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Abstract. Crime is hard to anticipate since it occurs at random and can occur
anywhere at any moment, making it a difficult issue for any society to address. By
analyzing and comparing eight known prediction models: Naive Bayes, Stacking,
Random Forest, Lazy:IBK, Bagging, Support Vector Machine, Convolutional Neu-
ral Network, and Locally Weighted Learning – this study proposed an improved
deep learning crime prediction model using convolutional neural networks and the
xgboost algorithm to predict crime. The major goal of this research is to provide
an improved crime prediction model based on previous criminal records. Using the
Boston crime dataset, where our larceny crime dataset was extracted, exploratory
data analysis (EDA) is used to uncover patterns and explain trends in crimes. The
performance of the proposed model on the basis of accuracy, recall, and f-measure
was 100% outperforming the other models used in this study. The analysis of the
proposed model and prediction can aid security services in making better use of
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their resources, anticipating crime at a certain time, and serving the society bet-
ter.

Keywords: Crime prediction, deep learning, spatiotemporal, data mining, ensem-
ble learning

1 INTRODUCTION

Human behavior disorder is the leading cause of crimes that wreak havoc on society
in many of ways. A crime is a societal illness that affects every sector of the society
in a region where it happens. The crime rate is very high in the developing countries.
Governments around the globe expend a lot of resources trying to deal with crime,
but since crime is very complex in its nature [1], it is always very difficult to tackle
it manually in traditional ways. The information communication technology (ICT)
can efficiently help dealing with this problem.

Like a disease, crime is a society issue that tends to proliferate in geographic clus-
ters. Since crime is a geographic phenomenom its hotspots, spatial clusters, spatial
correlations of various indicators and forecasts provide the common topics for the
crime research [2]. Spatiotemporal crime prediction with the latest artificial intelli-
gent techniques is very important. And for public safety and smart city operations
spatiotemporal crime prediction is critical [3]. Because crime episodes are sparsely
dispersed spatially and temporally, the traditional deep learning approaches backed
only by a coarse location-scale can forecast crime density to a limited extent. Law
enforcers require precise data regarding illegal activity in order to foresee, respond
and solve spatiotemporal illegal conduct.

Anticipating when and where a crime will occur, often referred to as “predic-
tive policing”, permits a society to dispatch law enforcers to highly crime poten-
cial regions or circumstances prior to a crime occurring. Criminal activity can
be predicted spatially and temporally which is helpful for a targetable allocation
of police resources and surveillance. Advanced deep learning techniques are ef-
fective tools for predicting future events based on the behavior of previous ones.
However, the exponential growth of spatiotemporal data is only rarely used for an-
ticipating crime events [4] using a repository of spatiotemporal crime data sets.
The availability of spatiotemporal crime data has already facilitated the devel-
opment of data-driven strategies for predicting the occurrence of crimes in recent
years [5, 6].

The feature representation efficacy of neural network design distinguishes deep
learning-based methods from other spatiotemporal prediction methods. Many re-
cently proposed forecasting frameworks, such as attentional neural methods [7],
convolution-based learning approach [8], and spatial relation encoder with graph
neural networks [9], Spatiotemporal Sequential Hypergraph Network [10], has been
focused on modeling time-evolving regularities over the temporal dimension and
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the underlying regional geographical dependencies over the spatial dimension. De-
spite their success, we believe that conventional spatiotemporal prediction models
fall short meeting the particular problems that multi-dimensional crime data [11]
presents. There are explicit and implicit relationships between different kinds of
crimes because of the heterogeneity of crime data. Current approaches are inher-
ently incapable of capturing cross-type crime influences in a fully dynamic scenario
involving both spatial and temporal patterns due to their inherent architecture.

In this study, we therefore proposed an improved deep learning technique for
spatiotemporal crime prediction, using deep convolutional neural networks as the
feature extractor and a strong ensemble metal classifier known as XGBoost algorithm
for final prediction. Another important angle of this study is to show that crime
has always been studied from literature in quantitative terms which combines many
crimes to be worked on, thus, making the designed systems less productive. Hence in
our study, we have studied crime giving a room for more understanding of the crime
and better police allocation. Crime is a legally punished conduct, it is detrimental
to society, therefore it is necessary to comprehend crime in order to prevent criminal
action [12]. The major goal of this paper is to provide an improved crime prediction
model based on previous criminal records.

