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Abstract. CloudIoT is a new paradigm, which has emerged as a result of the
combination of Cloud Computing (CC) and the Internet of Things (IoT). It has
experienced a growing and rapid development, and it has become more popular
in information and technology (IT) environments because of the advantages it of-
fers. However, due to a strong use of this paradigm, especially in smart cities, the
problem of imbalance load has emerged. Indeed, to satisfy the needs of the user,
the intelligent objects send the collected data to the virtual machines (VMs) of the
cloud in order to be processed. So, it is necessary to have an idea about the load of
its VM. Thus, the problem of load balancing between VMs is strongly related to the
technique used for the VMs selection. To tackle this problem, we propose in this
paper a task scheduler called Scheduler Genetic Grasshopper Algorithm (SGGA).
It allows to ensure a dynamic load balancing, as well as the optimization of the
makespan and the resource usage. Our proposed SGGA is based on the combina-
tion of Genetic Algorithm (GA) and Grasshopper Optimization Algorithm (GOA).
First, the tasks sent by the IoTs are mapped to the VMs in order to build the
initial population, then SGGA performs the genetic algorithm, which has expressed
a considerable performance. However, the weakness of the GA is marked by its
heaviness caused by the mutation operator, especially when the number of tasks in-
creases. Because of this insufficiency, we have replaced the mutation operator with
the grasshopper optimization algorithm. The results of the experiments show that
our approach (SGGA) is the most efficient, compared to the recent approaches, in
terms of the response time to obtain the optimal solution, makespan, throughput,
an average resource utilization rate and the hypervolume indicator.
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1 INTRODUCTION

Nowadays, IoT and Cloud Computing are two new distributed computing tech-
nologies. On the one hand, the IoT allows to transform real-world objects into
smart objects [20], which share their data, their situations and their interactions
with other interconnected objects. The IoT is generally characterized by widely
distributed objects with limited processing and storage capabilities. These objects
suffer from performance, reliability, privacy and security issues [4]. On the other
hand, Cloud Computing is a technology that has a network with unlimited storage
capacities and computing power. Moreover, it offers the flexibility and robustness
of dynamic data integration from heterogeneous sources [19].

CloudIoT is a new paradigm that has emerged as a result of the combination of
cloud and IoT. It enables intelligent use of applications, information and infrastruc-
ture in a fair and reasonable manner. Although IoT and Cloud Computing are two
different technologies, their functionalities are almost complementary [I7], in terms
of nature of existence, processing capacity, storage capacity, connectivity and Big
Data [19].

In this environment, IoTs send their tasks to Cloud Computing for processing
or storage, by mapping them to the various hardware and software resources rep-
resented by virtual machines. When distributing data to be processed to virtual
machines (VMs), some of them will be overloaded while others will be unloaded or
inactive [20, II]. Thus, a load balancing mechanism is then necessary because it
allows to manage the allocation of VMs to tasks sent by IoTs. It thus allows the
optimization of makespan, throughput and the rentable resource usage.

Several scientific research on load balancing in Cloud Computing has focused
on task allocation. Each scheduling algorithm is based on one or more parameters.
The most targeted objectives are the overall execution time, the cost, and the use of
resources (which also indicates the quality of service (QoS)) [22, [7, [9]. Several task
scheduling algorithms based on metaheuristic algorithms, such as BGA, HGOW-
ABC, GWO and ACO algorithms have been proposed for cloud load balancing [9,
14, 23| 25]. The researchers have developed techniques to reduce makespan, and
assign tasks to VMs in a balanced way, using different optimization techniques such
as genetic algorithm, gray wolf algorithm, the bee colony algorithm and the ant
colony algorithm.

To deal with the above cited problem, we propose in this work a scheduler which,
ensures a dynamic load balancing in the CloudloT. The proposed work allows the
improvement of the makespan, the throughput and the average rate of the resource
usage. Our proposed scheduler allows the tasks distribution, sent by the IoTs, over
the virtual machines. It ensures maximum throughput with a shorter execution
time, as well as a more efficient use of resources. Our proposed approach called
SGGA, is based on the combination between genetic algorithm and grasshopper
optimization algorithm. So, the proposed selection and crossing operators phases of
our approach allow to avoid the appearance of the same chromosome several times
on one hand, and to avoid the heaviness caused by the mutation operator phase [I8§],
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especially when the number of tasks increases, we have replaced this phase by the
grasshopper optimization algorithm on the second hand.

The results obtained show that the proposed approach is more efficient compared
to the most recent works (BGA, HGOW-ABC, GWO and ACO) in terms of the time
to reach the optimal solution, the makespan, the throughput, the average resource
utilization ratio and the hypervolume indicator.

Our paper is structured as follows: after the introduction, Section [2] is devoted
to related works. In Section 3] we present the proposed approach and its different
components. Section [ presents case studies. Section [f]is reserved for experimental
results and discussion, and we end this paper with a conclusion in Section [6]

2 RELATED WORKS

In this section, we review the most recent works that address the problem of load
balancing in the cloud environment. The majority of the proposed works are mainly
based on task scheduling to achieve the objective of ensuring load balancing between
different components. Metaheuristic algorithms are classified into four categories [27],
28): Firstly, the swarm-intelligence algorithms such as [30] which proposed a new
metaheuristic algorithm called Giant Trevally Optimizer (GTO) inspired by the
hunting behaviour of giant trevally.

