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Abstract. Natural language processing (NLP) involves the computer analysis and
processing of human languages using a variety of techniques aimed at adapting var-
ious tasks or computer programs to linguistically process natural language. Cur-
rently, NLP is increasingly applied to a wide range of real-world problems. These
tasks can vary from extracting meaningful information from unstructured data, an-
alyzing sentiment, translating text between languages, to generating human-level
text autonomously. The goal of this study is to employ transformer-based natural
language models to generate high-quality business names. Specifically, this work
investigates whether larger models, which require more training time, yield better
results for generating relatively short texts, such as business names. To achieve
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this, we utilize different transformer architectures, including both freely available
and proprietary models, and compare their performance. Our dataset comprises
250 928 observations of business names. Based on the perplexity metric, the top-
performing model in our study is the GPT2-Medium model. However, our findings
reveal a discrepancy between human evaluation and perplexity-based assessment.
According to human evaluation, the best results are obtained using the GPT-Neo-
1.3B model. Interestingly, the larger GPT-Neo-2.7B model yields poorer results,
with its performance not being statistically different from that of the GPT-Neo-
125M model, which is 20 times smaller.

Keywords: Natural language processing, NLP, natural language generation, NLG,
transformers

Mathematics Subject Classification 2010: 68-T50

1 INTRODUCTION

Every year, the amount of data is increasing at an extremely fast rate, leading to
an ever wider application of artificial intelligence. The continuous improvement of
artificial intelligence and machine learning is leading to an increasing search for the
wider application of these technological solutions not only to structured data but
also to unstructured data. One of the areas of unstructured data analysis where
artificial intelligence can be applied particularly widely is natural language process-
ing (also known as NLP). Natural language processing is the computer analysis and
processing of natural language (which can be delivered as well as written) using
a variety of technologies aimed at linguistically adapted various tasks or computer
programs in human languages. While this seems like a whole new area that is in-
creasingly being talked about, the development of this area wants to be achieved
at the turn of the century. At the beginning of the 20th century, Andrey Andreye-
vich Markov introduced a theory of random stochastic processes/circuits. All of
this is now known as Markov chains or Markov processes. 1902 Markov provided
information that these circuits can predict the next element of the circuit using
only the last element. All this was adapted to a data set larger than 20 000 letters,
indicating/predicting the future letters of the chain. It must be remembered that
computers did not have information at the time, but this theory was still proven
at the time. As early as 1954, Georgetown-IBM computers translated Russian sen-
tences into English, using only rule systems. Rule-based systems are sometimes
used even now, but the creation of a large number of rules is particularly difficult
in the development of various natural language processing models. One of the most
widely known neural networks for modeling sequences is recurrent neural networks.
Recurrent neural networks were based on David Rumelhart’s work in 1986. Hop-
field networks – a special kind of RNN – were rediscovered by John Hopfield in
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1982. In 1993, a neural history compressor system solved a “Very Deep Learning”
task that required more than 1 000 subsequent layers in an RNN that unfolded in
time. Recursive neural networks (RNNs) have been developed to better track pre-
diction results and get the work needed to do so. However, these neural networks
had a number of problems, as they encountered the varnishing gradient problem
when they could not capture longer sequences. For this reason, recurrent neural
networks evolved into LSTMs. Long-short term memory neural networks (LSTM)
are a type of recurrent neural networks that allow capturing not only past data when
the gap between input information and output is small, but also when this gap is
much higher. The purpose of using these neural networks is to preserve or in other
words remember the values of previous states. This type of neural network was first
introduced in 1997 by Hochreiter and Schmidhuber. Recently, due to the possibility
of capturing information from the long past, these neural networks are especially
often used in practice. These neural networks also have a “circuit” type structure,
but their recurrent unit has a completely different structure than simple recurrent
neural networks. Another modification of recurrent neural networks quite different
from LSTM modification is gated recurrent unit (GRU) networks. This network is
similar to an LSTM-type network in that, like LSTMs, various logical elements are
used to control the presentation of information. One of the main differences between
LSTMs and GRUs is that GRUs do not have memory cells. Of course, the account
neural network (CNN) created by Yann Le Cuno in 1980 should not be forgotten
either. These neural networks are currently widely used for image processing, but
can also be used to process text. Following these discoveries, it seems impossible to
achieve more, but in 2017. December. Vaswani et al. published an article “Attention
is all you need,” which describes the original Transformers model. And currently,
most natural language processing tasks are solved using these structure models, in
particular. At present, natural language processing is finding more and more differ-
ent ways to adapt to real practical problems. These tasks can range from finding
meaningful information in unstructured data [1], analyzing sentiments [2, 3, 4], and
translating text into another language [5, 6] to fully automated human-level text
creation [7, 8]. Given that artificial intelligence and natural language processing
find so many different uses, this paper examines one of these uses. One application
is the creation of human-level texts – in this case, the creation of business names,
which are further used in the practical activities of the company. The aim of this
study is to apply natural language modeling models of transformer architecture to
generate high quality business names. This work aims to determine whether larger
and much more training time-requiring models have better results for generating
relatively short texts – business names. In doing so, different transformer structure
models are used, as well as not only freely available models, but also paid models,
which are also included in the comparison. This comparison may allow other au-
thors to more easily select the models used in practice and thus save model training
time.
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2 TRANSFORMERS STRUCTURE AND MODELS

