ significantly from
the ones obtained according to the original experiment.
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concept1, concept2 simR simW &P simL simJ &C simP &S simA simA&M

car, automobile 0.98 0.97 0.98 0.98 0.98 0.98 0.98

gem, jewel 0.99 1.00 1.00 1.00 1.00 1.00 1.00

journey, voyage 0.98 0.98 0.98 0.99 0.99 0.98 0.98

boy, lad 0.95 0.94 0.96 0.89 0.96 0.96 0.96

coast, shore 0.92 0.92 0.94 0.88 0.92 0.95 0.95

asylum, madhouse 0.95 0.86 0.95 0.99 0.98 0.94 0.93

magician, wizard 0.98 0.95 0.99 0.98 0.99 0.99 0.99

midday, noon 0.99 0.99 0.99 1.00 0.99 0.99 0.99

furnace, stove 0.54 0.56 0.47 0.29 0.44 0.48 0.47

food, fruit 0.43 −0.12 0.59 0.93 0.83 0.46 0.45

bird, cock 0.91 0.68 0.92 0.94 0.94 0.92 0.92

bird, crane 0.69 0.59 0.75 0.90 0.87 0.71 0.70

tool, implement 0.92 0.90 0.94 0.88 0.95 0.95 0.94

brother, monk 0.33 0.21 0.32 0.41 0.81 0.87 0.88

crane, implement 0.91 0.89 0.94 0.95 0.97 0.94 0.94

lad, brother 0.87 0.86 0.88 0.83 0.86 0.88 0.88

journey, car 0.99 0.99 0.99 0.99 0.99 0.99 0.99

monk, oracle 0.79 0.41 0.71 0.43 0.71 0.79 0.78

food, rooster 0.83 0.27 0.86 0.94 0.90 0.83 0.83

coast, hill 0.64 0.71 0.71 0.49 0.62 0.75 0.79

forest, graveyard 0.88 0.79 0.90 0.92 0.91 0.87 0.87

monk, slave 0.66 0.28 0.61 0.29 0.68 0.79 0.78

coast, forest 0.80 0.81 0.84 0.81 0.84 0.85 0.85

lad, wizard 0.92 0.82 0.93 0.85 0.92 0.94 0.93

chord, smile 0.95 0.99 0.99 0.96 0.99 1.00 1.00

glass, magician 0.90 0.88 0.91 0.90 0.92 0.90 0.89

noon, string 0.99 1.00 1.00 1.00 1.00 1.00 1.00

rooster, voyage 0.96 0.95 0.97 0.98 0.98 0.97 0.96

Avg Correl. 0.85 0.75 0.86 0.84 0.89 0.88 0.88

Table 2. Average Pearson’s correlations in the 28 contexts according to the new experi-
ment

5 RELATED WORK

Within the semantic similarity measures [5], below we restrict our attention to the
methods based on the information content (IC) approach, which has been employed
in different research areas, such as Natural Language Processing [19], Semantic
Web [20, 6, 21], Formal Concept Analysis [22, 23, 24], Geographical Information
Systems [25, 26, 27], and different application domains, such as health [28], network
security [29], and e-learning [30], to mention a few examples. The IC approach,
although recognized as “the state of the art on semantic similarity” [3, 4], has
shown some limitations. In particular, one objection to the early IC-based mea-
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concept1, concept2 simR simW &P simL simJ &C simP &S simA simA&M

car, automobile 0.91 0.95 0.96 0.96 0.96 0.97 0.97

gem, jewel 0.96 0.93 0.95 0.95 0.98 0.98 0.98

journey, voyage 0.86 0.98 0.99 0.99 0.99 0.99 0.99

boy, lad 0.73 0.75 0.91 0.71 0.92 0.89 0.89

coast, shore 0.99 0.86 0.98 0.99 0.98 0.99 0.94

asylum, madhouse 1.00 0.83 1.00 0.83 1.00 1.00 1.00

magician, wizard 1.00 0.97 0.97 0.97 1.00 0.88 0.88

midday, noon 1.00 0.99 0.99 1.00 1.00 1.00 1.00

furnace, stove 0.52 0.20 0.40 0.32 0.43 0.52 0.52

food, fruit 0.64 0.40 0.70 0.74 0.71 0.63 0.60

bird, cock 0.82 0.78 0.83 0.85 0.86 0.83 0.83

bird, crane 0.76 0.79 0.81 0.81 0.79 0.79 0.78

tool, implement 0.89 0.76 0.85 0.72 0.81 0.82 0.83

brother, monk 0.61 0.32 0.56 0.70 0.89 0.39 0.39

crane, implement 0.64 0.56 0.64 0.85 0.82 0.74 0.75

lad, brother 0.77 0.55 0.81 0.63 0.61 0.66 0.66

journey, car 0.56 0.49 0.55 0.75 0.74 0.47 0.54

monk, oracle 0.82 0.52 0.71 0.65 0.72 0.77 0.77

food, rooster 0.75 0.58 0.73 0.76 0.85 0.74 0.74

coast, hill 0.58 0.73 0.58 0.40 0.33 0.58 0.57

forest, graveyard 0.66 0.56 0.66 0.67 0.72 0.62 0.58

monk, slave 0.65 0.52 0.52 0.51 0.67 0.62 0.63

coast, forest 0.71 0.74 0.74 0.84 0.86 0.73 0.73

lad, wizard 0.47 0.50 0.48 0.45 0.67 0.47 0.47

chord, smile 1.00 1.00 1.00 0.99 0.99 1.00 1.00

glass, magician 0.82 0.86 0.77 0.81 0.85 0.70 0.64

noon, string 0.95 0.94 0.96 0.84 0.87 0.86 0.91

rooster, voyage 0.89 0.89 0.90 0.99 0.98 0.92 0.88

Avg Correl. 0.78 0.71 0.78 0.77 0.82 0.77 0.77

Table 3. Average Spearman’s correlations in the 28 contexts according to the new exper-
iment

