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Abstract. Intuitionistic fuzzy graphs are extensions of fuzzy graphs that preserve
the dualism characteristics of fuzzy graphs and have a stronger capacity to describe
ambiguity in actual decision-making issues than fuzzy graphs. In this research pa-
per, the Laplacian energy and correlation coefficient of intuitionistic fuzzy graphs
are computed for finding group decision-making problems that are supported by
intuitionistic fuzzy preference relations. We propose a novel method for calculating
establishments’ comparative position loads by manipulating the undecided corrob-
oration of IFPR and the correlation coefficient of one personality IFPR to the other
items. As a result, we comprehend a large number of establishments in the detailed
IFPR and devise a correlation coefficient process to investigate the significance of
alternatives and the best of the alternatives. Finally, we present a collaborative
decision-making technique in a money-investing scheme, and that idea may be de-
vised in disparate beneficial investing schemes.
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1 INTRODUCTION

FS Fuzzy sets
FG Fuzzy graph
IFS Intuitionistic fuzzy set
IFG Intuitionistic fuzzy graph
IFPR Intuitionistic fuzzy preference relation
IFAM Intuitionistic fuzzy adjacency matrix
IFLM Intuitionistic fuzzy Laplacian matrix
LE Laplacian energy
CC Correlation coefficient
GDMP Group decision making problem
FMF Fuzzy membership function
FNMF Fuzzy non-membership function
MVs Membership values
NMVs Non-membership values

Table 1. Nomenclature

Zadeh [1] proposed the notion of fuzzy sets. The range of truth value of the
membership relation is the interval [0, 1], which is a property of FS. To address
the ambivalence and doubt regarding the membership degree, Atanassov [2] added
a new degree, termed as degree of non-membership, to the FS concept in 1986.
In a fuzzy set, one excluding the degree of membership functions is known as the
indecision degree or non-membership degree of a particular component, and it is
thus totally stable. However, in authentic or many instances, there is a degree
of ambivalence seen between membership functions, and thus they are independent.
Zadeh [3] presented the idea of a fuzzy graph relation, which has been used to analyse
cluster patterns. Kaufmann [4], created the concept of FG based on Zadeh’s hazy
relations. Rosenfeld [5] proposed the notion and construction of the FG. Gutman [6]
and Balakrishnan [7] defined graph energy in chemistry, as well as its importance
to the total π-electron energy of specific compounds, and identified superior and
inferior graph energy limits. In [8] Anjali and Mathew investigated the energy of a
FG. The LE of a FG was presented by Sharbaf and Fayazi [9]. The idea of a FG was
expanded by Parvathi and Karunambigai [10] to include an IFG. The familiarity
with the LE of a FG was applied to the LE of an IFG by Basha and Kartheek
in [11]. IFG is one of the most popular and unrivalled extensions of IFS perception.
Recently, Falehi [12, 13, 14] has successfully performed IFPRs and their executions
using a variety of methodologies. Many novel notions about extended architectures
of fuzzy graphs were proposed by Akram et al. [15, 16, 17, 18, 19, 20, 21], and
their related implications in decision-making. Also, to choose the optimum alliance
partner, Ramesh et al. [22] used a GDM procedure that connected the TOPSIS
method with IFG.
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In an intuitionistic ambiguous scenario, focusing on the variance and covariance
of the IFS, Xuan [23] devised a method for determining the correlation coefficient,
the value of which is in [−1, 1]. Ye [24] proposed a technique in GDMP based on
weighted correlation coefficients using LE is presented for particular situations when
the knowledge about criterion weights for alternatives is totally unknown. Also,
several statistical methods have been executed by Akula and Sharief Basha [25],
Zeng and Li [26], Mitchell [27], Huang ad Guo [28], Szmidt and Kacprzyk [29].
Garg and Rani [30], Khaleie and Fasanghari [31], etc. offered several statistical
methods for handling decision-making circumstances by using intuitionistic fuzzy
sets to represent the quality of the substitutes and fuzzy values to express the weight
of each criterion.