2 RELATED STUDIES

Several approaches in regards to crime prediction have been presented in recent
times to provide police officers with efficient and persuasive knowledge for effec-
tive resource allocation in order to avoid future crimes [13, 14]. In [15], the article
presented a crime prediction model that utilizes hotspot analysis to enhance its ac-
curacy. The model comprises three phases: Crime Hotspot Identification, Dataset
Preparation, and Crime Prediction Approach. In the initial phase, hotspot analy-
sis is employed to pinpoint areas with high crime incidence. In the second stage,
the location coordinates are replaced by the cluster number to which they belong,
and the modified dataset is used to train the crime prediction model. In the third
and final phase, the trained model is utilized to categorize each instance into one
of 37 crime categories using advanced techniques like Naive Bayes, Decision Tree,
and to ensemble learning approaches. The outcomes of the study demonstrate that
incorporating hotspot analysis into the model leads to a significant improvement
in crime prediction accuracy. The results indicate that Voting with Naive Bayes
and REPTree produce the most reliable classification results, although deep learn-
ing could have been utilized for better results. However, the study only uses crime
data from one year, which may not be adequate to capture long-term trends or
changes in crime patterns. Unlike the study, our research employs a dataset that
spans more than one year. In [16], the article introduces a technique for examining
the strength and spatiotemporal progression of hotspots identified by the EFCM
algorithm [17] for spatiotemporal hotspot detection. The proposed method in the
article introduces a novel approach for analyzing the spatiotemporal evolution of
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hot spots in a specific area by calculating the hot spot strength index, which mea-
sures the percentage of time a selected area is affected by hot spots. Furthermore,
the method can assess the reliability of the evaluation by calculating a reliability
index based on a hot spot reliability measure proposed in the previous study. The
application of this method in crime analysis of the City of London using a dataset of
criminal events since 2011 shows a decrease in the frequency of all types of criminal
events across the study area in the recent years. While the study lacks a detailed
comparison of the proposed method with other existing machine learning methods,
our study presents a comparison with state-of-the-art machine learning models to
fully evaluate the effectiveness of our proposed method. A genetic-fuzzy system
was created in [18] to produce an intelligible fuzzy knowledge base that includes
patterns for forecasting future spatiotemporal crimes. The system consists of three
steps: fuzzy problem space partitioning, meaningful feature selection, and fuzzy
knowledge base construction. A generated dataset and a real-world dataset from
Tehran, Iran were used to test the suggested system. The results suggest that
the proposed approach is a good tool for detecting patterns and forecasting future
crimes in contexts where crimes are concentrated in the location and timeaspect.
The authors of the article reported a high computational complexity of the method,
but they had no specified the extent of it. However, in our study, we proposed
an improved deep learning model that can reduce the computational cost. In [19],
the article introduces a novel deep learning technique called Geographic-Semantic
Ensemble Neural Network (GSEN), which stacks a geographic prediction neural net-
work and a semantic prediction neural network to improve prediction accuracy. The
GSEN model combines various structures, including Predictive Recurrent Neural
Network (PredRNN), Graph Convolutional Predictive Recurrent Neural Network
(GC-PredRNN), and Ensemble Layer, to capture spatiotemporal dynamics from
different perspectives. The RMSE of the suggested system was 0.6425 ± 0.0057.
However, an improved deep learning model is presented in our study which has
lower values for RMSE. In [20], an XGBoost classifier was developed for determin-
ing if a seven-day sliding time frame within a given county contains or does not
contain a human trafficking-related incident. A case study was conducted with
a new combined human trafficking criminal dataset that had a Matthews correla-
tion value of 0.86. However, better advanced deep learning models would have been
used for a better result. In [21], a deep learning-based model for spatiotemporal
crime prediction using convolutional neural networks is proposed. The proposed
approach uses a hierarchical structure to understand the timing of criminal events,
with branches that focus on different time periods. Additionally, it utilizes a chan-
nel projection to better understand how past events may impact future crime risk.
The effectiveness of this model is assessed using publicly available crime data sets
from Chicago and Los Angeles, and compared to traditional methods. The proposed
model (CNN-PT) outperforms the traditional models in terms of both AP score and
RMSE score. The temporal hierarchical structure of the proposed model improves
the AP performance of traditional CNN models by 1.4% in the Chicago dataset
and 1.7% in the Los Angeles dataset. Additionally, the channel projection further
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improves the AP performance by 0.6% in the Chicago dataset and 0.7% in the Los
Angeles dataset. The authors of [22], suggested a system called Crime Situation
Awareness Network (CSAN) to predict future crime situations by utilizing multi-
correlations and sequential context information. To achieve this, they developed
a new neural structure consisting of a Conv-VAE information compression compo-
nent and a Context-based Sequence Generative Model temporal component. Data
preparation included creating detailed Crime Situation Awareness Graphs (CSAGs)
and conducting statistical analysis. The performance of the CSAN was measured
using metrics like RMSE, MSPE, and JS. In order to predict a person’s likelihood of
committing a crime and the type of crime they are most likely to commit based on
their criminal charge history data, Chun et al. used deep neural networks (DNNs)
as a machine-learning technique [23]. “Deep inception-residual networks (DIRNet)”
were proposed by Ye et al. (2021) to forecast fine-grained theft-related crimes using
a non-emergency service request data (311 events). The method involves identify-
ing low-level spatiotemporal correlations from crime events and complaint records
in the 311 dataset using inception units made up of asymmetrical convolution lay-
ers. Data from New York City’s 311 system and theft-related offences from 2010 to
2015 are used to assess DIRNet’s performance. The findings indicate that DIRNet
achieves an average F1 score of 71%, which outperforms other prediction models [3].
However, improved deep learning will produce better results for efficient policing.