As mentioned earlier, the transformer architecture is currently the most commonly
used in natural language processing. Transformers are deep learning models that
are based on a self-awareness mechanism, allowing them to evaluate the signifi-
cance of each part of the input data differently for the predicted value. Although
primarily used in natural language processing, this architecture also finds appli-
cations in solving computer vision tasks. Like recurrent neural networks (RNNs),
transformers are designed to process sequential input data such as natural language
and perform tasks such as natural language translation and text summarization.
However, unlike RNNs, transformers process the entire input simultaneously. The
attention mechanism provides context for any location in the input sequence. An
example of this mechanism in action can be a natural language sentence, where the
transformer does not have to process one word at a time but can process the entire
sentence or text. For this reason, transformers can perform many more actions in
parallel compared to RNN models, significantly reducing the training time of the
models.

In 2017, the Google Brain team introduced transformers, which are increasingly
chosen for NLP problems, replacing RNN models such as long-short-term mem-
ory (LSTM). Additional training parallelization allows training on larger datasets,
leading to pre-trained systems such as BERT (Bidirectional Encoder Representa-
tions from Transformers) and GPT (Generative Pre-trained Transformer), which
have been trained on large language datasets such as the Wikipedia Corpus and
Common Crawl. These systems can be fine-tuned for specific tasks. The struc-
ture of the transformer model is presented in Figure 1, where multi-head attention
is defined as multihead self-attention and is calculated according to the following
formulas [9]:

MultiHead(Q,K, V ) = Concat (head1, . . . , headh)W
0, (1)

head i = Attention
(
QWQ

i , KWK
i , V W V

i

)
, (2)

Attention(Q,K, V ) = softmax
(
QKT/

√
dkV

)
, (3)

where Q, K and V are the query, keys and values that are used to calculate the
focus mechanism. Concat() means connection. h is the number of head. Meanwhile,
W 0

i ∈ Rdmodelxdmodel is a matrix of weights of the ith head, W 0
i , W

K
i and W V

i have
the same dimensions dmodelxdk, where dmodel is the size of the input embeddings and
dk = dmodel/h.

The attention (•) is called the scaled dot-product attention because their weight
values are based on the key and queries dot-product. The difference between multi-
head focus and masked multi-head focus is that the former allows the model to see
the future context and the latter does not, so they are used in encoder and decoder
structures, respectively. The feed forward component converts the output from the
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last transformer decoder block to a probabilistic distribution using FC layers with
a softmax activation function. Each input insertion is accompanied by a position
coding to include the order of the input sequence. At the end of each encoder and
decoder layer, there is a fully connected feed-forward neural network that processes
each input position separately and independently. The network consists of two fully
connected layers, between which there is a ReLU activation function. The input and
output dimensions of the entire fully connected forward propagation neural network
are dmodel, but the output of the first fully connected layer is dff , which is typically
at least several times larger than dmodel.