Secondly, human-based algorithms such as [31I] which proposed a metaheuris-
tic algorithm called Group Teaching Optimisation Algorithm (GTOA), where they
adjusted additional control parameters for solving different optimisation problems.
Thirdly, evolutionary algorithms such as [32] have proposed a new approach called
the Tree Growth Algorithm (TGA). This approach is inspired by the competition
of trees for light and food. And fourthly, science-based algorithms such as [2§]
who have proposed a new metaheuristic called Crystal Structure Algorithm (CryS-
tAl). This approach is inspired by the principles underlying the formation of crystal
structures from the addition of the base to lattice points. In this paper we fo-
cus on the first two categories for their impressive results when compared to each
other.

Several swarm-intelligence algorithms and human-based algorithms have been
proposed and applied for task scheduling in the cloud environment. There are two
types of these algorithms:

1. based on the exploitation of the best solution among the previous results, called
a local search, and

2. based on the exploration of new areas of the solution space or the sudden
prospection of a new solution search space.

The most interesting work in this context is reviewed below. So, at first we
present the human-based algorithms category, followed by the swarm-intelligence
algorithms category.
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Makasarwala and Hazari [24], Kaur and Sachdeva [22] used GA for load balanc-
ing in Cloud Computing. The proposal of Makasarwala and Hazari [24] provides
load balancing and reduces response time without considering resource utilization
rate and QoS. On the other hand, Kaur and Sachdeva [22] proposed an improved GA
to reduce the execution time of task migration in Cloud Computing. This proposal
not only ensures the proper use of resources, but it also saves energy. However, the
response time is high.

Gulbaz et al. [9] presented the Balancer Genetic Algorithm (BGA) to improve
makespan and load balancing. BGA relies on a load balancing mechanism that
takes into account the actual load assigned to virtual machines. The need to opt for
multi-objective optimization for the improvement of load balancing and Makespan
is also highlighted. The simulation showed significant improvement on makespan,
throughput and load balancing.

For the swarm-intelligence algorithms category, we can find several works. We
cite in this paper the most recent and important ones.

The work presented by Li and Wu [I0]; Shafahi and Yari [25] used the Ant
Colony Algorithm (ACO) to dynamically schedule tasks. The scheduler acts as
an ant looking for food. The experimental results of the simulations, of the two
approaches, give better performance in comparison to others. They reduce task
execution time and improve system resource utilization, and they keep the system
balanced.

Muthsamy and Suganthe [I2] and Shen et al. [26] used the Artificial Bee Colony
Optimization (ABC) algorithm. Thereby, Muthsamy and Suganthe [12] proposed
a task scheduler based on optimizing artificial bee foraging (TSABF) that takes in
charge the QoS, makespan, response time, execution time and task priority. To
achieve optimal scheduling, tasks are scheduled preemptively. Task preemption is
done to reduce the response time and execution time of tasks belonging to different
priorities. While the work of Shen et al. [26] presented a study to ensure load
balancing in a cloud data center, based on efficient resource utilization and power
consumption management. They have optimized the (ABC) method using a load
balancing algorithm, and intelligent classification of virtual machines. This study
was validated by a simulation on CloudSim.

Arulkumar [3] obtained their best simulation results from the Water Wave Al-
gorithm (WWA). The latter was proposed for resource planning in a cloud environ-
ment. The proposed work takes into consideration the four parameters: throughput,
response time, resource utilization, and scalability.

Alguliyev et al. [I] presented a novel multi-criteria optimization method for
weighted task scheduling based on the Particle Swarm Optimization (PSO) algo-
rithm. The simulation showed that the method migrates tasks from overloaded
virtual machines to less loaded virtual machines, ensuring, thus, an overall balanced
system.

Patel et al. [23] proposed a task allocation approach based on gray wolf optimiza-
tion (GWO) for load balancing in the containerized cloud. The approach ensures the
load balancing and makespan minimization. Gohil and Patel [21] proposed (IGWO)
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which is an improvement of the GWO algorithm. They increased the coefficients of
the best solutions «, 8 and d to calculate the next solutions, which gives a perfect
balance and guarantees a quasi-optimal solution.

Natesan and Chokkalingam [I3] also improved (GWO). They proposed Perfor-
mance-Cost Grey Wolf Optimization (PCGWO) to reduce both processing time
and cost in accordance with the objective function. The simulation results of the
proposed technique show a complete reduction in the time and cost of performing
the tasks.

Ragmani et al. [T5] proposed a hybrid algorithm, based on the concepts of Fuzzy
Logic and Ant Colony Optimization (Fuzzy-ACO), to improve load balancing in
Cloud Computing. This approach takes into account load balancing goals and re-
sponse time. Simulations performed on CloudAnalyst have shown that the proposed
approach improves load balancing in the Cloud, minimizing response time by up to
82 %, processing time by up to 90 % and total cost up to 9 %.

Ouhame et al. [T4] integrated the GWO algorithm with Artificial Bee Colony
(HGWOABC) to improve the cloud resource allocation system. This technique
improved the parameters of load balancing in Cloud Computing by 1.25 %.

In Table [T} we conclude this section by specifying the different load balancing
parameters of each approach.