The review discusses several approaches to crime prediction, including a crime
prediction model that uses hotspot analysis to improve accuracy. The model has
three phases: Crime Hotspot Identification, Dataset Preparation, and Crime Pre-
diction Approach. The results show that the proposed model significantly improves
the accuracy of crime prediction. Other approaches discussed in the review include
an Extended Fuzzy C-means (EFCM) spatiotemporal hot spot detection algorithm,
a genetic-fuzzy system, a Geographic-Semantic Ensemble Neural Network (GSEN),
and an XGBoost classifier. Each method has its own advantages and disadvantages.
The effectiveness of these models is assessed using different evaluation metrics, and
compared to traditional methods which other studies failed to do. Hence, our study
proposes an improved deep learning model which further improve the accury of the
prediction model compared with the traditional methods. Finally, the researchers
came to the conclusion that by incorporating dynamic variables over a wide range
of criminal occurrences and with the high growth of spatiotemporal crime datasets,
crime prediction performance might be greatly enhanced for better policing.

3 PROPOSED MODEL

We have covered the suggested spatiotemporal crime prediction approach in this
section. The “Convolutional Neural Network (CNN)” and the “Extreme Gradient
Boosting (XGBoost)” classifier, which are the components needed to make pre-
dictions in the proposed model is presented. The proposed model is depicted in
Figure 1. In this study, Deep Convolutional Extreme Gradient Boosting (DeCXG-
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Boost) model, which combines these two models, is proposed and will be used to
predict crime spatiotemporally.
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Figure 1. The proposed frame work

3.1 Convolutional Neural Networks (CNNs)

A deep, feed-forward neural network is known as a CNN [24] that is frequently used
to analyse visual imagery [25]. The traditional form of CNNs is the classic multi-
layer perceptron (MLP). Despite the fact that CNNs were not designed expressly
for non-image data, they have been widely used in spatiotemporal data-mining ap-
plications including trajectory and spatiotemporal raster data [26]. Figure 2 depicts
the architecture of a CNNs.

