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Abstract. It is very difficult to accomplish the 3D reconstruction of the clothed
human body from a single RGB image, because the 2D image lacks the represen-
tation information of the 3D human body, especially for the clothed human body.
In order to solve this problem, we introduced a priority scheme of different body
parts spatial information and proposed PointHuman network. PointHuman com-
bines the spatial feature of the parametric model of the human body with the
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implicit functions without expressive restrictions. In PointHuman reconstruction
framework, we use Point Transformer to extract the semantic spatial feature of
the parametric model of the human body to regularize the implicit function of
the neural network, which extends the generalization ability of the neural network
to complex human poses and various styles of clothing. Moreover, considering
the ambiguity of depth information, we estimate the depth of the parameterized
model after point cloudization, and obtain an offset depth value. The offset depth
value improves the consistency between the parameterized model and the neural
implicit function, and accuracy of human reconstruction models. Finally, we opti-
mize the restoration of the parametric model from a single image, and propose
a depth perception method. This method further improves the estimation ac-
curacy of the parametric model and finally improves the effectiveness of human
reconstruction. Our method achieves competitive performance on the THuman
dataset.

Keywords: 3D reconstruction, clothed human reconstruction, SMPL estimation

1 INTRODUCTION

By using intelligent devices to describe and represent the real world has always been
a hot and difficult research direction in computer vision and computer graphics areas.
The research field of 3D vision has also fast developed in recent years. Lots of 3D
human reconstruction research results have been applied in real life. Such as virtual
fitting, AR, VR, film, television and 3D games, etc. Creating value for the society
while it also brings economic effects. For computer to understand human behavior,
participate in human life, realize interaction with humans, it is very important for
us to obtain the 3D pose and shape of the human body.

Deep learning is a branch of machine learning. Many traditional machine learn-
ing algorithms have a limited learning capacity, and therefore cannot learn the total
amount of knowledge with increasing amounts of data. However, deep learning
systems can improve performance by accessing more data, a machine surrogate for
“more experience”. Once a machine has gained enough experience through deep
learning, it can be used for specific tasks such as driving a car, face recognition, di-
agnosing a disease, detecting machine malfunctions, etc. Deep learning can provide
a variety of solutions in computer vision, natural language processing, and many
other applications. In the future metaverse era, deep learning can play an impor-
tant role, for example in 3D reconstruction, where deep learning can perform such
functions.

The current 3D human body reconstruction methods can be classified into
three categories. The first category is to use the existing parametric human body
model, such as human parametric model [1], which can directly restore the three-
dimensional human body model from a single RGB image or video. The diffi-
culty of recovering 3D model directly from RGB image or video lies in the com-
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plexity of the human body, clarity, occlusion, clothing, lighting and the inherent
ambiguity of 2D inferring 3D poses. This method does not need specific depth
sensor and has a low dependence on external. It is widely used. However, the
accuracy of the currently constructed model is far from enough, especially for de-
tailed feature with a hand and face are obviously missing, and no clothing de-
tails.

Figure 1. The pipeline of human reconstruction. Given an input image, 2D Pixel Encoder
performs pixel feature extraction on the image (a). SMPL estimation is performed on the
image to obtain the parametric model, and the parametric model is transformed into
a point cloud. 3D Spatial Encoder performs spatial feature extraction on these point
clouds (b). Depth Estimation Encoder estimates the offset depth value for these point
clouds. The features of a, b and c are fused, and sent to the multi-layer perceptron to
predict the distance symbol function value (d), and finally the human body mesh model
is obtained.