According to intuitionistic fuzzy set research, it is crucial to consider this exten-
sion concept. It motivates us to think about IFGs and their applications. In this
paper, we provide a strategy for solving GDM issues when the weights (loads) of the
criteria are completely unknown and the alternatives are solely determined by the
IFG. To address ambiguous information criteria, we use the LE measure to calcu-
late the relative weights based on each decision matrix. To satisfy the total weight
vector requirement, we combine each LE weight that was received. The correlation
coefficient metric is used to evaluate IFG alternatives, and the best ones are then
chosen by calculating the correlation degree for each ranking of the alternatives.

The remainder of this article is structured as follows: The essential principles,
covariance, and correlation coefficient measures of IFG are presented in Section 2.
Group decision-making is presented in Section 3, utilising IFG’s Laplacian energy
and correlation coefficient technique. The appropriate application is found in Sec-
tion 4. Ultimately, the conclusion of the article is presented in Section 5.

2 PRELIMINARIES

Definition 1. An IFG Gi = (V,E, µ, ν) is defined as a FG with the nodes set V
and the paths set E, where µ is a FMF specified on V × V and ν is a FNMF, then
we specify µ(vi, vj) by µij and ν(vi, vj) by νij so as that

• 0 ≤ µij + νij ≤ 1,

• 0 ≤ µij, νij, πij ≤ 1,

where πij = 1− (µij + νij).

Definition 2. An IFAM is well-defined for an IFG G = (V,E, µ, ν) by A(Gi) =
[aij], where aij = (µij, νij). It is worth noting that µij denotes the strength of
the membership bond between vi and vj and νij denotes the strength of the non-
membership bond among both vi and vj.

Definition 3. An IFAM can be represented by two matrices, one carrying MVs as
well as the other carrying NMVs. So that we represent this matrix as

A(Gi) = [(Aµ(Gi)), (Aν(Gi))],
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where Aµ(Gi) is the intuitionistic fuzzy membership matrix and Aν(Gi) is the intu-
itionistic fuzzy non-membership matrix.

Definition 4. The Eigen roots of an IFAM are described as (Y, Z), where Y rep-
resents the set of latent roots of Aµ(Gi) and Z represents the set of latent roots of
Aν(Gi).

Definition 5. Permit A(Gi) as an IFAM and D(Gi) specified by [dij] as the degree
matrix of an IFG. Then IFLM of IFG is defined as

L(Gi) = D(Gi)− A(Gi).

An IFG’s Laplacian matrix can be represented as two matrices, one with MV ele-
ments and the other with NMV elements i.e.

L(Gi) = [(L(µij)), (L(νij))].

Definition 6. Consider an IFG Gi = (V,E, µ, ν) and λi, θi are the latent roots of
Intuitionistic fuzzy adjacency matrix A(Gi). Then the LE of IFG is described as
follows:

LE(Gi) = [LE(Aµ(Gi)), LE(Aν(Gi))],

where Aµ(Gi) and Aν(Gi) are the membership matrix and non-membership ma-
trix of A(Gi) of an IFG, and λi, θi are the latent roots of Aµ(Gi) and Aν(Gi).
Also, LE(Aµ(Gi)) and LE(Aν(Gi)) gives the Laplacian energies of membership ma-
trix Aµ(Gi) and non-membership matrix Aν(Gi) of IFG. The LE of (Aµ(Gi)) and
(Aν(Gi)) of an IFG is given by the euations:

LE(Aµ(Gi)) =
n∑

i=1

∣∣∣∣λi −
2
∑

1≤i≤j≤n µ(vi, vj)

n

∣∣∣∣ ,
LE(Aν(Gi)) =

n∑
i=1

∣∣∣∣θi − 2
∑

1≤i≤j≤n ν(vi, vj)

n

∣∣∣∣ .
Definition 7. [Correlation coefficient of IFGs] The Intuitionistic energies of two
Intuitionistic Fuzzy Graphs G1 and G2 are described as

EIFG(G1) =
n∑

i=1

[
µ2
G1
(xi) + ν2

G1
(xi)

]
=

n∑
j=1

λ2
j(G1)

and

EIFG(G2) =
n∑

i=1

[
µ2
G2
(xi) + ν2

G2
(xi)

]
=

n∑
j=1

λ2
j(G2).