Figure 2. Architecture of CNN [27]
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The feature outcome map is created by convolving a one-dimensional entry x =
(xt)

t=0
N−1 of size N in the first layer with a set of M1 3-dimensional filters, w1

h for
h = 1; . . . ;M1, for which the filters are applied to all input channels [28]: see
Equation (1).

a1(i, h) =
(
w1

h × x
)
(i) =

∞∑
j=∞

w1
h(j)× (i− j), (1)

where w1
h ∈ R1×k×1 and a1 ∈ R1×N−1+1×M1 .

There’ll be a single input pathway, and the first layer’s output will be routed
via the non-linear activation function h(·) to produce f 1 = h(a1).

A convolutional layer, a pooling layer, and a fully connected layer make up the
hidden layer. Using learnable filters, the convolutional layer harvests information
from various parts of the raw input or intermediate feature maps autonomously [29].
The pooling layer adds all of the items in the pooling frame together. This approach
uses a max-pooling operation to reduce the dimensionality of the input tier by select-
ing the highest value from each subregion of the preceding layer [29]. Consequently,
this level lowers the learning process’s computing cost and handles any overfitting
difficulties [30].

In [31], shows that, the hidden layer l = 2; . . . ;L, the input feature map f l−1 ∈
R1×Nl−1×Ml−1 , where 1 × Nl−1 ×Ml−1 is the size of the output filter map from the
previous convolution with Nl−1 = Nl−2− k+ 1, is convolved with a set of M1 filters
w1

h ∈ R1×k×Ml−1 , h = 1; . . . ;M1, to create a feature map a1 ∈ R1×Nl×Ml as follows in
Equation (2) [28].

a1(i, h) =
(
wl

h × f l−1
)
(i) =

∞∑
j=∞

ml−1∑
m=1

wl
h(j,m)f l−1(i− j,m). (2)

To create the expected output, the fully connected layer flattens and incorporates
the high-level obtained attributes learnt by the convolution layer. The attributes
figures are then put into f 1 = h(a1) using non-linear activation functions.

After L convolutional layers, the network produces the matrix fL, whose size
is determined by the filter size and figure of filters employed in the last layer [28].
In a nutshell, the full connected layers acquire the mid and low-level characteristics
and generate the high-level abstraction, that represents the final-level layers, just
like in a traditional neural network. The classification scores are provided by the
last layer (example SVM, etc.). Every score represents the likelihood of a particular
class in a given situation [27]. In our study we chose the xgboost classifier on the
last-stage layer.

3.2 XGBoost Classification Algorithm

The XGBoost discussed in [32] was created using a GBDT (Gradient Boosting De-
cision Tree), and it was shown to have excellent convergence and generalisation
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speed [33]. In [33], the XGBoost algorithm’s goal function and optimization strat-
egy were introduced. XGBoost’s target function is given by Equation (3) [34].

Obj (θ) = L(θ) + Ω(θ), (3)

where L(θ) = l(y′i, yi) and Ω(θ) = γT + 1
2
λ||ω||2.

The objective function is divided into 2 sections: L(θ) and Ω(θ), which corre-
spond to the formula’s numerous parameters. The difference between the forecast yi
and the target yi is measured by L(θ), a differentiable convex loss function. The
point is to demonstrate how we can incorporate the facts into the framework [34].
Convex loss functions that are frequently employed, such as the mean square loss
function in Equation (4) and the Logistic loss function shown in Equation (5), can
be employed in the following equation.

l(y′i, yi) = (y′i − yi)
2
, (4)

l(y′i, yi) = yi ln
(
1 + e−y′i

)
+ (1 + yi) ln

(
1 + ey

′
i

)
. (5)

Complex models are penalised by the regularised term Ω(θ). T is the number of
leaves in the tree, and y is the learning rate, which ranges from 0 to 1. When
multiplied by T , it equals spanning tree pruning, which prevents overfitting. When
compared to the classic GBDT algorithm, the XGBoost algorithm increases the
term 1

2
λ||ω||2. The regularized parameter is λ, while w is the weight of the leaves.