The second category is the parametric model’s deformation. Adding offsets
(SMPL + D) to the vertices of the human parametric model to represent a clothed
human body is a simple model that is widely used and easy to parameterize. The
body geometry of the target pose is obtained by adding the offsets of the vertices
under the standard pose of the human parametric model, and then using the skin
deformation. There are several previous study [2, 3, 4, 5] to implement. It is
difficult to represent SMPL + D for clothes that are not consistent with the SMPL
mesh topology, such as open jackets and skirts. Moreover, the binding of clothing to
SMPL vertices, especially the binding of mask weights, leads to loose clothing that
may be distorted in the mask deformation. And the SMPL + D approach is poorly
robust in reconstructing clothing away from the body. It would be better not to
adopt a parametric model, such as [6, 7, 8, 9, 10].
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The third category is implicit function without using the parameterized model.
The pixel alignment implicit function first introduced by PIFu [6] uses MLP to de-
termine the volume occupancy value for a given 3D location. In order to obtain both
global and local feature, PIFu [6] uses a deep network to extract the feature of each
pixel, and combine this feature together with the depth information of the corre-
sponding 3D point as the input of the MLP to obtain high-fidelity 3D clothed human
body reconstruction. Based on PIFu [6], PIFuHD [11] utilizes higher-precision fea-
ture and predictes normal information to obtain clothed human reconstructions with
more geometric details. Hong et al. [12] use the stereoscopic sense of binocular cam-
era to introduce voxel features to the human body reconstruction and get better
results. Summary, the 3D reconstruction of the clothed human body reconstructed
from a single RGB image still has the following problems. First, the complexity of
the action pose of the person, the ever-changing and different actions of the same
person. Second, the self-occlusion of the person, whether the occluded part or the
occluded part will lose the integrity Information. Last, RGB images taken by ordi-
nary cameras lack depth information, resulting in depth ambiguity.

Figure 2. SMPL estimation frame diagram. Inputting an RGB image, HRNet obtains
three feature maps: center heat map, position offset map and SMPL map, center heat
map and position offset map past depth perception information, and then carry out with
the SMPL map Fusion, the SMPL parameters are regressed by the multilayer perceptron

Our three technical contributions are:

• We extract spatial information from the parameterized model, and give the
reconstruction network prior knowledge, constrain its spatial expression, mean-
while, impose restrictions on the estimated shape of the human reconstruction.
It improves the generalization ability of the neural network to complex human
poses and various styles of clothing.

• In order to solve the problem of depth ambiguity, the parametric model con-
tains the relevant coordinate information of each limb of the human body after
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Figure 3. Depth perception Net Frame

point cloud, and the depth can be estimated by the depth network to generate
the offset depth value. The offset depth value can use the human body prior
information of the predicts depth to guide the occupied space.

• We propose a depth perception method for parameterized model estimation,
which reduces the problem of depth ambiguity and restores a more accurate
parameterized model.

2 RELATED WORK

2.1 Human Reconstruction Based on Parametric Model

Parametric model capable of changing its parameters to represent the shape of the
human body. When human changing its action, the parametric model of the human
body will change its parameters to describe the height, short, fat and thin of the
human body. Lassner et al. [13] extract 72 joint points of the human body and use
random forests to regress SMPL pose and shape parameters. Pavlakos et al. [14]
regress SMPL parameters by relying on a smaller number of key points and body
contours, further adopt a similar method, then use a segmentation map of human
body parts as an intermediate representation. HMR [15] tries to use a weakly su-
pervised method, relying on two-dimensional joint point reprojection penalty and
a pre-learned human pose discrimination network, directly using neural network
for singe image. Kolotour et al. [5] propose a self-supervised method to solve the
same problem. Güler et al. [16] rely on weaker body contour supervision. Rock-
well et al. [17] Consider showing only severe occlusion of hand or torso images, to
predict the matching SMPL human body. In order to recover more geometric infor-
mation beyond the body from individual images, such as hand movement and facial
expression, Choutas et al. [7] use a body-driven attention technique for extracting
high-resolution hand and face from image. A close-up of the part that helps the
network predict matching SMPL parameters. Zhang et al. [18] considered how to
predict a SMPL human body that matches a 3D scene. For video stream, there are
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Figure 4. Our results on a single RGB image. From left to right: the first column is the
input image, the second (front), third (side) and fourth (back) columns are the reconstruc-
tion results, and the fifth column is the texture inference results, the results show that our
method is able to reconstruct high-quality models with robust performance for handling
various human poses.

also methods that introduce temporal information to predict SMPL. Among them,
Arnab et al. [19] shows that Internet video annotated with SMPLify incorporating
temporal continuity can be used to fine-tune HMR results to achieve better results.
Kanazaw et al. [20] learn human motion by predicting past and future frames. Sun
et al. [15] proposed a temporal model based on a transform network can be used
to further improve the effectiveness. VIBE [21] guides action prediction based on
priors learned from human sequence motion data. These works focus on using the
SMPL parameter space as a homotropic objective. Although the human body re-
construction based on parametric model can capture the movement of the human
body and reconstruct the general shape of the human body, it lacks clothing details
and is not vivid enough.
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2.2 Human Reconstruction Based on Parametric Model Deformation