The covariance of the IFGs G1 and G2 is defined as

CIFG(G1, G2) =
n∑

i=1

[µG1(xi)µG2(xi) + νG1(xi)νG2(xi)] .
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Therefore, the correlation coefficient measure of IFGs G1 and G2 are given by the
equation

KIFG(G1, G2) =
CIFG(G1, G2)√

EIFG(G1)EIFG(G2)

=

∑n
i=1 [µG1(xi)µG2(xi) + νG1(xi)νG2(xi)]√∑n

i=1

[
µ2
G1
(xi) + ν2

G1
(xi)

]√∑n
i=1

[
µ2
G2
(xi) + ν2

G2
(xi)

]
Alternately, Xu et al., developed an alternate version of the CC of IFGs C and D,
so the same form can be converted on IFGs G1 and G2 as follows.

KIFG(G1, G2) =

∑n
i=1 [µG1(xi)µG2(xi) + νG1(xi)νG2(xi)]

Max
{[∑n

i=1

[
µ2
G1
(xi) + νG1(xi)

]] 1
2 ,
[∑n

i=1

[
µ2
G2
(xi) + ν2

G2
(xi)

]] 1
2

}
or

KIFG(G1, G2) =

∑n
i=1 [µG1(xi)µG2(xi) + νG1(xi)νG2(xi) + πG1(xi)πG2(xi)]

Max


[

n∑
i=1

[
u2
G1
(xi) + ν2

G1
(xi) + π2

G1
(xi)

]] 1
2

,

[
n∑

i=1

[
µ2
G2
(xi) + ν2

G2
(xi) + π2

G2
(xi)

]] 1
2


or

KIFG(G1, G2) =

∑n
i=1 [µG1(xi)µG1(xi) + νG1(xi)νG2(xi) + πG1(xi)πG2(xi)]

√√√√ n∑
i=1

[
µ2
G1
(xi) + ν2

G1
(xi) + π2

G1
(xi)

]
√√√√ n∑

i=1

[
µ2
G2
(xi) + ν2

G2
(xi) + π2

G2
(xi)

]

.

The function KIFG satisfies the following conditions

• (P1): 0 ≤ KIFG(G1, G2) ≤ 1,

• (P2): KIFG(G1, G2) = KIFG(G1, G2),

• (P3): KIFG(G1, G2) = 1, if G1 = G2.
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3 GROUP DECISION-MAKING BASED ON INTUITIONISTIC
FUZZY GRAPHS LAPLACIAN ENERGY
AND CORRELATION COEFFICIENT

3.1 Algorithm

For the purpose of finding GDMP based on IFPR, let ω = (ω1, ω2, . . . , ωm) be a sub-
jective loading vector of authorities, where ωk > 0, k = 1, 2, . . . ,m with

∑m
i=1 ωi =

1.

Step (i). Calculate the LE(Gi) using the following equations.