This item’s value can be increased to control the model from fitting and to improve
its generalisation capabilities. The inclusion of model penalty items with functions
as parameters, on the other hand, leads in the failure of classical approaches to be
optimised by the objective function in Equation (3). As a result, we must assess if
we can to learn to obtain the aim yi as seen in Equation (6) [34]:

L(θ) =
n∑

i=1

l
(
yi, y

′t−1
i + St(Ti)

)
+ Ω(θ), (6)

where, in the t iteration, St(Ti) denotes the tree produced by instance i.
The optimization target in each iteration is to build a tree design that minimises

the aimed function. Hence, when solving square loss function, the objective function
of Equation (6) is optimal, but it becomes quite difficult when calculating other loss
functions. As a result, Equation (6) translates Equation (7) using the two-order
Taylor expansion, allowing further loss functions to be solved.

L(θ) =
n∑

i=1

[
l
(
yi, y

′t−1
i + giSt(Ti)

)
+

1

2
hiS

2
t (Ti)

]
+ Ω(θ), (7)

where, gi = ∂t−1
(y′) l

(
yi, y

′t−1
)
which is the 1st derivative of the error function and

hi = ∂
′(t−1)
y

2l
(
yi, y

′t−1
)
is the 2nd derivative of the error function.
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Because tree model needs to find the best segmentation points and then store
them in a number of blocks, the algorithm ranks the eigenvalues based on the re-
alisation of XGBoost. This structure is reused in subsequent iterations, resulting
in a significant reduction in computing complexity. Furthermore, the information
gain of each feature must be determined during the node splitting process, which
employs the greed algorithm as shown in Algorithm 1, allowing the calculation of
information gain to be parallelized [33].

Algorithm 1 Split finding greed algorithm

Require: Input I, current node’s instance set
Ensure: Input d, dimension of the characteristic
gain ← 0
G←

∑
i ∈ Igi

for k = 1 to m do
GL ← 0
for j in sorted(I, by Xjk) do

GL ← GL + gj
end for

end for
GL ← GL + gj
GR ← G−GL

Result: Split with max score

In view of the above overviews of the CNN and XGBoost models, we there-
fore proposed an improved deep learning model for spatiotemporal crime prediction
called DeCXGBoost. The DeCXGBoost model combines two machine learning al-
gorithms, Convolutional Neural Network (CNN) and eXtreme Gradient Boosting
(XGBoost), to improve the accuracy of prediction tasks. The CNN algorithm is
used to extract high-level features from raw input data, such as images or time-
series data. It involves several convolutional layers that perform operations on the
input data to extract features and a pooling layer that reduces the dimensional-
ity of the output. The output from the convolutional and pooling layers is then
fed into a fully connected layer, which performs classification or regression. The
XGBoost algorithm is a gradient boosting framework that is used for supervised
learning problems. It builds a series of decision trees iteratively, with each new tree
correcting the errors made by the previous one. The DeCXGBoost model combines
these two algorithms to leverage their respective strengths. The CNN algorithm
is used to extract high-level features from the raw input data, which are then fed
into the XGBoost algorithm to make predictions. The combination of these two
algorithms allows the model to extract complex features from the input data and
make accurate predictions.
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Mathematically, the DeCXGBoost model can be represented as follows: CNN:
The output of the ith convolutional layer is given by:

Oi = fi(wi ∗O(i− 1) + bi), (8)

where wi is the ith set of convolutional filters, O(i− 1) is the output of the previous
layer, bi is the bias term, and fi is the activation function.

XGBoost: The output of the model is given by:

Y = F (X) =
∑

ft(X), (9)

where X is the input data, ft is the tth decision tree, and
∑

is the sum over all
decision trees.

DeCXGBoost: The DeCXGBoost model combines the two algorithms by using
the output of the final fully connected layer in the CNN as input to the XGBoost
algorithm:

Y ∗ = F (X) =
∑

ft(OL), (10)

where OL is the output of the final fully connected layer in the CNN, and ft is
the tth decision tree in the XGBoost algorithm. Overall, the DeCXGBoost model is
a powerful machine learning algorithm that can be used for a wide range of prediction
tasks, particularly in areas that involve complex input data such as images and time-
series data.

3.3 Dataset

The Boston Police Department’s (BPD) criminal event records were employed in
this study that documented the incidents to which BPD officers respond. This was
a collection of data from the new crime incident reports, which was designed to
capture the sort of incidents as well as when and where it occurred. Table 1 shows
the attributes of the crime dataset.