Adding offsets (SMPL + D) to the vertices of a parametric model of the human
body to represent a clothed human body is a simple approach that is widely used
and easy to parameterize. By adding the offset of the vertices under the standard
pose of the parametric model of the human body, and then using the skin deforma-
tion, we obtain the clothing body geometry of the target pose. ClothCap [8] use
this representation to separate and reconstruct human clothing for 4D high-quality
scan sequences. Zhang et al. [22] use this representation to optimize the shape of
naked body that best fit the scan sequences of people. Loop Reg [23] create a self-
supervised loop, through end-to-end training, register the scan data of the clothed
human body on the SMPL + D representation. Alldieck et al. [2] extract the con-
tour of a rotation sequence of a person roughly in the A pose, and optimize the
clothing based on this The SMPL + D representation of the human body. They
propose a neural network that uses a few color images and some semantic informa-
tion to directly return the target SMPL + D representation, greatly increasing the
computational speed [24]. Move the texture map space defined in SMP to achieve
a higher-resolution SMPL + D representation, which can represent small clothing
wrinkles. MGN [4] segmentes the SMPL vertex for different clothing types, so that
the reconstructed SMPL + D representation can better express the boundary of
the clothing. Bhatnag et al. [25] parameterize the clothing vertex offset as SMPL
parameters with the graph convolution representation of clothing parameters, and
a generative model of SMPL+D is learned, which supports a small number of cloth-
ing types. Inspired by the SMPL+D representation, Sun et al. [28] use hierarchical
free-form 3D deformation techniques to improve the predicted body geometry and
capture image-compliant details. Weng et al. [26] deform the SMPL model from
the normal estimated from a single image to obtain a drivable clothed human body.
SMPL + D is simple and compact, but has some limitions. First, there are limited
types of clothing that can be expressed.

For clothing that is inconsistent with the SMPL mesh topology, such as open
coats, skirts, etc, SMPL+D is difficult to represent. Secondly, due to the binding of
the garment to the top of the SMPL, especially the binding of skin weight, resulting
in loose clothing and possible skin deformation distortion. SMPL+D method is less
robust to garment reconstruction away from the body.

2.3 Human Reconstruction Based on Non-Parametric Model

In order to get rid of the constraints of parametric representation on the complex
geometry of the clothed human body, some implicit representations are used for
geometric reconstruction. By implicit representation, we mean that a continuous
three-dimensional spatial scalar-valued function is defined, and some of its equiva-
lent surfaces are defined as geometric surfaces. The most common implicit repre-
sentations are the occupancy field (OF) and the signed distance field (SDF). The
scalar value of OF is usually a binary value of whether the spatial point is inside
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the represented object, while the scalar value of SDF represents the signed distance
of the spatial point relative to the represented surface. In the computer, in order
to regularize the representation, the spatial implicit function is often discretized
with three-dimensional lattice points. More recently, more compact neural repre-
sentations, capable of efficiently modeling continuous functions, have also become
popular in geometric reconstruction. The discrete occupancy field is a lattice dis-
crete representation of a spatially continuous occupancy field. And BodyNet [16] is
one of the early works that introduced this representation to human reconstruction.
Voxel regression network (VPN) [27] uses an end-to-end convolutional neural net-
work to directly perform voxel regression on 3D human geometry based on various
inputs. DeepHuman [9] integrates multi-scale image features into 3D voxel features,
solving the problem of poor voxel regression details. Based on the voxel field repre-
sentation, since voxels reflect occupancy information unlike SDF fields, which have
richer geometric information.

The triple memory consumption limits the improvement of resolution and the
results are often coarse. The truncated signed distance field is a discretized rep-
resentation of the SDF field based on three-dimensional lattice points, and at the
same time, truncation is performed for larger distance values. This representation
is widely used in fusion-based methods using RGB-D inputs.