LE(Gi) =
n∑

i=1

∣∣∣∣λi −
2
∑

1≤i≤j≤n µ(vi, vj)

n

∣∣∣∣ ,
LE(Gi) =

n∑
i=1

∣∣∣∣θi − 2
∑

1≤i≤j≤n ν(vi, vj)

n

∣∣∣∣ .
(1)

Step (ii). Calculate the weight ωa
k by using Laplacian energy of the authorities ek

using the equation

ωa
k = ((ωµ)k, (ων)k) =

[
LE((Gµ)k)∑m
i=1 LE((Gµ)i)

,
LE((Gν)k)∑m
i=1 LE((Gν)i)

]
. (2)

Step (iii). Calculate the Karl Pearson’s correlation coefficient K(Gs, Gl) between
Gs and Gl for s ̸= l, using the equation

KIFG(Gs, Gl) =

∑n
i=1 [µGs(xi)µGl

(xi) + νGs(xi)νGl
(xi)]√∑n

i=1

[
µ2
Gs
(xi) + ν2

Gs
(xi)

]√∑n
i=1

[
µ2
Gl
(xi) + ν2

Gl
(xi)

] . (3)

Compute the average correlation coefficient degree K(Gs) to the others by using
the equation

K(Gs) =
1

m− 1

m∑
l=1,s ̸=l

K(Gs, Gl), s = 1, 2, . . . ,m. (4)

Step (iv). Compute the weight ωb
s determined by K(Gs) of the authority ek, using

the equation

ωb
s =

K(Gs)∑m
i=1K(Gi)

, s = 1, 2, . . . ,m. (5)

Step (v). Calculate the authority e′ks objective weight ω
2
s using the following equa-

tion
ω2
s = η ωa

s + (1− η)ωb
s, η ∈ [0, 1], s = 1, 2, . . . ,m. (6)
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Step (vi). Incorporate the weight ωs with authority ek subjective weight ωa
s and

objective weight ω2
s using the equation

ωs = γω1
s + (1− γ)ω2

s , γ ∈ [0, 1], s = 1, 2, . . . ,m. (7)

3.2 Procedure – I

Step (vii). Use the equation

τ
(s)
i =

1

n

n∑
j=1

τ
(s)
ij , (8)

where i = 1, 2, . . . ,m, to obtain the aggregate intuitionistic ambiguity value of

the option τ
(s)
i across all alternatives.

Step (viii). Use the equation

τi =
m∑
i=1

ωsτ
(s)
i , ∀i = 1, 2, . . . ,m (9)

to make a total intuitionistic ambiguity value of the alternative τi over other

choices by summing all τ
(s)
i (s = 1, 2, . . . , n), corresponding to n-authorities.

Step (ix). Calculate the rank function from the equation

K(τi) = µi − νi (10)

of τi if the better value of K(τi) is the finer alternate τi, then the alternates must
be ranked in groups.

3.3 Procedure – II

Step (i). Determine the supportive IFPR as M = (τij)n×n by the equation

τij = (µij, νij) =

(
m∑
l=1

ωlµ
(l)
ij ,

m∑
l=1

ωlν
(l)
ij

)
, i, j = 1, 2, . . . , n. (11)

Step (ii). For every choice xi, decide the correlation coefficient value K(M i,M+)
between M i and M+ and the correlation coefficient value K(M i,M−) between
M i and M− using the equations

K(M i,M+) =
1

n

n∑
j=1

µij(1) + νij(0)√
µ2
ij + ν2

ij

√
12 + 02

=
1

n

n∑
j=1

µij√
µ2
ij + ν2

ij

(12)

and

K(M i,M−) =
1

n

n∑
j=1

µij(0) + νij(1)√
µ2
ij + ν2

ij

√
02 + 12

=
1

n

n∑
j=1

νij√
µ2
ij + ν2

ij

. (13)
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Step (iii). For each choice xi, ascertain its estimate value by the equation

h(xi) =
K(M i,M+)

K(M i,M+) +K(M i,M−)
. (14)

The two procedures (I and II) listed above are intended for acquiring the included
loads and ranking the substitutes. When the value of h(xi) is greater, the alternative
xi is preferred. The finest ranking of the substitutes is then available for decision-
makers.

4 FLOW CHART

The flowchart below illustrates how the suggested technique would work to get the
alternate rankings.

