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Abstract. In today’s modern world, the usage of technology is unavoidable, and
the rapid advances in the Internet and communication fields have resulted in the
expansion of wireless sensor network (WSN) technology. However, WSN has been
proven to be vulnerable to security breaches. The harsh and unattended deploy-
ment of these networks, combined with their constrained resources and the volume
of data generated, introduces a major security concern. WSN applications are
extremely critical, it is essential to build reliable solutions that involve fast and
continuous mechanisms for online stream analysis, allowing the identification of at-
tacks and intrusions. Our aim is to develop an intelligent and efficient intrusion
detection system by applying an important machine learning concept known as
ensemble learning in order to improve detection performance. Although ensemble
models have been proven to be useful in offline learning, they have received less
attention in streaming applications. In this paper, we examine the application of
different homogeneous and heterogeneous online ensembles in sensory data analy-
sis on a specialized WSN detection system (WSN-DS) dataset in order to classify
four types of attacks: Blackhole attack, Grayhole, Flooding, and Scheduling among
normal network traffic. Among the proposed novel online ensembles, both the het-
erogeneous ensemble consisting of an Adaptive Random Forest (ARF) combined
with the Hoeffding Adaptive Tree (HAT) algorithm and the homogeneous ensemble
HAT made up of 10 models achieved higher detection rates of 96.84 % and 97.2 %,
respectively. The above models are efficient and effective in dealing with concept
drift while taking into account WSN resource constraints.

Keywords: Wireless sensor networks, attack detection, network security, intrusion
detection system, ensemble learning, online learning, streaming data
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1 INTRODUCTION

Over the past decade, through the continued increasing growth of the Internet
the amount of services that come along with it has influenced almost every as-
pect of our human being’s life. Rapid technological advances in microelectronics
on the one hand and wireless communication technologies on the other have re-
sulted in the development of affordable, versatile, and ubiquitous embedded sensor
systems.

The Internet of Things (IoT) is an innovation that allows communication be-
tween an extensive variety of intelligent electronic devices and sensors. Wireless
Sensor Networks (WSN) are another rapidly developing technology that is employed
in IoT systems. WSNs have attracted the attention of researchers and research and
development departments, and it will not be an overstatement to consider this tech-
nology as one of the most researched areas in the last decade due to their ease
of deployment and their wide fields of real-time applications that differ based on
their own objectives and specific constraints. The areas of WSN’s applications are
various, including security and surveillance, home automation, health care services,
flora and fauna, urban, critical military surveillance, environment monitoring, and
so forth [I]. The WSN market was valued at $46.76 billion in 2020 and is expected
to reach $123.93 billion by 2026, at a Compound annual growth rate (CAGR) of
17.64% over the forecast period of 2021-2026. Therefore, the applications of the
WSN network are growing on a day-to-day basis in a considerable way.

However, a WSN has several resource constraints that include a limited amount
of energy, a short communication range, low bandwidth, and limited processing and
storage capabilities in each node. In many applications of WSNs, Sensor Nodes (SN)
are deployed in remote, hostile, and unattended locations; therefore, it is imprac-
tical to carry out maintenance on the nodes after installation. In fact, the energy
consumption of the sensors plays an important role in the lifetime of the network
and has become the predominant performance criterion in this field. Additionally, in
such an environment, these SNs may be subject to disruptive and malicious actions
that may outright damage the proper functioning of the network. Applications of
WSNs require a high level of security to provide basic security requirements such as
confidentiality, integrity, authentication, availability of the data traffic, and battery
life of the SNs [2, B]. Making these applications invulnerable to different types of
threats and attacks such as Blackholes, Sinkholes, Greyholes and so forth. These
malicious attacks all cause the network traffic to deviate from the normal traffic, for
instance, by causing the interception of data sent or received by a wireless medium
and, subsequently, the ability to modify and replay the data. The intruder can also
inject, saturate, or damage network equipment. In critical applications, such attacks
can be harmful and cause major economic and security damage.

There are different solutions that can be used to secure WSNs, such as key
management, authentication, or cryptography. Notwithstanding, these solutions do
not guarantee complete prevention of all existing attacks. The hardest challenge
that the entire security sector faces is detecting and dealing with upcoming attacks.
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However, it is well known that intrusion detection systems (IDSs) are very effective
security mechanisms to monitor the network for vicious attacks or unauthorized
access as a second line of defense and alert administrators on this subject []. To
summarize, IDS is necessary to defend against WSN attacks.

The application of Machine Learning (ML) models in order to detect possible
maliciousness in WSNs has largely increased in the last decade; however, the general
approach in the literature still considers the analysis as an offline learning problem,
where models are trained only once on historical data. Because of the rising amount
of data required to uncover increasingly sophisticated attacks and the large amount
of data generated in real-time that gushes through these networks on a regular
basis, traditional detection systems are inadequate for detecting malicious network
intrusions. The detection of attacks requires fast mechanisms for online analysis
of thousands of events per second. This encourages the creation of a fast IDS for
analyzing real-time network traffic and determining instantaneously whether it is
normal or exposed to any type of abnormal activity.

Stream machine learning consists of providing only a single sample (or a small
batch of instances) to the learning algorithm at every instant, with a very limited
processing time, a finite amount of memory, and the necessity of having trained
models at every scan of the streams. In addition, robust stream-based learning
algorithms must be capable of detecting drifts and updating their underlying models
since a shift in data distribution (concept drift) can sometimes impact these streams
of data, forcing the machine learning model to learn under non-stationary conditions.
And yet, individual online learning methods are generally distinguished by a reduced
detection rate. The second important requirement, aside from fast IDS, that should
be considered when designing any IDS scheme for WSN is that IDS must have a high
accuracy and detection rate when detecting intruders [5].