Year Approach Makespan Throughput Res Utzt QoS Energy Cost HV

2016  [24] Yes No No No No No No
2017 22 Yes No Yes Yes  Yes No No
2019 [10] Yes No Yes Yes No No No
2021 [25] Yes No Yes Yes No No No
2020 [12] Yes Yes Yes Yes No No No
2019  [26] No No Yes Yes  Yes No No
2021 [9) Yes Yes Yes Yes No No No
2019 [1 No No Yes Yes No No No
2020 [23) Yes Yes No No No No No
2018 [21] Yes Yes Yes Yes No No No
2019 [19] Yes No Yes Yes No Yes No
2020 [14] Yes No Yes Yes No No No

Table 1. Summary of balancing parameters for each approach

In this paper, a new dynamic load balancing approach has been proposed us-
ing a task scheduler based on the pairing between Genetic Algorithm (GA) and
Grasshopper Optimization Algorithm (GOA) called Scheduler GA-GOA Algorithm
(SGGA).

We have realized several hybridizations tests to replace the mutation by other
algorithms, and the GA-GOA hybridization give the best result. As shown in the
following Table [2] for example the makespan.

Our balancing based on the improvement of three parameters: makespan,
throughput and resource utilization (QoS).
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Tasks GA GA-GOA GA-PSO GA-ABC GA-ANTLion GA-ACO
100 0.32584 0.15874 0.32101 0.31524 0.18524 0.25471
200  0.78954 0.17543 0.78814 0.76214 0.20574 0.31241
500 1.01458 0.20145 1.01247 1.00024 0.26472 0.43120

Table 2. Testing the “makespan” result of the different GA hybrids

3 THE PROPOSED APPROACH

In this section, we will present the proposed global architecture; and the detailed
architecture that contains the components of our scheduler.

3.1 The Overall Architecture Proposed

Our proposed approach is developed to provide load balancing in the CloudIoT.
It contains several components on the IoT and Cloud sides. In our approach, we
focus our interest in tasks that will be processed at the Cloud level. The smart
objects send their tasks to the scheduler (SGGA) which will map and assign them
to the different virtual machines. The role of the scheduler will be detailed in the

next section. Figure [I] shows the overview of the overall architecture proposed in
CloudIoT.

v —

Host | Host Host
Machine ‘ Machine ‘ Machine

| Datacenter N Datacenter A Datacenter y

Figure 1. Presentation of the global architecture proposed in CloudloT
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3.2 Detailed Architecture of the Proposed Approach “SGGA”

An effective load balancing is relied to a robust and reliable task scheduler. To this
end, we have developed a task scheduler based on both the grasshopper optimiza-
tion algorithm and the genetic algorithm. The latter gives very satisfactory results
mainly because of its flexibility and robustness. However, this algorithm suffers from
a heaviness at the level of its mutation operator [I8], especially when the tasks num-
ber is increased. For this reason, and in order to deal with this limitation, we propose
to replace the mutation operator with the grasshopper optimization algorithm (see
Figure . The latter is classified among the new meta-heuristic algorithms, and it
is inspired by the behavior of grasshoppers [16].

Start

I

Initialize all parameters

N Load Balancer

I
False

it 2= Uy Return the best solution BS J
V l
Selection Stop

Crossover
t=t+1

f‘fasshop&‘ ————————————

Figure 2. Flow diagram of the Scheduler GGA

The algorithm of the proposed approach; which will be detailed later, initializes
randomly the position matrix. The rows and columns of this matrix are respectively
solutions and tasks (Table [3)).

The solutions number is equal to 100, and each matrix cell contains the CPU
speed of a VM. After the initialization phase the SGGA, in each iteration, calculates
the fitness function of each solution (row). then, it sorts the solutions in ascending
order according to the calculated fitness functions. Thus, the best solution will be
at the top of the population (100 solutions). To improve the population quality of
the position matrix, we select the 7% of the best solutions, and then we apply the
selector and crossover operators of GA to obtain 50 % of the new populations (as
indicated in Figure . At the end of an iteration, the grasshopper optimization
algorithm is applied to obtain the second half-population (the second 50 %) from
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M T1 T2 T3 T4 T5 T6 T7 ... Tm
Positions

P1 S-VM S-VM S-VM S-VM S-VM S-VM S-VM ... S-VM
P2 S-VM S-VM S-VM S-VM S-VM S-VM S-VM ... S-VM
P3 S-VM S-VM S-VM S-VM S-VM S-VM S-VM ... S-VM
P4 S-VM S-VM S-VM S-VM S-VM S-VM S-VM ... S-VM
P5 S-VM S-VM S-VM S-VM S-VM S-VM S-VM ... §S-VM
P6 S-VM S-VM S-VM S-VM S-VM S-VM S-VM ... §S-VM
P7 S-VM S-VM S-VM S-VM S-VM S-VM S-VM ... §S-VM
... S-VM S-VM S-VM S-VM S-VM S-VM S-VM ... §S-VM
Pn S-VM S-VM S-VM S-VM S-VM S-VM S-VM ... S-VM

Table 3. The population Matrix loaded by CPU speed of VMs (S-VM)

the value of the first half-population.