5 APPLICATION: FINEST SELECTION
OF MONEY-INVESTING SCHEMES

Suppose a man who wants to invest his money in any of the four categories such
as Fixed deposit (FD, x1), Govt bonds (GB, x2), Postal savings (PS, x3), and Shares
(SH , x4) (Wang et al. 2005) [32]. He can only pick one based on three criteria
such as Tax benefits (e1), Risk coverage (e2) and Rate of interest (e3). Due to his
inadequate expertise, he wanted to seek advice from experts who could offer the
finest investment strategy. As a result, the experts will apply IFGs to express their
preference ratings in order to find the original ranking information, which is provided
in the intuitionistic fuzzy decision matrices. It should be noted that the criteria are
classified into two types:

1. Benefit type and

2. Price type.

This should be considered by the experts and client when selecting preference values.

To determine one of the most desired categories, the recommended experts use
the appropriate aggregate decision information. In order to choose the best category,
they use the correlation coefficient and LE of IGFs based on GDMP as follows.

From Figure 2, the IFAM is defined as

A(G1) =


(0, 0) (0.2, 0.4) (0.5, 0.4) (0.7, 0.1)

(0.4, 0.2) (0, 0) (0.3, 0.5) (0.4, 0.5)
(0.4, 0.5) (0.5, 0.3) (0, 0) (0.8, 0.2)
(0.1, 0.7) (0.5, 0.4) (0.2, 0.8) (0, 0)

 .
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Figure 1. The procedure of ranking the alternatives (substitutes) for GDM assessment
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Figure 2. IFG (G1) related to tax benefits

Figure 3. IFG (G2) related to risk coverage

From Figure 3, the IFAM is defined as

A(G2) =


(0, 0) (0.3, 0.4) (0.4, 0.5) (0.6, 0.3)

(0.4, 0.3) (0, 0) (0.4, 0.4) (0.5, 0.3)
(0.5, 0.4) (0.4, 0.4) (0, 0) (0.7, 0.2)
(0.3, 0.6) (0.3, 0.5) (0.2, 0.7) (0, 0)

 .

From Figure 4, the IFAM is defined as

A(G3) =


(0, 0) (0.8, 0.1) (0.3, 0.4) (0.6, 0.4)

(0.1, 0.8) (0, 0) (0.5, 0.3) (0.4, 0.5)
(0.4, 0.3) (0.3, 0.5) (0, 0) (0.3, 0.7)
(0.4, 0.6) (0.5, 0.4) (0.7, 0.3) (0, 0)

 .
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Figure 4. IFG (G3) related to rate of interest

The Laplacian IFAM A(G1) of G1 is given by

L(A(G1)) = D(G1)− A(G1),

L(A(G1)) =


(1.4, 0.9) (0, 0) (0, 0) (0, 0)
(0, 0) (1.1, 1.2) (0, 0) (0, 0)
(0, 0) (0, 0) (1.7, 1.0) (0, 0)
(0, 0) (0, 0) (0, 0) (0.8, 1.9)



−


(0, 0) (0.2, 0.4) (0.5, 0.4) (0.7, 0.1)

(0.4, 0.2) (0, 0) (0.3, 0.5) (0.4, 0.5)
(0.4, 0.5) (0.5, 0.3) (0, 0) (0.8, 0.2)
(0.1, 0.7) (0.5, 0.4) (0.2, 0.8) (0, 0)

 .