Figure 1. The transformer – model architecture ([9])

Based on the architecture of transformers, many different models have been
developed, which often differ in their activation functions, number of layers, and
other parameters.

2.1 GPT Models

Just over four years ago, on June 11, 2018, OpenAI released its first Generative
Pre-trained Transformer (GPT) model. This initial model was capable of generat-
ing relatively long texts. Less than two years later, in February 2019, a significantly
larger GPT-2 model was released, followed by the final version of GPT-2 in Novem-
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ber 2019. The GPT-2 model, with 1.5 billion parameters, was trained using website
texts [10]. It was 10 times larger than its predecessor in terms of both the number
of parameters and the training data used.

The most recent OpenAI model is GPT-3 [11], an autoregressive language model
trained with an astounding 175 billion parameters to generate highly realistic text.
Even without further training, GPT-3 demonstrates remarkable accuracy in a variety
of natural language generation tasks. This model challenges the typical supervised
learning approach, which involves using specific datasets for specific tasks. GPT-
3’s performance indicates that language models can learn tasks without explicit
supervision, showcasing the potential for more generalized language understanding
and applications [12].

2.2 BERT Models

BERT (Bidirectional Encoder Representations from Transformers) models can be
described as a pre-training technique developed based on work in contextual repre-
sentations [13, 13]. The main feature that distinguishes BERT models is their deep
bidirectional nature, which is based on unsupervised language representation [13].
DistilBERT is a smaller, more efficient variant of these models, particularly well-
suited for solving common language tasks [14]. This model incorporates distillation,
where the large-scale model is compressed into a much smaller model. As a result,
DistilBERT is about 40% smaller and 60% faster while maintaining up to 97%
model accuracy. Several other technical improvements to BERT models exist, such
as ALBERT [15], BART [16], DocBERT [17], and Facebook’s RoBERTa [18]. How-
ever, these models were not deemed suitable for solving the problem at hand and
were thus not used in the study.

XLNet builds on the foundations of BERT and GPT models and aims to address
their shortcomings. The basic architecture of XLNet is based on the Transformer-
XL model [19]. XLNet can learn bidirectional context by maximizing the probability
and uses autoregressive formulation because it is based on the Transformer-XL archi-
tecture. This avoids the limitations of the BERT model [20]. The Transformer-XL
architecture introduces a recurrence mechanism at the segment level into the trans-
former architecture. This is achieved by saving the hidden states generated from the
previous segment and then using them as keys and values when processing the next
segment. The permutation language modeling method, like traditional language
models, provides one token at a time, depending on the previous context. However,
it presents tokens in a random rather than sequential order [21].

3 MATERIALS AND METHODS

This section describes the materials and methods used in this work to perform the
above evaluation. We first describe the datasets used, the methods used, and the
experimental setup.
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3.1 Data

The dataset for this study comprises 350 928 observations, or business names, with
299,964 observations in the training sample and 50,964 observations in the test
sample. The process of data collection is illustrated in Figure 2. This data was
collected using websites of startups from around the world. To accomplish this task,
a web crawler was employed to visit each company’s page and extract the keywords
contained therein. Keywords were obtained from the HTML meta-keywords tag, as
well as from the business names and other useful text data.

We opted to use meta-keywords in our study for several reasons. Despite their
diminished importance in search engine rankings, many websites continue to employ
meta-keywords for various purposes, such as internal search and content organiza-
tion. These keywords can offer valuable insights into a website’s content and focus.
Meta-keywords present a concise and structured representation of the main topics
covered by a website, making them a suitable information source for our word se-
lection method. In instances where meta-keywords were unavailable or insufficient,
our dataset was supplemented with alternative information sources, such as page
titles, headings, and descriptions.