PL | s|s | s |s|s|s|s|s | s|s

P2 s|s|s|s|s|s|s|s|s/|s 7 % of best solutions

P3 s | s | s S | s | s s | s S S

P4 s|s|s|s|s|s|s|s|s|s

P5 S S S S S S S S S S

P6 s|s|s|s|s|s|s|s|s/|s 43 % by GA operators

— 50 % by Grasshoppers optimization

Pn S S S S S S S S S S

Figure 3. The new population Matrix composition

3.3 The Components of the SGGA

In this sub-section, we present, in details, the roles of the fourth components of our
approach, as well as their algorithms.
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Algorithm 1: SGGA
Input: Tasks vector, VMs vector
Output: Mapping of Tasks to VMs
M|z, n] < random(CPU, VMs);
t+1;
while ¢ < t,,,, do
for i < 2 ton do
| Fitness[i] + LoadBalancer(M|z,n]);
end
BS « M][1,n];
newM <« 1;
J< L
SelectionAlgo (Fitness|z|, M|z, n], M_Select[y, n], Array_Select[y? — y]);
for i+ 1 toy do
| M]i,n] + M Select[i, n];
end
while newM < s do
Parent1 + M_Select[Array_Select[newM].part1, n};
Parent2 <— M_Select[Array_Select[newM)].part2, nl;
CrossoverAlgo(Parent1, Parent2, newParent1, newParent2);
M1[j, n] + newParent1;
M1]j + 1, n] < newParent2;
newM < newM + 1;
JeIt2
end
while newM < 2 do
M2[] + GrasshoppersAlgo(M1);
newM < newM + 1;

end
M]] + M1[] + M2[]; (concatenate the two matrices M1 and M2 in M);
tet41;
end
In this context, we assume that we have a set of tasks T = {T4,Ts,...,T,},

where each of them is characterized by its size in Kilobytes (KB), and a set of virtual
machines VM = {VM;, VM,, ..., VM,,}, where each of them is characterized by its
computing capacity (CPU) in million instructions per second (mips).

The population is represented by positions (solutions), each of them has its own
fitness function. The solution can be represented using binary Mapping Matrix
(MP), where rows indicate VMs and columns indicate Tasks. In the example below,
the mapping matrix (MP) represents the set VM;(Ta, Tg), VMa(Ty, T5), VM3(Ty,
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0 1 0
MP=1] 0 0 O
1 01

SO = O
O = O

1
0. (1)
0

SGGA starts by initializing the population randomly, each chromosome is repre-
sented by a speed line of the virtual machines and the indices are the indices of the
tasks.

In the rest of the section, we will detail the role of each component of the
proposed approach.

3.3.1 The Load Balancer Component

The role of this component is to calculate the fitness functions of each solution by
using formulas from (2 to 10) then, it stores them in the fitness vector. After that, it
sorts the fitness vector in ascending manner as well as the solutions matrix according
to the fitness vector. Thus, the best solution (BS) will be at the top of the solutions
matrix.

Since our SGGA is a multi-objective thus, to improve load balancing, the pro-
posed fitness function must combine between two objectives (the makespan and the
average load utilization) as indicated in the formula (2).

f(P;) = (makespan + AvgLoad) , (2)
where makespan is the maximum time taken by any virtual machine, given by:

makespan = (max (Ty,,)je1,...m) , (3)
where Ty, is the processing time of a specific VM;. AvgLoad is between 0 and 1.

It is the average load of all virtual machines for a specific position, it is calculated
according to the formula @:

M
" Loady s
AveLoad = (1 _ Z—1mVMa> . @

The value of Loady s, is calculated to find the part used by the virtual machine
VM, according to the following equation:

TaskMapy, .
Loadyyy = (o PVMI L 100 ) . (5)
Mappey,
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Formula (@ normalizes the value of Loady s; to avoid negative values that affect
AvgLoad: [9].

100—(Loady pr;—100 .
100~ (Loadvar, 100) - if oady y; > 100,

Loadya; = 0, if Loadya; < 0, (6)

Loady

0L else.

The Equation @ presents the size of the tasks mapped by the virtual machine
VM;, using the binary Mapping Matrix already presented in ([1)):

N
TaskMapy,,; = (Z SizeTask([i] * MP[@j]) . (7)
i=1

Since each task is characterized by its value size and, each virtual machine is
characterized by its computing power thus, these values are used to calculate the
load according to formula ({g]):

N
Mappey, ;= <Z (SizeTask[i]) * MappeRatio(VMj)> , (8)

i=1

where MappeRatio(yy5) is a ratio used to calculate the maximum size of tasks that
can be mapped to the VM};, it is calculated as follows:
: CPUy
MappeRatioq ) = | =—2— | - (9)
( .7) Zyj\/il CPUVM]
Finally, formula is used to calculate the average resource utilization rate
(AVGyp). This rate is between [0.1] and it is calculated as follows:

(352, Tvagy) /M
makespan ) ' (10)

The pseudo Algorithm 2] LoadBalancer presents the different actions that allow
to calculate the fitness function and the combination between the two objectives of
our approach.

3.3.2 The Selector Component

This component generates another matrix, called M_Select, and a vector, called
Array_Select. At the beginning, this matrix contains, the best 7% chromosomes.
The Array_Select vector contains the indices of all chromosomes that can be gen-
erated and used for crossing. This vector makes it possible to avoid the crossing
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Algorithm 2: Load Balancer component behavior
Input: M|z, n]
Output: Fitness[z], M|z, n]
Initialize parameters;
LoadMPJ;
Calculate:
SizeTask[i], CPUVM[j];
Mappey [];
TaskMapy, ,[j];
Loady s [j ] ;
AvgLoad;
Makespan;
Fitness « Makespan + AvglLoad;
Descending sort(vector of fitness functions);
Descending sort(matrix of positions) according Fitness sort;

between the same chromosome on one side, and also to avoid the crossing of two
chromosomes several times on the other side (Figure []).