Incident-Number Offense-Code Offense-Desc . . . Street Lat

0 I182070945 619 Vandalism . . . Lincoln ST 42.35779134

1 I182070915 614 Auto theft . . . Hecla ST 42.30682138

2 I182070893 613 Verbal dispute . . . Dehil ST 42.32701648

. . . . . . . . . . . . . . . . . . . . .

319071 I030217815-08 1843 Larceny . . . Capen ST 42.28647012

319072 I030217815-08 301 Harassment . . . Lawn ST 42.3256949

319073 I010370257-00 3801 Trespassing . . . Hecla ST 42.31731905

[319074× 17]

Table 1. Features for the crime dataset

This spatiotemporal crime dataset consists of seventeen (17) features (columns)
and three hundred nineteen thousand and seventy-four (319074) samples (rows).
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There are eight categories (Incident number, offense code group, offense description,
district, occurred on date, day of week, UCR part, street) and nine numerical (offense
code, reporting area, shooting, year, month, hour, lat, long, location) qualities.

3.4 Data Preprocessing

Data cleansing is a process that must be completed prior to data analysis. It entails
tasks including filling in missing data, removing discrepancies, and finding out-
liers [35]. One of the most significant transformations to perform to data is feature
scaling. The numeric features employed in the input should not have different scales
for ML algorithms to perform properly [35]. As a result, the min/max normalisation
approach was used to rescale the data set so that the values on distinct scales in
the data set varied in the range of 0–1. The following formula (see Equation (11))
is used to translate a value that falls within the range of 0 to 1.

xnew =
x−min(x)

max(x)−min(x)
. (11)

3.5 Modeling

The model was trained and tested for the study, so the dataset was split in half in
a 75:25 ratio for the models, 75% of the dataset was utilized to train the model,
while 25% was used to test it. The process of modeling was carried out using the
proposed methodology depicted in Figure 3.

4 EXPERIMENTAL RESULT AND ANALYSIS

In this paper, the Boston Police Department’s (BPD) crime dataset is used to extract
the features of the larceny crime data which we used in this study for analyzing and
predicting crime as a type of crime, which is one of our objectives and motivations
for this study. According to [36], there exist eight distinct categories of larceny
offenses. Out of the eight categories, six are categorized as “non-occupational”
offenses, which involve crimes like shoplifting, theft from a vehicle, theft of vehicle
parts, pocket-picking, purse snatching, and theft from a coin-operated device. The
two other categories are “theft from a building” and “all other larcenies”, which
are partially categorized as non-occupational and partially as indeterminate. In our
study we categorized them as larceny and larceny from motor vehicle.

4.1 Exploratory Data Analysis (EDA)

A script was ran to investigates numerous distinct categories of larceny offences in
the dataset, which we classified into two crime categories as previously described.
The distribution of crime is depicted in Figure 4. Larceny is the most common sort
of crime, followed by larceny from motor vehicles, as shown in Figure 4 below.
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Figure 3. Flow diagram of modeling

Figure 4. Larceny crime dataset distribution
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The extracted crime dataset has 36 782 crime observations, 25 935 of this crimes
are committed in shoplifting, pocket picking, and 10847 of this crimes were com-
mitted from motor vehicles. Figure 5 shows the hourly committing of these crimes,
with larceny out of motor vehicle mostly committed.

Figure 5. Hourly distribution of crimes committed

Our spatiotemporal crime dataset also displays the locations where the crimes
were committed, as seen in Figure 6. It shows that more crimes were committed on
Lincoln Street and Lime Street on Wednesdays, Saturdays, and other days. Addi-
tionally, Figure 7 shows the districts and the crimes committed on a weekly basis.
District D4 has more crimes committed on Fridays, Saturdays, and Wednesdays.
With this information and the aid of accurate crime prediction models, security
personnel can be more proactive rather than reactive, resulting in a significant re-
duction in crime within society.