sures relies on the use of large-scale corpora [3, 4, 31]. In fact, evaluating the IC
on the basis of statistical information taken from textual corpora requires a con-
siderable amount of manual effort at the level of both design and maintenance of
the corpus. For this reason, in the literature, an evolution of the IC notion has
been extensively investigated, referred to as intrinsic information content (IIC),
although there is a lack of a statistically significant difference between the per-
formances of the IIC models and the corpus-based ones [32]. In particular, the
IIC is evaluated independently of textual corpora, and in accordance with the in-
trinsic structure of the taxonomy, i.e., on the basis of the number of hyponyms
and/or hypernyms of the concepts. Along this direction, Adhikari et al. propose
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a method in [3] (simA in our experiment), arguing that relying only on the maxi-
mum among the ICs of the least common subsumers leads to ignoring some common
subsumers that can be relevant in order to evaluate semantic similarity. For this
reason, in the mentioned paper, the IC is estimated according to an IIC approach
by introducing a new notion, referred to as Disjoint Common Subsumers. A vari-
ant of this approach based on Meng model has also been proposed in [14], which
shows slightly better performances with respect to the other measure (simA&M

in our experiment). Both the models they present achieve high correlation val-
ues when applied to the state-of-the-art measures addressed in our experiment.
Analogously, in [13] (simP &S in our experiment), an IIC approach for semantic
similarity has been proposed by relying on the Tversky contrast model [33], that
shows a high correlation with human judgment with respect to the state-of-the-
art.

With regard to the works of Resnik [1] and Lin [2], it is worth mentioning
that according to the former, concept similarity in a taxonomy is computed by
considering only concept commonalities, therefore it shows some limitations since
pairs of concepts having the same least common subsumers have the same similar-
ity degrees. According to [34], the latter can be re-conducted to the well-known
Tversky linear contrast model of similarity mentioned above, which addresses both
concept commonalities and differences. In particular, also in [2] the importance
of observing an object from different perspectives is emphasized, however, as men-
tioned in the Introduction, the proposed resulting similarity degrees are considered
as weighted averages of the similarity values obtained from such perspectives. As
a result, this approach does not allow to estimate concept similarity by consider-
ing a single specific perspective at a time. Successively, in [12], in the late 1990s,
a proposal combining the IC with the edge-counting approach has been presented
(simJ &C in our experiment), showing better performances with respect to the men-
tioned methods.

It is important to note that, with respect to the existing literature, in this
paper we do not present a new IC (or IIC) computing model, and our proposal is
independent of it. In fact, although the IIC approaches show high accuracy in the
similarity evaluation, they do not involve concept meaning and, in particular, the
related similarity measures do not address the intended senses of concepts according
to a given application domain.

The notion of sense has been addressed by Resnik in [1], where semantic sim-
ilarity is used to identify and select the appropriate sense of a concept when it
appears in a group of related terms. Analogously, in [35] the semantic similar-
ity of Lin and the MeSH thesaurus have been employed in order to determine
the adequate sense of an ambiguous biomedical term. However, both these pa-
pers address word sense disambiguation in the field of computational linguistics,
where semantic similarity is not the objective of the works but is used in or-
der to associate a noun with the right sense in a given context. On the con-
trary, we use the concept intended senses to improve the computation of seman-
tic similarity. Senses are also addressed in [36], where concept similarity is com-
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puted between the most-related pairs among the concept’s corresponding mean-
ings, but the intended senses of the compared concepts are not considered. Fi-
nally, the semantic similarity measure proposed in [31] originates from the need
to overcome one of the limitations we highlighted in this paper, i.e., that pairs of
concepts sharing the same least common subsumers have the same similarity de-
grees. However, the authors base their solution on the whole WordNet ontology,
by associating the different kinds of relationships (e.g., ISA and PartOf) with dif-
ferent weights, which is again a proposal independent of the concept’s intended
senses.

6 CONCLUSION AND FUTURE WORK

In this work, the novel approach for evaluating semantic similarity in a taxonomy
presented in [7] has been refined. In particular, in order to evaluate the relatedness of
the generic sense of a concept with its intended sense, the ASRMPm measure [9] has
been selected, and the experimental results, when compared to the ones presented
in the original proposal, show for each method an average increment of the average
correlation with the human judgment of about 0.04.

As a future work, we plan to refine this approach by defining the intended sense
of a concept as a set of concepts, rather than a single one and, for example, to rely on
the SemSim semantic similarity method [6] in order to perform the disambiguation
step by comparing the sets of concept senses.
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