The pixel-aligned implicit function first introduced by PIFu [6] uses MLP to
determine the volume occupancy value for a given 3D location. In order to obtain
global and local feature at the same time, PIFu uses a deep network to extract the
feature of each pixel, and uses the feature together with the depth information of
the corresponding 3D point as the input of MLP, thus obtaining a high-fidelity 3D
clothed human body reconstruction. Stereo-PIFu [12] adds voxel-aligned features
to pixel-aligned PIFu features to binocular images. And using the predicted voxel
for guiding MLP predictions to high accuracy depths that can effectively combat
depth blurring, with the recovered geometry details has richer information. Based
on PIFu [6], PIFuHD [11] obtained a clothed human body reconstruction with more
geometric details by utilizing higher-precision features and predicted normal infor-
mation. Huang et al. [28] propose a novel multi-scale surface localization algorithm
and a direct rendering method without explicit extraction of surface meshes, and
for the first time demonstrated real-time reconstruction of the occupancy field of
a clothed human body from monocular video and rendering a new perspective.
ARCH [28] and ARCH++ [29] try to solve the problem by converting the problem
from the pose space to the normative space, but this conversion depends firstly on
the pose estimation (HPS) accuracy. Moreover, since the conversion depends on
the mask weight attached to SMPL, this weight is hard-coded and defined on the
bare body. And forced application it to a clothed person, driven by the action less
natural details of the clothes. ICON [30] Predicts SMPL body from image, render-
ing front and back body normal, and merging it with the original image. Through
a normal prediction network, get the positive and negative through normals, apply
the normal map to the SMPL. For particularly complex poses, ICON rebuilds as
well, but can’t do much with looser clothes.
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Figure 5. Qualitative comparison against current methods for single-image human model
reconstruction: (a) input images, (b) results by PIFu and (c) results by ours

3 METHOD

Our reconstruction of a human body with clothing from a single RGB image is
shown in Figure 1. Given a 2D RGB image containing a person, we first estimate
its parametric model. The hourglass network performs feature extraction on the
image to obtain pixel feature. The parametric model is a grid structure, which
consists of vertices and faces. The parametric model is converted into point cloud
from mesh. Every point cloud has x, y, and z coordinates. Point Transformer
performs 3D spatial feature extraction on every point cloud. After obtaining the
spatial information, ResNet extracts the depth information from the point cloud to
obtain the depth offset value. The three features are fused as input of the multi-
layer perceptron to predict the SDF value. In Figure 1, PointHuman takes a color
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Algorithm 1 Training for PointHuman

Input: set of data D. number of optimization steps K and batch size B.
Initialization: randomly initialize g, h, z and fv.

x← 1
while x ≤ K do
B ← {si ∈ D}Ni=1

for xi ∈ B do
F (x) = g(I(x))
S(x) = h(I(x))
z(X) = d(I(x))
fv = f((F (x), S(x), z(X))
LV = 1

n

∑n
i=1 |fv (FV (xi) , S (xi) , z (Xi))− f ∗

v (Xi)|2
end for
update g, h, z and fv by back-propagation

end while

Output: s ∈ {0, 1}

image:

f(F (x), S(x), z(X)) = s : s ∈ R, (1)

where for a 3D point X, x = ϖ(X) is its 2D projection, S(x) = h(I(x)) is spatial
feature of its parametric model at x. z(X) = d(I(x)) is the offset depth value in the
camera coordinate space, F (x) = g(I(x)) is the image feature at x. For surface re-
construction, we represent the ground truth surface as a 0.5 level-set of a continuous
3D occupancy field:

f ∗
v (X) =

{
1, if X is inside mesh surface,

0, otherwise.
(2)

The total loss function of our network can be formulated as:

LV =
1

n

n∑
i=1

|fv (FV (xi) , S (xi) , z (Xi))− f ∗
v (Xi)|2 , (3)

where Xi ∈ R3, FV (x) = g(I(x)) is the image feature from the image encoder g
at x = ϖ(X) and n is the number of sampled points. Given the input image, the
corresponding parameterized model and the corresponding mesh, the parameters of
the image encoder, 3D spatial encoder, depth estimation encoder and fv are up-
dated jointly by minimization so that they are consistent with the input image. The
parameters of the image encoder, 3D spatial encoder, depth estimation encoder and
fv are updated jointly by minimizing Equation (3). The Algorithm 1 provides the
training procedure of our proposed framework.
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3.1 Spatial Information Extraction