The pseudo Algorithm [ SelectorAlgo, allows to present the different actions
which constitute the functionalities of this component.

Algorithm 3: Selector component behavior

Input: Fitness[z], M|z, n]

Output: MSelect[y, n|, ArraySelect[y? — y]

Select the 7% of best solutions;

Create the matrix of best solutions;

Create the array of parent index who go to crossover;

3.3.3 The Crossover Component

From the indices values of the Array_Select vector, this component performs the
crossing between two parents. So, it randomly takes a series of genes from one
parent and concatenates it with the remained genes from the second parent. At the
end of the crossover operator execution, we obtain a new half-population (the first
50 % of the solutions).

The pseudo Algorithm [d] CrossoverAlgo, presents the actions of the crossing
between two parents, to obtain new two parents.

3.3.4 The Grasshoppers Component

In genetic algorithm, to obtain a new generation, the mutation operator is based
on random selection of genes, and the replacement of the latter by others closer to
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M
Positions
P1 6 2 4 1 9 3 0.4
P2 4 9 2 3 6 1 2.1
P3 1 9 6 2 4 3 3.4
P4 2 4 1 9 3 6 3.9
Pn 2 6 9 1 3 4 9.4
Generate p 6
P1 6 | 2| 4 119 |3 |04
P2 4 19 2 |3 6 1 ]21
Generate
P3 119 6 | 2| 4| 3 |34
P4 2| 4 119 3|6 |39
Array_Select \ i \ 2 3 4 5 6
Positions Indexs | P1 | P2 | P1L | P3 | P1 | P4 | P2 | P3 | P2 | P4 | P3 | P4

Figure 4. Relationship between M_Select and Array_Select

Algorithm 4: CrossoverAlgo
Input: Parentl, Parent2
Output: newParentl, newParent2
Randomly select part of the chromosome(cutPart);
Load the first cutPart of Parentl and Parent2 to newParentl and
newParent2;
Load the rest of Parent1l and Parent2 to newParent2 and newParent];

them. This allows a global optimal solution [9] to be found instead of a local optimal
solution, and this is the strength of the genetic algorithm for global optimization.

The disadvantage of this operator is its heaviness [18], especially when the num-
ber of tasks increases. To overcome this problem, we replaced this operator by
a component based on the grasshopper optimization algorithm, which allows to
propose local optima [I6]. The latter makes it possible to obtain the second half-
population (a second 50 % of the solutions) from the first half-population. The
obtained values of the second half-population will be normalized so that they cor-
respond with the values of the CPU speeds of virtual machines. The normalization
consists of bringing values of the matrix closer to those of the CPU speeds defined
in the VMs vector. For example, an obtained value 6.3623, it will be normalized to
6 according to the list of CPU speeds VMs.
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Finally, the two half-populations will be concatenated to form the new popula-
tion. The advantage of this algorithm is that it offers meaningful exploration and
exploitation [16].

In the remainder of this section, we explain the swarming behavior of grasshop-
pers which is mathematically modeled as follows:

P =(S+G+4), (11)

where P; indicates the position of the grasshopper, S; is the social interaction be-
tween the grasshoppers, G; indicates the force of gravity on the grasshopper, and
A; is the advection of the wind. To produce random grasshopper behavior, Equa-
tion ([11)) can be rewritten as:

Pr=((ry ) + (ra % Gi) + (ra x A))), (12)

where r1, r9 and r3 are random numbers in the range [0, 1]. The social interaction

S; is defined as follows:
N
S; = < > S(dij)dij>, (13)

J=1j#1
where N denotes the number of grasshoppers, d;; = |P; — Pi| defines the Euclidean
distance between the i*" and the j® grasshopper, and dij = Pfj;j.l)l is a unit vector

from the *" to the j™ grasshopper, and S represents the social forces denoted by
the following equation:

S(r) = <f xeT — e’T) , (14)

where f and [ are the attraction intensity and the attraction length scale respectively.

Improvements have been made to formula so that it can be used to solve
optimization problems, because grasshoppers quickly reach the comfort zone and
the swarm does not converge on the objective [I6].

N

by — b P—P\ -~

Plec| Y e s - RN ) + T, (15)
j=Lji i

where ub; and [by respectively represent the upper and lower bounds in the dih
dimension (where d represents the objective number on the fitness function). T
denotes the best solution found so far in the d-dimensional space.

c1 and ¢y are considered as a single parameter called ¢ which is expressed in the
following equation: [16].

C, — Cmy
v 10

where ¢4, and ¢, represent the maximum and minimum values of ¢, respectively,
t is the current iteration, and t,,,, is the maximum number of iterations. The
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algorithm coefficients are initialized as follows [I6]: cpaz = 1, Cmin = 0.00004,
F=05and = 15.

The formulas , , , and are translated into pseudo Algo-
rithm [f] GrasshoppersAlgo.