4.2 Prediction Models

The buildup and results of our proposed deep learning improved model is presented,
with a comparison to other state-of-the-art models such as Näıve Bayes (NB), Stack-
ing (STK), Random Forest (RF), Lazy:IBK (IBK), Bagging (BAG), Support Vector
Machine (SVM), CNNs, and Locally weighted learning (LWL). Our suggested model,
as well as the other eight models in this work, were trained and presented with a va-
riety of setting parameters and feature choices. Both time-related and geographic
variables are essential, according to the data exploration section, which explains the
spatiotemporal interest. All of the models were trained and tested for the study, so
the dataset was split in a 75:25 ratio for all of the models. The model was trained on
75% of the dataset and tested on the remaining 25%, as previously mentioned. The
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Figure 6. Weekly distribution of crime on streets

CNNs models were constructed using python-3.8, tensorflow-1.01, and keras-1.0 on
an Intel core i5 desktop computer. In our proposed model, samples were provided
as input. Batch normalization technology and ReLU activation functions were used
in all convolution layers. The deep learning model used binary cross-entropy and
adaptive moment estimation (Adam) methods as the loss function and optimizer,
respectively. Additionally, the He initialization approach was used to initialize the
model. WEKA tool was used for the other models. Figure 8 depicts our proposed

Figure 7. Weekly larceny crimes committed in districts
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model’s training and testing loss logs, respectively. Figure 9 depicts our suggested
model’s accuracy log for both training and testing.

Figure 8. Proposed model loss log

Figure 9. Proposed model accuracy log

The study evaluates the performance of multiple models using various metrics,
such as MAE, RMSE, Recall, Accuracy, and F-Measure. The outcomes of these mod-
els are shown in Table 2. MAE measures the average absolute deviation between the
predicted and actual values, while RMSE is the square root of the average squared
deviation between the predicted and actual values. Recall is used to determine the
percentage of actual positive cases that were correctly identified by the model. Ac-
curacy is the proportion of correct predictions made by the model, and F-Measure
is the harmonic mean of Precision and Recall. The results show that several models
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achieved high scores in various performance measures. The NB, RF, BAG, and our
proposed model achieved perfect scores in Recall and F-Measure, indicating that
they have correctly identified all the positive cases. The CNN model has a relatively
low F-Measure score, indicating that it may not perform well in identifying positive
cases. The LWL model has the highest RMSE, indicating that it has the largest
errors in its predictions. Overall, our proposed model outperformed all the other
models, achieving perfect scores in both Recall and F-Measure and the lowest MAE
and RMSE scores. The results of this study suggest that the proposed model is
highly effective in predicting outcomes in the studied domain.

Models MAE RMSE Recall Accuracy F-Measure

NB 0.0005 0.0134 1.000 99.782 1.000

STK 0.4178 0.4592 0.698 69.8097 0.822

RF 0.0629 0.084 1.000 99.891 1.000

IBK 0.0481 0.2192 0.952 95.193 0.952

BAG 0.0001 0.0076 1.000 99.891 1.000

SVM 0.0005 0.0233 0.999 99.7456 0.999

CNN 0.0004 0.0209 1.000 99.565 0.846

OUR’s 0.0000 0.0001 1.000 100.000 1.000

LWL 0.913 0.2161 0.946 94.6166 0.945

Table 2. Results of models used in the study

On our well-preprocessed crime dataset with hyperparameter settings and fea-
ture selections, Figure 10 illustrates a comparison of the MAE and RMSE of our
proposed model and various other models employed in this study. The proposed
model is seen to edging out the other models significantly. This is because the lower
or small the figure of MAE and RMSE the greater the model.

Figure 11 shows the RECALL and F-Measure of our suggested model vs. the
RECALL and F-Measure of other models used in this study. The proposed model
appears to greatly outperform the other models. Also Figure 12 compares the pre-
diction accuracy of the proposed model and the other eight models used in this
study. The accuracy of our proposed model was higher.