Spatial shape information is one of the characteristics of a 3D object, which con-
tains the representation information of the object and it is an important input for
3D reconstruction. The mesh structure is one of the manifestations of a 3D ob-
ject, which reflects the size and shape of the object itself. The mesh consists of
multiple triangles on one side and multiple discrete points are used to represent
continuous faces in the real world. The point cloud of the mesh is ignore the lines
between the vertices, take only the vertices, and use all points on the grid, preserv-
ing their spatial shape information. Combining them together is the point cloud
of the mesh. The point cloud is a collection of three-dimensional data. The point
cloud of the grid still retains its size and shape structure, i.e. spatial information.
In order to obtain the spatial geometric information of the parametric model, we
perform feature extraction on its point cloud. Transformer has achieved impres-
sive results in the NLP domain and 2D image analysis. Compared with language
or image processing, transformer may be more suitable for point cloud processing,
because the point cloud is essentially a collection of embedded metric spaces, and
the core self-attention of Transformer is a collection operator. In addition to this
conceptual matching, Transformer has actually achieved good results in the field of
point cloud data processing. Therefore, in this paper, we use Point Transformer [31]
to extract geometric information from the point cloud of the parametrized model.
Point Transformer adopts a network structure similar to U-net [32]. The first half
is down-sampling, The second half has the application of trilinear interpolation to
obtain the surface information. The first half and the second half are connected
to the information, and the network can then extract the deep spatial informa-
tion of the parameterized model. Point Transformer uses the subtraction relation
and add a position encoding δ to both the attention vector γ and the transformed
features α:

yi =
∑

xj∈X (i)

ρ (γ (φ (xi)− ψ (xj) + δ))⊙ (α (xj) + δ) , (4)

where X (i) ⊆ X is a set of points in a local neighborhood (specifically, k nearest
neighbors) of xi.

3.2 Estimation of Depth Information

Point cloud of the parametric model has 6 890 vertices, i.e. 6 890 3D coordinates,
which contain the relevant depth information of the body. To solve the depth
ambiguity problem, point cloud of the parametric model contains relative coor-
dinate information of each human limb, which can be used by the network to
estimate depth and generate offset depth values. In addition, the offset depth
value can be used to guide occupancy prediction using priority information of
the predicted depth. Specifically, the offset depth value makes the network eas-
ier to train and allows us to produce good surface detail, reducing the occur-
rence of limb breakage and breakage. Thus, the offset depth value actually acts
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as a bridge between predicted depth and occupancy prediction. For some cases,
such as the hand in front of the torso, there will be some discontinuous areas in
the predicted depth map. In these cases, the back side of the obscured query
point will change discontinuously, leading to unnaturally distorted reconstruction
results.

We use ResNet [33] for depth estimation, the z-coordinate values of 6 890 vertices
are used as input to obtain the offset depth difference of the body torso of the
parameterized model. So the input information is vector of size

R ∈ R6 890×1.

That is the coordinates of the point cloud. The last layer of output is vector of size

R ∈ R256×5 000.

The offset depth value and the depth value of the camera are stitched together to get
fused depth value. Fused depth value are added together and fed into the multilayer
perceptron.

3.3 Estimating Parametric Model

ROMP [34] aims to recover 3D human body from a single image, but due to the lack
of depth information, the correct human body cannot be recovered for self-occlusion.
Based on this, we propose a depth perception method to solve this problem. We
use the HRnet [35] network to process the image, output the center heat map, the
position offset map and the SMPL feature map.

The center heat map and the position offset map are fused and fed into the
depth perception network to obtain a 3D feature map. 3D feature map and SMPL
feature map get parameters of parametric model through multilayer perceptron re-
gression.

The flow chart is shown in Figure 2. The layout of the depth perception network
is convolutional layer–pooling layer–convolutional layer–activation function–output
layer, the output is the feature vector of size

R ∈ R72×1.

Depth perception network structure is shown in Figure 3. And the SMPL feature
map is the feature vector of size

R ∈ R82×1.

Center heatmap: The front view center heatmap of size

MF ∈ R1×H×W .
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It is aligned in pixel space and uses a Gaussian kernel to represent the likelihood
of an object being in 2D. We are adding a second 2D heatmap of size

M t ∈ R1×D×W ,

which represents an unseen top view. This heatmap represents the likelihood
that a person is at a certain depth point. However, this map does not repre-
sent metric depths. We synthesize and refine these two maps into a 3D center
heatmap

Mo ∈ R1×D×H×W ,

which uses a 3D Gaussian kernel to represent the 3D position of the detected
body center.

Position Offset Map: The discretized center heatmap roughly localizes the body,
but we expect the network to produce more precise estimates. Likewise, the posi-
tion offset map includes a front view and a top view. To improve the granularity
of 3D localization, we use additional feature map to refine coarse detections by
adding estimated offset vectors at each location. Front view offset feature maps
of size

Rf ∈ R1×H×W

contain 3D offset vectors. The top view offset map of size

Rt ∈ R1×D×W

contains a 1-dimensional offset vector for depth correction.