Algorithm 5: Grasshopper Algorithm

Input: M1[s,n]
Output: M2[z — s,n]
Initialize parameters;
while not last position do

if i # j then

| M2+ P%

end

end

while not last position do
| M2[] + (M2]] ~ CPUVM][]); /* Normalized matrix of positions */
end

4 CASE STUDY

In this part, we explain the steps to follow, of our approach, in order to achieve
the objective. For this, we assume that we have an environment containing a set
of 6 tasks T = {Ty, T, Ts, Ty, T5, T}, and a set of 3 virtual machines VM =
{VM;, VM,, VM3}. The operation of the components of our approach is illustrated
through the following steps:

Step 1: In this step, the SGGA prepares Tables [] and [5] with the necessary infor-
mation. Thus, Table [ contains the characteristics of the tasks namely the size
(Size) and the worst execution time (WCET) [29]. The Table [f| contains virtual
machine information: CPU speed, and Storage capacity.

T TI T2 T3 T4 T5 16
Size (KB) 6 2 7 12 3 15
WCET 4 2 45 53 23 1.1

Table 4. Tasks characteristics

VM VM1 VM2 VM3
CPU (mips) 5 4 6
Storage 7 12 22

Table 5. VMs characteristics
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We also assume that the size of the population is equal to 20 (z = 20), the
maximum time for the execution of a given task is 100 (¢4, = 100).

Once the two tables above are prepared, the SGGA randomly initializes the
matrix by M chromosomes [20, 6] as shown in Table [6]

M TKT T2 T3 T4 T5 T6 F
P1 4 6 5 5 5 6 12.80
P2 ) ) 4 6 ) 6 840
P3 5 4 5 6 6 6 914
P4 5 4 6 4 4 4 11.39
P5 6 4 5 6 4 6  4.89
P6 4 6 4 5 6 6  9.69
P7 4 4 5 4 5 6 12.07
P8 6 6 4 5 5 4 7.87
P9 6 6 4 4 4 5 13.05
P10 6 6 4 6 5 6  6.53
P11 5 6 5 4 6 5 10.07
P12 5 4 5 6 4 6 8.74
P13 4 5 6 4 5 6  9.96
P14 6 4 5 4 6 5 7.68
P15 6 6 5 4 5 5 8.20
P16 4 5 6 4 6 6  9.98
P17 5 4 5 5 6 4 14.20
P18 5 5 4 6 6 6 894
P19 6 5 6 4 6 6 12.44
P20 4 6 5 6 5 4 7.39

Table 6. The matrix M before sorting with Fitness

Then, it invokes the LoadBalancer component to create the fitness vector. The
latter contains the fitness of each Pi € [1,...,20]. Finally, the matrix M will
be sorted according to the values of the fitness vector (ascending order) as show
in Table [

Thus, the best solution (BS = (6,4,5,6,4,6)), having as fitness the smallest
value, will be at the head of the matrix.

Step 2: In this step, the Selector component is invoked. It allows to create the
MSelect matrix.

This latter contains, at the beginning, the 7% best solutions. In this case
study, they are the four best chromosomes sectioned from the position matrix
(see Table . From the MSelect array, the Selector component creates the
ArraySelect vector which contains the chromosomes indices that will participate
in the crossover step, as shown in Table [0

Step 3: Once step 2 is completed, the SGGA, invokes the Crossover component.
The latter makes it possible to create the first half-population (matrix M1[10, 6])
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M T1 T2 T3 T4 T5 T6 F
P1 6 4 5 6 4 6  4.89
P2 6 6 4 6 5 6  6.53
P3 4 6 5 6 5 4 7.39
P4 6 4 5 4 6 5 7.68
P5 6 6 4 5 5 4 7.87
P6 6 6 5 4 5 5 8.20
P7 5 5 4 6 5 6  8.40
P8 5 4 5 6 4 6 874
P9 5 ) 4 6 6 6 894
P10 5 4 ) 6 6 6 914
P11 4 6 4 ) 6 6  9.69
P12 4 5 6 4 ) 6  9.96
P13 4 ) 6 4 6 6 998
P14 5 6 5 4 6 5 10.07
P15 5 4 6 4 4 4 11.39
P16 4 4 5 4 5 6 12.07
P17 6 5 6 4 6 6 1244
P18 4 6 5 5 ) 6 12.80
P19 6 6 4 4 4 5 13.05
P20 5 4 5 5 6 4 14.20

Table 7. The matrix M after sorting with Fitness

T1 T2 T3 T4 T5 T6

P1 6 4 5 6 4 6
P2 6 6 4 6 5 6
P3 4 6 5 6 5 4
P4 6 4 5 4 6 5

Table 8. MSelect for the best chromosomes

as indicated in Table [[0] The first half-population is obtained from the MSe-
lect matrix and the MSelect vector resulting from step 2. Thus, the M1 matrix
contains the 7% of the population of the M-Select array, and the rest of the
population is obtained by crossing chromosomes (Pi, Pj) of the ArraySelect vec-
tor.

Step 4: In this step, the Grasshoppers component uses the matrix M1 to create
the second half-population and stores it in M2[10, 6]. For example, according to
formula , the position P11 of M2 is calculated by taking into consideration

1 2 3 4 ) 6
P1,P2 P1,P3 P1,P4 P2, P3 P2,P4 P3 P4

Table 9. ArraySelect for all positions chromosomes
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Table 10. The matrix of the first half population M1

the position P1 with all the positions Pi where ¢ € [1,...,10] and the best
position.