After collecting the raw dataset, a data cleansing process was conducted, which
is discussed below. Non-English keywords were excluded during the data cleaning.
To achieve this, natural language processing models were utilized to determine the
language of the text segments. Additionally, parts of the keywords identified as irrel-
evant, such as “ltd”, “org”, “com”, and others, were removed. Keywords and titles
shorter than four and longer than 20 characters were also eliminated. These rules
were established empirically by analyzing the raw data and training initial mod-
els, which allowed us to assess how the dataset should be constructed and identify
any issues arising while generating different business names (texts). The following
section provides examples of the data used in the study.

The following are examples of data that were used in the study.

Input Output

food, juice bar, specialty food For Goodness Shake
auto detailing, auto glass service, repair, auto A Zone Auto Glass
resort, beauty, gift The Phoenician Spa

Table 1. Example of input and output values for observations in a data set

3.2 Methods

In this section, we describe the models used in our study, along with the specific
parameters and activation functions employed. The Generative Pre-trained Trans-
former (GPT) models utilize the Gaussian Error Linear Unit (GELU) activation
function [22]. GELU is related to stochastic regularization techniques and is a mod-
ification of adaptive dropout [23]. In many cases, it is desirable for neural networks
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Figure 2. Schematic of data preparation process

to provide deterministic solutions, which necessitates the incorporation of nonlin-
earity in the network architecture. GPT models achieve this through the use of the
GELU activation function, which adds the required nonlinearity while also preserv-
ing certain linear properties. The GELU activation function is defined as follows:

GELU (x) = xP (X ≤ x) = xϕ(x) = x
1

2

[
1 + erf

(
x√
2

)]
, (4)

which can be approximated by a simpler formula,

0.5x

(
1 + tanh

[√
2

π

(
x+ 0.044715x3

)])
. (5)

The choice of activation function plays a crucial role in the performance of neural
networks, as it governs the flow of information through the network and influences
the learning dynamics. By employing GELU, the GPT models can effectively learn
complex patterns and representations in the input data, thereby enabling the gen-
eration of coherent and contextually relevant output. In the following subsections,
we will detail the specific GPT models used in our study, outline their architectural
differences, and discuss the parameter settings for each model during training and
evaluation phases.

In this study, we utilize modifications of various GPT models. The key param-
eters characterizing GPT models include:

1. Maximum sequence length that can be processed by the models.

2. Encoder and Pooler layer dimensions (hidden size).

3. The number of attention heads in each transformer layer encoder.
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4. The number of hidden layers in the transformer encoder.

5. Dropout probabilities (fully connected layer, embedding layer, attention layer).

Table 2 presents the parameters for the different GPT models used in our study.
While this table does not provide information on dropout probabilities, initial range,
and layer norm epsilon, these values are consistent across all GPT models: total
dropout probability is 0.1; initial range is 0.02; and layer norm epsilon is 10−5.
Other parameters are detailed in the table.

It is worth noting that the original GPT model utilizes a vocabulary of 40 478
tokens, whereas the second version (GPT-2) expands the vocabulary to 50 257 to-
kens. GPT Neo models share the same initial range and vocabulary size as GPT-2.
Interestingly, GPT Neo models do not employ dropout, and their global and lo-
cal attention layers alternate in the following pattern: global, local, global, local,
and so on. This unique configuration may contribute to the distinct performance
characteristics observed in GPT Neo models compared to their GPT and GPT-2
counterparts.

Model nhead nlayer nctx nembd npositions

GPT 12 12 512 768 512
DistilGPT2 12 6 1 024 768 1 024
GPT2 12 12 1 024 768 1 024
GPT2-Medium 16 24 1 024 1 024 1 024
GPT2-Large 20 36 1 024 1 280 1 024
GPT2-XL 25 48 1 024 1 600 1 024
GPT2-Medium 14.7/14.8 2:42 8.18 42.23 12.45
GPT2-Large 22.7/14.9 7:27 10.86 45.66 11.08
GPT2-XL 34.8/14.9 25:44 17.62 42.71 11.41

Table 2. Parameters for different GPT models

Model Attention Heads Layers Hidden Size

GPTNeo-125M 6 12 12 768
GPTNeo-1.3B 12 16 24 2 048
GPTNeo-2.7B 16 20 32 2 560

Table 3. Parameters for different GPT Neo models

It is important to note that some of the models in this study necessitate high-
performance graphics card configurations. In our case, we utilized Nvidia T4 graph-
ics cards. To further accelerate computations and efficiently manage distributed
computing during model training, we employed the DeepSpeed library, developed
by Facebook for Python.