Ro ∈ R1×D×H×W

corresponds to a 3D center map and contains a 3D offset vector.

SMPL map:
R ∈ R128×H×W

contains a 128 grid feature vector at each 2D location. These features are aligned
with the input 2D image at the pixel level. After feature fusion with 3D feature
map, the SMPL parameters are regressed using a multilayer perceptron.

The front view and top view must work together to estimate the position and
depth of the person image. We take the concatenation of the front view map
and the backbone feature map as input. We unroll and synthesize 2D maps
from front view and top view to generate 3D feature map. The 3D feature map
and the SMPL feature map are fused, and the parameters of the parameterized
model are regressed through the multilayer perceptron.

4 EXPERIMENTS

In this section we evaluate our approach. Details about the implementation are
given in Section 4.1. Our ablation experiment in Section 4.3 and Section 4.4. In
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Section 4.2 we demonstrate that our method is able to reconstruct human mod-
els with challenging poses. We then compare our method to others methods in
Section 4.5. The quantitative evaluation results are given in Table 3.

4.1 Implementation Details

Network Architecture. For image feature extraction, we adapt the Hourglass
Stack same encoders in PIFu, take an image of 512× 512 as input and outputs
a 256-channel feature map with size of 128×128. For spatial feature extraction,
we use Point Transformer. Its input resolution is 6 890 × 3, and its output is
a 64-channel feature volume with a resolution of 64× 128× 128.

For depth formation extraction, we make use of ResNet, its input is the depth
value of point cloud of Parametric Model resolution is 6 890× 1, and its output
is a 1-channel vector with a resolution of 1× 5 000.

Training Data. We use THuman dataset, and it contains 6 795 human meshes
with various clothes, shape and poses. We split the dataset into a training set of
5 436 meshes and a testing of 1 359 meshes. THuman dataset is more challenging
to learn and less likely to cause over-fitting on upstanding human poses and
horizontal camera angles than the dataset used in PIFu. The downside of the
dataset is that it lacks high quality texture map for photo-realistic rendering,
which might hurt model generalization on in-the-wild natural images.

Network Training. We use Adam optimizer for network training with the learning
rate of 1× 10−3, the batch size is 8, the number of epochs is 45, and the number
of sampled points is 5 000 per subject. The learning rate is decayed by the factor
of 0.1 at every 10 000th iteration. It takes 204 hours for a 3 090 graphics card to
complete a training session.

Network Infering. A single RGB image as input, and the improved ROMP pre-
dicts its corresponding parametrized model. The parametric model is converted
into a point cloud through OPEN3D, which is input to the network together
with the image, and the final network outputs the parametric model and the
textured reconstructed surface.

4.2 Results

We present the results of our method for 3D human reconstruction from a single
RGB image in Figure 4. The input image in Figure 4 contains a variety of complex
body poses. The results demonstrate that the ability of our method to reconstruct
high-quality 3D human models, as well as its strong ability to handle a variety of
human poses. Figures 6, 7 and 8 show the training error, IOU and precision for
baseline and different fusing methods. In Figure 4, we can see that after we intro-
duce the parametric model, the reconstructed human body achieves good results,
the results show that our method is able to reconstruct high-quality models with ro-
bust performance for handling various human poses. Compared with PIFu with only
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Figure 6. Evaluation of training error. Green line represents PIFu, red line represent our
method without offset depth value, and blue line represents our method with offset depth
value.

Figure 7. Evaluation of IOU. Green line represents PIFu, red line represents our method
without offset depth value, and blue line represents our method with offset depth value.
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Figure 8. Evaluation of precision. Green line represents PIFu, red line represents our
method without offset depth value, and blue line represents our method with offset depth
value.

Figure 9. Visualization of the body optimization process. The leftmost column: the input
image. The 2nd to 3rd columns: the reconstruction results before reference body optimiza-
tion. The 4th to 5th columns: the reconstruction results after optimization.

pixel features, after we extract the spatial information of the parameterized model,
the Loss, IOU and Prec have made great progress. In addition, after the depth esti-
mation of the parameterized model, the surface details of the reconstructed human
body are richer. These indicator is further optimized.
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Figure 10. Offset depth values can reconstruct richer details. The leftmost column: the
input image. The 2nd to 3rd columns: the reconstruction results without offset depth value
and the results with offset depth value.