And so on for positions from P12 to P20. The obtained values from the M2
matrix, presented in Table [[I], do not correspond to the values of the CPU
speeds of the VMs as indicated in Table ] The normalization operation makes

it possible to bring the values of the M2 matrix closer to values of Table [5] as
shown in Table

M2 T1 T2 T3 T4 Tb T6
P11 636 3.74 510 5.80 380 5.79
P12 6.05 4.05 4.49 557 380 5.79
P13 6.05 426 5.10 5.57 441 5.79
P14 6.05 426 551 642 3.59 6.22
P15 564 426 5.10 5.57 3.59 5.79
P16 636 3.74 449 580 441 5.79
P17 636 426 510 642 380 5.79
P18 564 374 449 580 380 6.22
P19 564 374 459 642 359 6.40
P20 564 3.74 449 557 380 5.79

Table 11. The matrix of the second half population M2

Step 5: In the last step, the SGGA merges the two half-populations in the M
matrix. The latter represents a new generation of the solutions for the first

iteration (¢t = 1) as show in Table

Then, it invokes the LoadBalancer component for the next iteration, as shown
in Table [[4] until reaching the maximum number of iterations (¢t = 100) as
proposed at the beginning.

At the end of the last iteration (¢ = 100), the optimal solution is at the top of
the M2 matrix, and it is indicated by the position P1: BS = (6,4, 5, 6,4, 6).
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M2 T1 T2 T3 T4 Tb5 T6
P11 6 4 5 6 4 6
P12 6 4 5 6 4 6
P13 6 4 6 6 4 6
P14 6 4 5 6 4 6
P15 6 4 5 6 4 6
P16 6 4 6 6 4 6
P17 6 4 5 6 4 6
P18 6 4 4 6 4 6
P19 6 4 6 6 4 6
P20 6 4 5 6 4 6
Table 12. The M2 normalized
M2 T1T T2 T3 T4 T5 T6 F
P1 6 4 5 6 4 6 19.89
P2 6 6 4 6 5 6 19.93
P3 4 6 5 6 5 4  28.33
P4 6 4 5 4 6 5 19.97
P5 6 4 4 6 5 6 21.09
P6 6 4 5 6 5 4 21.07
P7 6 4 5 4 6 5 22.01
P8 6 6 5 6 5 4 21.59
P9 6 6 4 6 6 5 20.16
P10 4 6 5 4 6 5 27.34
P11 6 4 5 6 4 6 19.89
P12 6 4 5 6 4 6 19.89
P13 6 4 6 6 4 6 20.22
P14 6 4 5 6 4 6 19.89
P15 6 4 5 6 4 6 19.89
P16 6 4 6 6 4 6 20.22
P17 6 4 5 6 4 6 19.89
P18 6 4 4 6 4 6 21.12
P19 6 4 6 6 4 6 20.22
P20 6 4 5 6 4 6 19.89

Table 13. The new matrix of positions M and vector of Fitness (¢ = 1)

5 EXPERIMENTAL RESULTS AND DISCUSSION

The purpose of this section is to verify the effectiveness of our approach. In order
to validate our proposal, we used the CloudSim 3.0.3 simulator [6]. The latter is
a framework used to model and simulate the Cloud Computing environment and
services. It is developed by the CLOUDS Lab organization and is written entirely

in Java.
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M2 T1 T2 T3 T4 T5 T6 F
P1 6 4 5 6 4 6 19.89
P2 6 4 5 6 4 6  19.89
P3 6 4 5 6 4 6  19.89
P4 6 4 5 6 4 6  19.89
P5 6 4 5 6 4 6  19.89
P6 6 4 5 6 4 6  19.89
p7 6 4 5 6 4 6  19.89
P8 6 6 4 6 5 6 19.93
P9 6 4 ) 4 6 5 1997
P10 6 6 4 6 6 5 20.16
P11 6 4 6 6 4 6 20.22
P12 6 4 6 6 4 6 20.22
P13 6 4 6 6 4 6  20.22
P14 6 4 5 6 5 4 21.07
P15 6 4 4 6 5 6 21.09
P16 6 4 4 6 4 6 21.12
P17 6 6 5 6 5 4 21.59
P18 6 4 5 4 6 5 2201
P19 4 6 5 4 6 5 27.34
P20 4 6 5 6 5 4 28.33

Table 14. The new matrix of positions M and vector of Fitness (¢ = 1)

The simulation environment is a “Dell inspiron” PC, equipped with an Intel(R)
Core (TM) i7-3632QM CPU 2.20 GHz, 6 GB RAM, 1TB hard drive, and it uses
a Windows 10 operating system.

The experiment environment is as follows: we set the number of iterations to
1000 (tmqe = 1000), a single data center containing 30 hots machines, and 50 virtual
machines. The overall memory of the host machine is 16.384 MB.

To evaluate the performance of our proposed approach, the experiments below
are based on the following metrics:

1. the waiting time of the optimal solution (WTOS),

2. the maximum time required for the execution of a batch of tasks (makespan),

3. the throughput (AVGThroughput) which represents the average number of tasks
executed per second and per iteration,

4. the average utilization resource ratio (AVGUR), and
5. the hypervolume indicator (HV).
The experimental results obtained are compared with the works closest to our

approach, namely: BGA, HGWO-ABC, GWO and ACO. In the following experi-
ments, we assume that we have a maximum set of 1000 tasks.
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Experiment 1: In this experiment, we will evaluate the waiting time of the optimal
solution of our approach. Then compare the results obtained with the four
approaches: BGA, HGWO-ABC, GWO and ACO.