4.3 Discussion

Our proposed (DeCXGBoost) model achieved the best performance across all met-
rics, with perfect scores in Recall, Accuracy, and F-Measure (see Table 2). The
SVM, NB, BAG, and RF models also performed well, achieving high scores in
Recall, Accuracy, and F-Measure (see Figures 11 and 12). In contrast, the STK
and LWL models had relatively poor performances, with higher MAE and RMSE
scores (see Figure 10), and lower Recall and F-Measure scores. The CNN model
achieved a high Recall score but had a lower F-Measure score compared to the
other models. The use of machine learning algorithms for spatiotemporal crime
prediction has been an active area of research in recent years. Various machine
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Figure 10. Comparison of our proposed model’s performance to the other models using
MAE and RMSE

learning algorithms, including deep learning and ensemble methods, have been em-
ployed to improve the accuracy of spatiotemporal crime prediction models. One
recent study [4] proposed the use of a spatiotemporal convolutional neural net-
work (ST-CNN) to predict crime incidents based on spatiotemporal data. The
model used a combination of convolutional neural network and long short-term
memory networks to capture both spatial and temporal patterns in crime inci-
dents. The study achieved an accuracy of 86% in predicting crime incidents. An-

Figure 11. Comparison of our proposed model’s performance to the other models using
Recall and F-Measure
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Figure 12. Comparison of our proposed model’s performance to the other models using
Accuracy

other study [37] used a deep learning approach, specifically the Gated Recurrent
Unit (GRU), to predict crime incidents in Los Angeles and Chicago. The model
incorporated weather data and social media data in addition to spatiotemporal
data to improve its predictions. The study achieved an accuracy of 83.9% and
86.3% in predicting crime incidents. Ensemble models, which combine multiple
machine learning algorithms, have also been used in spatiotemporal crime predic-
tion. One study [12] proposed an ensemble random forest algorithm to predict
crime incidents. The model achieved an accuracy of 99.16% in predicting crime
incidents.

The results of our proposed (DeCXGBoost) model in this study demonstrate
the effectiveness of machine learning models in spatiotemporal crime prediction (see
Table 2 and Figure 12). The DeCXGBoost model also has the lowest Mean Ab-
solute Error (MAE), and Root Mean Square Error (RMSE) of 0.0000 and 0.0001
respectively making the model the best and more robust when compared to other
baseline models used in this study. The study can inform the development of better
models and algorithms in the future how to improve the accuracy and efficiency of
spatiotemporal crime prediction. Also, the findings can inform the development of
better models for prediction tasks in related fields, potentially leading to improve-
ments in various applications, such as healthcare, finance, and cybersecurity.

In summary, this study evaluated the performance of various machine learn-
ing models for spatiotemporal crime prediction. The proposed DeCXGBoost model
achieved the best performance across all metrics, with perfect scores in Recall, Ac-
curacy, and F-Measure. Other models like SVM, NB, BAG, and RF also performed
well. In contrast, the STK and LWL models had relatively poor performances, with
higher MAE and RMSE scores and lower Recall and F-Measure scores. The CNN
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model achieved a high Recall score but had a lower F-Measure score compared to
the other models.

The study also discussed other studies that employed machine learning algo-
rithms for spatiotemporal crime prediction, such as the use of spatiotemporal con-
volutional neural network (ST-CNN) and the Gated Recurrent Unit (GRU) models.
The proposed DeCXGBoost model outperformed these models, achieving a perfect
score across all metrics.

The results of this study demonstrate the effectiveness of machine learning mod-
els in spatiotemporal crime prediction, and the proposed DeCXGBoost model is
highly robust and accurate when compared to other baseline models. The study
provides valuable insights into the development of better models and algorithms in
the future to improve the accuracy and efficiency of spatiotemporal crime prediction.

5 CONCLUSIONS

This article analyses the outcomes of extracted larceny crime data from the Boston
crime dataset and presents exploratory data analysis with a novel proposed spa-
tiotemporal crime prediction model based on classification approaches. Python was
used to implement the proposed model. The experimental findings reveal that our
suggested DeCXGBoost model outperformed other crime categorization models for
all eight methods. For both accuracy and recall, our proposed model received a per-
fect score. Our proposed methodology can help law enforcement agencies fight crime
more effectively, channel resources more efficiently, foresee crime to some extent and
serve society. The presented proposed crime prediction model can be used to make
predictions and manage resources on any dataset or criminal data. For future im-
provement, real time crime prediction is an open direction for this work with more
advanced technologies.
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