4.3 Offset Depth Value

We conduct ablation experiments to demonstrate the importance of the inputs in
our designed equations for occupancy inference and high-fidelity reconstruction. As
shown in Figure 10, PIFu [6] fails to reconstruct reasonable human body geometry
using pixel-aligned feature and absolute z-coordinates from a single image due to
the complexity and different spatial locations. In contrast, a variant of our PointHu-
man successfully learns human priors from the same dataset by taking pixel-aligned
features, space-aligned features, and the offset depth value as input. Experiments
show that our space-aligned feature indeed encode the depth-scale information of
query points and further enhance the expressive power of previous work. Table 1
also shows that by replacing absolute z-values with offset depth value, geometric
detail can be better recovered. The increase in PointHuman may come from the
reconstruction process of the occupancy field, which verifies that our offset depth
value indeed effectively utilizes human priors from predicted depth map to guide
occupancy inference.

PSD (cm) Chamfer (cm) Normal (cm)

w/o offset depth 2.197 2.312 0.292

w/ offset depth 2.100 2.288 0.281

Table 1. Numerical ablation study of offset depth

4.4 SMPL Estimation

To evaluate the effectiveness of the improved parametric model, we compare the
human fitting results before and after improvement using evaluation image. As
shown in Figure 9, the optimization step can further fit the SMPL model to the
actual human body, resulting in a more accurate body pose estimation. This is
also demonstrated in the quantitative evaluation in Table 2, we can also see that
the body mesh model reconstruction is also improved after the reference body is
optimized.
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PSD (cm) Chamfer (cm) Normal (cm)

w/o SMPL optimization 2.203 2.367 0.291

w/ SMPL optimization 2.175 2.301 0.285

Ours using ground-truth SMPL 2.100 2.288 0.281

Table 2. Numerical ablation study of SMPL optimization

4.5 Comparison

We compare our method with several current methods, DeepHuman and PIFu.
Among them, PIFu uses deep implicit functions as geometric representation, Deep-
Human combines volume representation with SMPL model. We compare with PIFu
in Figure 5, PIFu struggles to reconstruct model in challenging pose, while also suf-
fering from self-occlusion. Unlike these methods, our method is able to perform in
challenging body poses. Our method outperforms these methods in terms of surface
quality and pose generalization ability.

The results of the comparison are shown in Table 3, and the quantitative com-
parison shows that our method outperforms the methods of Deephuman and PIFu
in terms of surface reconstruction accuracy. Overall, our method is more general,
more robust and more accurate than DeepHuman and PIFu.

PSD (cm) Chamfer (cm) Normal (cm)

Deephuman [9] 11.246 11.928 0.464

PIFu [6] 4.026 2.604 0.300

Ours 2.100 2.288 0.281

Table 3. Numerical comparison results

5 CONCLUSION

Accurately and robustly reconstructing a 3D human body from a single RGB image
is a challenging problem due to the diversity of body movements, clothing types,
and other factors. We propose PointHuman to fuse feature of pixel feature, spatial
feature and offset depth values implements single-view human mesh reconstruction.
Our construction method addresses both spatial priors and deep blurring. The
key idea behind our approach to overcome these challenges is to decompose the
pose estimation from the surface reconstruction. To this end, we provide a deep-
learning based framework that combines the point cloud form of a parametric SMPL
model with a non-parametric deep implicit function for reconstructing a 3D human
body model from a single RGB image. Our method performs well in terms of
robustness and surface detail. For very complex poses and very loose clothing,
our method cannot generate reasonable human bodies. Therefore, although the
proposed method has taken a step forward in terms of generalization ability, it still
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fails in the case of extremely challenging poses. Point Transformer has limited ability
to extract spatial information from parametric models and cannot extract spatial
information from extremely complex poses. For the invisible area, our PointHuman
can only predict a plausible result while can not guarantee its accuracy. The network
for spatial feature extraction can be improved, or multi-view reconstruction can be
used, so that the reconstructed human body is better. An important future direction
is to alleviate the reliance on ground truth and save costs by exploring large-scale
image dataset and video dataset for unsupervised training. Additionally, we can
consider combining semantic segmentation for reconstruction to solve the problem
of not being able to reconstruct loose clothes.
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