In this experiment, we vary the number of iterations from 100 to 1 000 with a step
of 100, and we set the number of tasks to 500. Then we observe the waiting time
necessary to obtain the best solution. Through Figure [f] we can notice that our
approach approximates the optimal solution at the end of iteration 670, while
the two approaches BGA and HGWO-ABC stabilize respectively from iteration
780 and 900. The optimal solution of two last approaches namely ACO and
GWO is reached during the last iteration (1000).

From the above, we can see that our approach gives better results in terms of
waiting time to reach the optimal solution as well as in terms of the number of
iterations. This offers a very considerable economic gain.

3500

3000

2500

2000 GWO
8 —#-ACO
E 1500 ~HGWO_ABC
~#-BGA
1000 ~4—SGGA

100 200 300 400 500 600 700 800 900 1000

Number of iteration

Figure 5. The results of the time to reach the optimal solution

Experiment 2: In this experiment, we will evaluate the makespan of our approach,
then the obtained results are compared with those of the other approaches.

In this experimentation, we vary the number of tasks from 100 to 1000 with
a packet of 100, and we set the number of iterations to 1000. Then we observe
the maximum time required for the execution of a batch of tasks.

Figure[f]shows that in the first two packages, all the approaches give almost close
values in terms of the makespan. However, from the 7" package the difference
between the different approach is clearly visible.

Experiment 3: After evaluating the first metric of the fitness function in the pre-
vious experiment, we evaluate its second metric which is the average resource
utilization ratio (AVGyg). This metric is between 0 and 1. This metric will
be analyzed regarding to the number of tasks, then will compare the obtained
results with the other approaches.
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Figure 6. The results of the makespan compared to the number of tasks

In this experimentation, we vary the number of tasks from 100 to 1000 with
a packet of 100, and we set the number of iterations to 1000. Then we observe
the average rate of resource utilization regarding to the number of tasks. Figure[7]
shows that, for the first packet of 100 tasks, our approach and the BGA approach
give a higher average resource utilization (AVGyg) than the other approaches.
From the 8" packet, the HGOW-ABC approach exceeds that of BGA with a rate
of 2.86 %.

Our approach exceeds BGA, HGWO-ABC, ACO and GWO in terms of resource
utilization by the order of 3.13%, 0.46 %, 6.54 % and 7.12 %, respectively. This
explains that SGGA gives better performance in terms of average resource uti-
lization compared to other approaches.
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Figure 7. The results of resource utilization rates against the number of tasks
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Experiment 4: The fourth metric is evaluated in this experiment. It is the average
number of tasks executed in a unit of time (AVG-Throughput). This parameter
automatically depends on the makespan. This evaluation is also compared with
the same four approaches.

In this experimentation, we set the number of iterations and the number of tasks
to 1000. At the end of the experiment, we calculate the average number of tasks
executed per second which is the number of tasks divided by the global execution
time. Figure [§|shows that our approach gives a gain of 6.46 %, 16.11 %, 18.81 %
and 25.09 % compared to the BGA, HGWO-ABC, ACO and GWO approaches,
respectively, which confirms our theoretical assumptions.
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Figure 8. The average throughput comparison

Experiment 5: In this experiment, the SGGA is compared with the other ap-
proaches according to the hypervolume indicator, which is the most used metric
to compare the performance of scalable multi-objective algorithms [g].

HV is a unary metric that calculates the volume of the area bounded by the
set of solutions and a reference point, where a higher value indicates a better
result [5].

Figure [9] shows that our approach SGGA and BGA have the best HV indicator
with a slight superiority of our approach of around 1.70 %. Compared to other
techniques, we find that our approach outperforms other approaches whose gain
rate is 13.64 %, 22.87 % and 17.84 % compared to HGWO-ABC, ACO and GWO
approaches, respectively.

The HV values confirm that our SGGA approach gives a much more efficient
set of solutions than the other approaches.

As a conclusion of the realized experiments, our SGGA approach based on the
combination of genetic algorithm and grasshopper optimization algorithm, gives
an optimal solution for dynamic load balancing in the CloudloT.
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6 CONCLUSION

The CloudlIoT paradigm enables intelligent resource utilization in an equitable man-
ner. In this paradigm, IoTs send their tasks to Cloud Computing for processing or
storage, mapping them to the various hardware and software resources represented
by virtual machines. When distributing the data to be processed to the virtual
machines (VMs), some will be loaded while others will be less loaded or inactive.
Load balancing is a mechanism that manages the allocation of VMs to tasks sent
by IoTs. It thus allows the optimization of makespan, throughput and the rentable
use of resources.

To achieve dynamic load balancing in the CloudIoT, a task scheduler (SGGA)
based on the combination between genetic algorithm and grasshopper optimization
algorithm has been proposed. The two operators of GA (selection and crossover),
are developed to avoid redundancy in the choice of a chromosome several times.
Then the mutation operator is replaced by a component based on the grasshop-
per optimization algorithm. Careful experiments are carried out on CloudSim, to
demonstrate that SGGA is more efficient compared to more recent works (BGA,
HGOW-ABC, GWO and ACO) in terms of time to reach the optimal solution,
makespan, throughput, the average resource utilization ratio and the hypervolume
indicator.

In future work, we aim to expand the parameters of load balancing so that
SGGA can improve energy consumption and cost, and we implement our approach
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on a real system such as a smart city. We aim, also, to evaluate it with the new
CEC functions such as Ackley, Rosenbrock, Michalewicz, Dixon and Price function.
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