DeepSpeed is a deep learning optimization library designed to streamline the
use of distributed computing resources in model training. DeepSpeed leverages the



534 M. Lukauskas, T. Rasymas, M. Minelga, D. Vaitmonas

Zero Redundancy Optimizer (ZeRO) optimization strategies (as illustrated in Fig-
ure 3). These strategies eliminate redundant memory consumption across parallel
data processes by partitioning the three model states (optimizer states, gradients,
and parameters) among the processes instead of replicating them. This approach en-
hances memory efficiency compared to traditional data parallelism while preserving
computational precision and communication efficiency.

In this study, we employed two DeepSpeed optimization strategies: ZeRO2 and
ZeRO3. In the ZeRO2 stage, reduced 32-bit gradients for updating model weights
are further divided, with each process maintaining only the gradients corresponding
to a portion of its optimizer states. In the ZeRO3 stage, 16-bit model parameters are
distributed across all processes. ZeRO-3 automatically assembles and disassembles
these parameters as needed, further optimizing memory usage and training efficiency.

Figure 3. Comparing the per-device memory consumption of model states, with three
stages of ZeRO-DP optimizations ([24])

Models that are not publicly available and were therefore not included in the
study for this reason.

3.3 Experimental Setup

To compare different models, the data set was divided into two parts. The training
data set represented 80% and the test data set 20%. The same data sets were used
to train all individual models. The experiments in this study were performed using
a Google Cloud Platform virtual machine with parameters of: 12 vCPUs, 78GB
memory, GPU: 1 × NVIDIA Tesla T4. For the largest models, the GPT-J-6B and
GPT2-XL virtual machine parameters have been increased to 16 vCPUs, 150GB of
memory and 2× NVIDIA Tesla T4.
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3.4 Model Performance Evaluation

Models can be compared using perplexity metrics, which are calculated at the end
of model development. Perplexity is a metric that measures the accuracy of prob-
abilistic models, such as natural language generation models. It can be used to
determine how well a generated sentence aligns with the sentences in the training
sample [16, 25]. Perplexity is particularly popular for evaluating language model
(LM)-based natural language generation models due to its ability to capture the
diversity of generated text, which is crucial for tasks such as story generation [26],
question generation [27], and question-answer generation [28]. However, it is impor-
tant to note that perplexity is not a perfect metric for measuring text diversity, as
a high perplexity does not necessarily imply low diversity. For instance, an LM with
evenly distributed vocabulary for each generated token may exhibit high diversity
but poor quality, resulting in a large perplexity value [29].

Assessing the performance of natural language generation systems solely based
on perplexity may not always provide definitive conclusions. Traditionally, human
evaluation has been used to assess the quality of generated text [30]. In such evalu-
ations, subjects are shown generated text alongside human-written text and asked
to compare them [31]. In some cases, subjects are presented with text generated
by multiple systems for comparison. This methodology was first used in natural
language generation (NLG) research in the mid-1990s by [32] and [33], and its pop-
ularity continues to this day. Human evaluation remains an essential criterion for
assessing the accuracy of natural language generation models [34].

Research on language generation shows that different scales are used to assess
language quality, such as Likert or continuous variable scales. Continuous scales
provide evaluators the flexibility to assess at intermediate levels ([35, 36]). However,
most evaluators prefer continuous scales over discrete ones. Despite the additional
information provided by continuous variable scales, discrete Likert scales are more
commonly used to evaluate generated language [37]. This preference is due to the
difficulty respondents may face when evaluating using continuous scales. [38] show
that up to 63% of natural language generation articles use the Likert scale, as
detailed by [39].