The Laplacian IFAM A(G2) of G2 is

L(A(G2)) = D(G2)− A(G2),

L(A(G2)) =


(1.3, 1.2) (0, 0) (0, 0) (0, 0)
(0, 0) (1.3, 1.0) (0, 0) (0, 0)
(0, 0) (0, 0) (1.6, 1.0) (0, 0)
(0, 0) (0, 0) (0, 0) (0.8, 1.8)



−


(0, 0) (0.3, 0.4) (0.4, 0.5) (0.6, 0.3)

(0.4, 0.3) (0, 0) (0.4, 0.4) (0.5, 0.3)
(0.5, 0.4) (0.4, 0.4) (0, 0) (0.7, 0.2)
(0.3, 0.6) (0.3, 0.5) (0.2, 0.7) (0, 0)

 .
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The Laplacian IFAM A(G3) of G3 is

L(A(G3)) = D(G3)− A(G3),

L(A(G3)) =


(1.7, 0.9) (0, 0) (0, 0) (0, 0)
(0, 0) (1.0, 1.6) (0, 0) (0, 0)
(0, 0) (0, 0) (1.0, 1.5) (0, 0)
(0, 0) (0, 0) (0, 0) (1.6, 1.3)



−


(0, 0) (0.8, 0.1) (0.3, 0.4) (0.6, 0.4)

(0.1, 0.8) (0, 0) (0.5, 0.3) (0.4, 0.5)
(0.4, 0.3) (0.3, 0.5) (0, 0) (0.3, 0.7)
(0.4, 0.6) (0.5, 0.4) (0.7, 0.3) (0, 0)

 .

5.1 Algorithm

Step (i). By formula 1, we calculate the LEs of Gi, i = 1, 2, 3.

From Figure 2 and A(G1) we get

LE(G1) = (2.5796, 2.7298).

From Figure 3 and A(G2) we get

LE(G2) = (2.5000, 2.5000).

From Figure 4 and A(G3) we get

LE(G3) = (2.7425, 2.7047).

Step (ii). Using formula 2, we get the weights of Gi determined with LEs as follows:

ωa
1 = (0.3298, 0.3440),

ωa
2 = (0.3196, 0.3151)

and
ωa
3 = (0.3506, 0.3409).

Step (iii). Using 3 formula, we have

K(G1, G2) = 0.9681,

K(G1, G3) = 0.7794

and
K(G2, G3) = 0.8350.
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By Equation (4), we get

K(G1) = 0.8738,

K(G2) = 0.9016

and
K(G3) = 0.8072.

Step (iv). By Equation (5), we have ωb
s =

K(Gs)∑m
i=1 K(Gi)

, s = 1, 2, . . . ,m. then we get

ωb
1 = 0.3383,

ωb
2 = 0.3491

and
ωb
3 = 0.3126.

Step (v). By Equation (6), we have ω2
s = ηωa

s + (1− η)ωb
s, and taking η = 0.5 we

get

ω2
1,µ = 0.3341,

ω2
2,µ = 0.3344,

ω2
3,µ = 0.3316

and

ω2
1,ν = 0.3412,

ω2
2,ν = 0.3321,

ω2
3,ν = 0.3268.

So, weights of authorities are

ω2
1 = (0.3341, 0.3412),

ω2
2 = (0.3344, 0.3321)

and
ω2
3 = (0.3316, 0.3268).

Step (vi). By Equation (7), we have ωs = γωa
s+(1−γ)ω2

s and taking γ = 0.5 we get

ω1,µ = 0.3320,

ω2,µ = 0.3270,

ω3,µ = 0.3411
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and

ω1,ν = 0.3426,

ω2,ν = 0.3236,

ω3,ν = 0.3339.

So, the impartial weights are

ω1 = (0.3320, 0.3426),

ω2 = (0.3270, 0.3236)

and
ω3 = (0.3411, 0.3339).

5.2 Procedure I

Step (vii). By Equation (8), we have τ
(s)
i = 1

n

∑n
j=1 τ

(s)
ij , i = 1, 2, . . . ,m.

Then from Figure 2 and A(G1) we get

τ
(1)
1 = (0.4667, 0.3000),

τ
(1)
2 = (0.3667, 0.4000),

τ
(1)
3 = (0.5667, 0.3334),

τ
(1)
4 = (0.2667, 0.6334).