In our study, we used a discrete 7-point Likert scale, where a rating of 1 indicates
that the generated name is inappropriate and the respondent would not use such
a name, while a rating of 7 indicates that the generated name is highly appropriate
and would be used by the respondent. We recruited 158 participants who were
asked to evaluate business names generated by the models based on a given scenario:
“Imagine that your grandmother gave you her secret pancake recipe and you want to
open your own business. But you have no idea how you should name your business.
You found out that AI can offer you your business name with just a few words. Since
you want to sell pancakes, you enter the words “Pancakes, Bakery, Shop” and AI
gives you possible business names. And now it is your job to evaluate these names.”.
The participants evaluated individual business names without knowing which model
generated them. To avoid bias, we mixed the names generated by the various models
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to ensure objective evaluation. Additionally, we included fine-tuned OpenAI models
for comparison. To reduce the impact of extreme ratings, we excluded the best and
worst evaluated models from our analysis.

4 RESULTS

This section presents the results obtained during our study. As the primary objec-
tive was to evaluate different text generation models, we assessed these models using
both Perplexity metrics and human evaluation. According to the Perplexity met-
rics, the highest-rated model is the original GPT. However, when considering only
the newer generation models, the best result is observed with the GPT-2 Medium
model.

Interestingly, the study’s results reveal a discrepancy between human evaluation
and Perplexity assessment. Human evaluation shows that the best performance
is achieved using the GPT-Neo-1.3B model, with its evaluation being statistically
significantly higher compared to other models (p < 0.05). In contrast, the GPT-Neo-
2.7B model exhibits inferior results, and its evaluation does not show a statistically
significant difference from the GPT-Neo-125M model (p > 0.05), despite the latter
being 20 times smaller.

These findings highlight the importance of considering multiple evaluation meth-
ods when assessing text generation models, as different metrics may provide distinct
insights into a model’s performance and capabilities.

Peak Fine-tuning Avg. Std.
Model RAM/VRAM Time Perplexity Score Deviation

Usage (GB) (hh:mm)

Ada – – – 41.81 10.05
Babbage – – – 37.86 9.35
Curie – – – 35.92 8.07
GPT 10.6/15 1:53 2.46 38.88 10.76
DistilGPT2 9.5/15 0:26 9.49 39.67 10.61
GPT2 10.5/14.5 0:46 10.26 43.25 11.42
GPT2-Medium 14.7/14.8 2:42 8.18 42.23 12.45
GPT2-Large 22.7/14.9 7:27 10.86 45.66 11.08
GPT2-XL 34.8/14.9 25:44 17.62 42.71 11.41
GPTNeo-125M 10.6/15 1:03 9.12 44.66 10.75
GPTNeo-1.3B 31.7/14.8 10:17 36.37 46.6 11.36
GPTNeo-2.7B 49/12.7 34:05 41.62 44.93 9.81
GPT-J-6B 101/15 72:25 37.08 – –
XLNetBase 10.6/15 3:51 – – –
XLNetLarge 15.2/15 11:11 – – –

Table 4. Research models results: RAM/VRAM usage, fine-tuning, perplexity and aver-
age human evaluation scores
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A critical aspect of using the ZeRO3 optimizer is its high RAM usage. Table 5
presents information on RAM consumption during the training of different models.
The highest RAM usage is observed in the largest model, GPT-J-6B, reaching as
much as 101GB. Interestingly, GPT-2 XL and GPT-Neo-1.3B exhibit quite simi-
lar RAM usage patterns. Notably, the original GPT model consumes more RAM
compared to GPT-2 and DistilGPT2.

Another objective of this study was to determine the maximum batch size for
different text generation models using a single NVIDIA T4 graphics card. Our
results showed that a batch size of up to 26 could be employed during DistilGPT2
training. In contrast, the largest models allowed for a maximum batch size of only 2,
which complicates their utilization due to significantly longer training times.