From Figure 3 and A(G2) we get

τ
(2)
1 = (0.4334, 0.4000),

τ
(2)
2 = (0.4334, 0.3334),

τ
(2)
3 = (0.5334, 0.3334),

τ
(2)
4 = (0.2667, 0.6000).

From Figure 4 and A(G3) we get

τ
(3)
1 = (0.5667, 0.3000),

τ
(3)
2 = (0.3334, 0.5334),

τ
(3)
3 = (0.3334, 0.5000),

τ
(3)
4 = (0.5334, 0.4334).
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Step (viii). By Equation (9), we have τi =
∑m

s=1 ωsτ
(s)
i , i = 1, 2, . . . , n., we get

τ1,µ = 0.4900, τ1,ν = 0.3324,

τ2,µ = 0.3772, τ2,ν = 0.4230,

τ3,µ = 0.4763, τ3,ν = 0.3891

and

τ4,µ = 0.3577, τ4,ν = 0.5559.

Therefore

τ1 = (0.4900, 0.3324),

τ2 = (0.3772, 0.4230),

τ3 = (0.4763, 0.3891)

and
τ4 = (0.3577, 0.5559).

Step (ix). By Equation (10), we have K(τi) = µi − νi, we get

K(τ1) = 0.1576,

K(τ2) = −0.0450,

K(τ3) = 0.0872,

K(τ4) = −0.1982.

Therefore K(τ1) > K(τ3) > K(τ2) > K(τ4), as a result τ1 > τ3 > τ2 > τ4.

The resulting ranking order is the same for all the values of γ (γ ∈ [0, 1]), not
only the one (γ = 0.5) used in Equation (7).

5.3 Procedure II

Step (i). In this part, we present the position outcome potential using our compa-
rable correlation coefficient approach. By Equation (11) in method II, we form
the group IFPR as follows.

From the matrices A(G1), A(G2) and A(G3) we get

M =


(0, 0) (0.4376, 0.2999) (0.3994, 0.4324) (0.6333, 0.2649)

(0.2977, 0.4327) (0, 0) (0.4010, 0.4009) (0.4327, 0.4353)
(0.4327, 0.4009) (0.3991, 0.3992) (0, 0) (0.6309, 0.3670)
(0.2677, 0.6343) (0.4347, 0.4324) (0.3706, 0.6008) (0, 0)

 .
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Step (ii). By using the Equations (12) and (13), we achieve

K(M1,M+) = 0.6065,

K(M2,M+) = 0.4947,

K(M3,M+) = 0.5762,

K(M4,M+) = 0.4057

and

K(M1,M−) = 0.4215,

K(M2,M−) = 0.5601,

K(M3,M−) = 0.4724,

K(M4,M−) = 0.6194.

Step (iii). Next, for each choice xi, (i = 1, 2, 3, 4), Equation (14) provides the
computation standards as

h(x1) = 0.5900,

h(x2) = 0.4690,

h(x3) = 0.5494,

h(x4) = 0.3958.

Since h(x1) > h(x3) > h(x2) > h(x4), as a result x1 > x3 > x2 > x4.

The resulting ranking order is the same for all the values γ, where γ ∈ [0, 1].

According to Xu′s algorithm [33] with Procedures I and II, rank wise Fixed
deposit (x1) is at the top position, Shares (x4) are at the last, and Govt bonds (x2)
and Postal savingas (x3) are in the middle position. Also,the position ordering of
alternatives is the same for both procedures and are shown in the following tables.

After the assessment, the decision-maker concludes that a fixed deposit is the
best option for a person looking to invest money among the four categories men-
tioned. The overall analysis revealed that the two working methods produced the
same ranking order. Furthermore, when compared to the method (see [22]), this
approach yields slightly faster results.
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γ ω τ

0.3

ω1 = (0.3328, 0.3420) τ1 = (0.4894, 0.3327)
ω2 = (0.3298, 0.3270) τ2 = (0.3774, 0.4662)
ω3 = (0.3373, 0.3310) τ3 = (0.4770, 0.3885)

τ4 = (0.3566, 0.5568)

0.5

ω1 = (0.3320, 0.3426) τ1 = (0.4900, 0.3324)
ω2 = (0.3270, 0.3236) τ2 = (0.3772, 0.4230)
ω3 = (0.3411, 0.3339) τ3 = (0.4763, 0.3891)

τ4 = (0.3577, 0.5559)

0.7

ω1 = (0.3311, 0.3432) τ1 = (0.4904, 0.3321)
ω2 = (0.3240, 0.3202) τ2 = (0.3768, 0.4450)
ω3 = (0.3449, 0.3367) τ3 = (0.4754, 0.3895)

τ4 = (0.3587, 0.5554)

Table 2. The table values of the alternatives for distinct values of γ using Xu’s technique
and working procedure I

γ K(τ1) K(τ2) K(τ3) K(τ4) Ranking

0.3 0.1567 −0.0888 0.0885 −0.2002 τ1 > τ3 > τ2 > τ4
0.5 0.1576 −0.0450 0.0872 −0.1982 τ1 > τ3 > τ2 > τ4
0.7 0.1583 −0.0682 0.0859 −0.1967 τ1 > τ3 > τ2 > τ4

Table 3. The ranking order of the alternatices by using Xu’s technique and working pro-
cedure I

γ ω K(Mi,M+) K(Mi,M−)

0.3

(0.3328, 0.3420) K(M1,M+) = 0.6060 K(M1,M−) = 0.4222
(0.3298, 0.3270) K(M2,M+) = 0.4954 K(M2,M−) = 0.5596
(0.3373, 0.3310) K(M3,M+) = 0.5736 K(M3,M−) = 0.4769

K(M4,M+) = 0.4047 K(M4,M−) = 0.6201

0.5

(0.3320, 0.3426) K(M1,M+) = 0.6065 K(M1,M−) = 0.4215
(0.3270, 0.3236) K(M2,M+) = 0.4947 K(M2,M−) = 0.5601
(0.3411, 0.3339) K(M3,M+) = 0.5762 K(M3,M−) = 0.4724

K(M4,M+) = 0.4057 K(M4,M−) = 0.6194

0.7

(0.3311, 0.3432) K(M1,M+) = 0.6068 K(M1,M−) = 0.4210
(0.3240, 0.3202) K(M2,M+) = 0.4940 K(M2,M−) = 0.5606
(0.3449, 0.3367) K(M3,M+) = 0.5593 K(M3,M−) = 0.4785

K(M4,M+) = 0.4067 K(M4,M−) = 0.6188

Table 4. The table values of the replacements for distinct values of γ using Xu’s technique
and working procedure II

γ K(τ1) K(τ2) K(τ3) K(τ4) Ranking Order

0.3 0.5894 0.4696 0.5460 0.3949 x1 > x3 > x2 > x4
0.5 0.5900 0.4690 0.5494 0.3958 x1 > x3 > x2 > x4
0.7 0.5904 0.4684 0.5389 0.3966 x1 > x3 > x2 > x4

Table 5. The ranking order of the replacements for distinct values of γ using Xu’s tech-
nique and working procedure II
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6 CONCLUSION

In general, the opinions of the authorities on alternatives might be unclear and
divergent when there is a lack of information or expertise concerning an ambiguous
situation. The ideal solution to this issue is the intuitionistic fuzzy concept. In
this paper, we illustrated how correlation coefficient measures and Laplacian energy
can be used to solve GDM problems when the weight of the criterion is completely
unknown and the IFG is the main factor that affects the alternatives. The proposed
statistical measure has been successfully implemented for money-investing schemes,
and its use will aid in ranking the substitutes. This analogous approach can be used
to investigate other aspects of various fuzzy graphs and is also applicable to many
IFG types, including Hesitancy fuzzy graphs, Complex fuzzy graphs, etc.
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