To evaluate the text generation speed of various models, we performed 1 000 text
generations, each generating five business names with a maximum length of 60 char-
acters. We found that the fastest generation occurred using the DistilGPT2 model,
with a generation time of only 0.49 seconds. Conversely, the slowest generation took
place using the GPT model, which required 12.2 seconds. However, the GPT model
exhibited the lowest coefficient of variation, indicating that it generates text consis-
tently over a stable time period. These findings underscore the trade-offs between
model size, training time, and generation speed when selecting an appropriate text
generation model for a given application.

Model Mean Standard Deviation Coefficient of Variation

GPTNeo-125M 1.046 0.385 0.368
GPTNeo-1.3B 5.684 1.424 0.251
GPTNeo-2.7B 9.335 1.521 0.163
DistilGPT2 0.490 0.190 0.388
GPT2-Medium 1.983 0.592 0.298
GPT2-Large 4.157 1.105 0.266
GPT2-XL 8.451 2.072 0.245
GPT2 0.825 0.303 0.368
GPT 12.211 0.673 0.055

Table 5. Research models inference speed (seconds) based on 5 sequences max length 60
generation for 1000 samples

The Friedman test is a non-parametric statistical test developed by Milton Fried-
man. Similar to the parametric repeated measures ANOVA, it is employed to detect
differences in treatments across multiple test attempts. The procedure involves rank-
ing each row (or block) together, then examining the values of ranks by columns.
Applicable to complete block designs, the Friedman test is a special case of the
Durbin test. Kendall’s W Test refers to the normalization of the Friedman statistic
and is used to assess the degree of agreement among respondents.

In our study, the Friedman ranks for the models were as follows: Ada (6.61),
Babbage (4.08), Curie (3.63), DistilGPT2 (4.61), GPT (4.63), GPT-2 (7.02), GPT-
2 Large (9.03), GPT-2 Medium (5.73), GPT-2 XL (6.70), GPT-Neo-1.3B (9.22),
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Figure 4. Comparison of fine-tuned models with 2 batches training time (minutes)

Figure 5. Comparison of fine-tuned models with 2 batches training VRAM usage (MiB)

GPT-Neo-125M (8.05), and GPT-Neo-2.7B (8.69). With a Chi-Square value of
181.335 and a p-value lower than 0.05, we can conclude that at least one of the
models has a statistically significant difference from the others. Kendall’s W value
is 0.311.

Table 6 presents a pairwise comparison of the individual models. Interestingly,
the GPT-Neo-1.3B and GPT-Neo-2.7B models do not exhibit a statistically signif-
icant difference in solving the business name generation problem (p > 0.05). Ad-
ditionally, upon evaluating the OpenAI models, we observe that the Babbage and
Curie models also do not differ statistically significantly (p > 0.05). These find-
ings highlight the nuances in model performance and the importance of considering
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Figure 6. Comparison of fine-tuned models with 2 batches training RAM usage (MiB)
with ZeRO3 optimization strategy

Figure 7. Comparison of fine-tuned models maximum batch size with one NVIDIA T4
GPU

multiple evaluation criteria when selecting an appropriate text generation model for
a specific task.

5 CONCLUSIONS

This paper provides an overview of the transformer architecture and the primary
transformer models currently available for use in natural language processing tasks.
We also offer insights into the training process for particularly large models and
present the idea of adapting natural language generation for business name genera-
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tion, with further developments in this domain. The results of our study reveal that
relying solely on the Perplexity metric does not always identify the best performing
model. Human evaluation is a particularly important assessment method for nat-
ural language generation tasks, prompting us to conduct a consumer survey in our
study. The findings demonstrate that, in the context of business name generation,
larger models do not yield statistically significantly better results compared to their
smaller counterparts. Consequently, employing larger models in practice may not
be advantageous, as their name generation takes a statistically significant longer
time than that of smaller models. Moreover, we observed that the newer gener-
ation of transformer models exhibits superior performance in generating business
names, while XLNet models were not well-suited for this task. This highlights the
importance of selecting appropriate models for specific applications and considering
multiple evaluation criteria to ensure optimal performance and efficiency.
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