Ensemble Learning (EL) approaches are based on the idea of gaining benefit
from various classifiers by learning in an ensemble way. Since some classifiers may
perform well for detecting a specific type of attack but show poor performance on
other types. The EL works by building on the strengths of various classifiers through
a combination of their results and then generating a majority vote for classification.
As a result, EL leads to maximizing accuracy through a reduction in variance and
avoiding over-fitting [6].

In this paper, we propose an ensemble stream-based machine learning approach
for anomaly detection tailored to the WSN’s characteristics.

Contributions. Our main contributions are summarized as follows:

e Evaluate the classification performance of multiple online individual algo-
rithms, such as k-Nearest Neighbor (KNN), Support Vector Machine (SVM),
Naive Bayes (NB), and so on, under WSN for malicious intrusion detec-
tion.

e Developing an investigation methodology to study the performance of dif-
ferent homogeneous ensemble approaches, such as Hoeffding Adaptive Tree
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(HAT), and Adaptive Random Forest (ARF), along with heterogeneous en-
sembles based on two base-learners, such as ARF and NB.

e Fxamination of the ensemble performance with the existence of concept
drift.

Paper Organization. The remainder of this paper is organized as follows: Sec-
tion [2] presents related work in this field. Section [3] presents the proposed online
intrusion detection scheme for WSN. Section [4] presents the experimental envi-
ronments of our study, and Section 5] analyzes the performance evaluation of the
proposed approach. Finally, conclusions and future work are drawn in Section [6]

2 RELATED WORK

In defending against malicious attacks and misapprehensions in WSNs, various in-
trusion detection approaches have been proposed in the literature, and they are
mainly divided into anomaly detection, misuse detection, specification-based detec-
tion, and hybrid system detection [7]. Recent research has been mostly concerned
with anomaly-based IDS; thus, our research focuses on this class. Anomaly-based
IDS searches for both known and unknown patterns [8]. Some credible anomaly
detection approaches are currently provided based on the requirements of wireless
sensor networks, notably machine learning algorithms to create a classification model
based on network traffic characteristics, artificial immune algorithms, clustering al-
gorithms, and statistical learning models.

Algahtani et al. [9] have proposed a GXGBoot model to detect minority classes
of attacks based on a genetic algorithm and an extreme gradient boosting (XG-
Boost) classifier in highly imbalanced data traffic in wireless sensor networks. A set
of experiments were conducted on the WSN-DS dataset using held-out splitting
and 10 fold cross-validation techniques. 10-fold cross-validation tests achieved sat-
isfactory results with high detection rates of 98.2%, 92.9%, 98.9%, and 99.5 % for
flooding, scheduling, grayhole, and blackhole attacks, respectively, in addition to
99.9 % for normal traffic.

Park et al. [I0] compared a random forest (RF) classifier with an artificial neural
network (ANN) algorithm for detecting the type of DoS attacks in WSNs, and it
is found that the proposed RF classifier attains the best F1-Score results, which
are 96 %, 99 %, 98 %, 96 % and 100 % for flooding, blackhole, grayhole, scheduling
(TDMA), and normal attacks, respectively. However, the outcome of this analy-
sis was for a limited number of instances in the testing phase, which represents
approximately 25 % (94,042 instances) of the results.

Biswas and Samanta [I1] introduced an anomaly detection strategy in WSNs
utilizing ensemble random forest (ERF), with Decision Tree, Naive Bayes, and K-
Nearest Neighbor as the ensemble’s base learners. The random forest was also built
using bootstrap sampling. The authors tested the ERF algorithm on a real-world
sensor dataset, namely the activity identification based on multi-sensor data fusion
(AReM) dataset.
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Dong et al. [I2] proposed an intrusion detection model based on the information
gain ratio and the bagging algorithm for detecting DoS attacks in cluster-based
WSNs. To eliminate unnecessary features, the authors used the information gain
ratio. The Bagging algorithm was used to build an ensemble algorithm that trained
a series of C4.5 decision trees in order to improve them. To test the model’s accuracy,
the proposed model was implemented using both the NSL-KDD and the WSN-DS
datasets separately.

Otoum et al. [I3] proposed a novel methodology for detecting attacks in WSNs
that uses an ensemble classifier with Random Forest (RF), Density-Based Spatial
Clustering of Applications with Noise (DBSCAN), and Restricted Boltzmann Ma-
chine (RBM) as basis classifiers. As a combination technique, Bayesian Combination
Classification (BCC) has been used. For performance comparison, Independent BCC
(IBCC) and Dependent BCC (DBCC) have been examined. The performance com-
parisons state that the ensemble technique of DBCC-based IDS shows a promising
result over the individual methods in attack detection.

Malmir and Rezvani [I4] proposed a novel ensemble approach for anomaly detec-
tion in WSNs using Time-overlapped Sliding Windows. Evaluation results confirmed
that the proposed method has a strong ability for attack classification and effectively
improves the security system in terms of convenient metrics in the area of anomaly
detection systems.

Kumari and Mehta [I5] developed an ensemble-based model for intrusion de-
tection by combining these two machine learning techniques, J48 DT and SVM.
The KDD99 intrusion detection dataset was optimized using particle swarm op-
timization to identify the nine most relevant and critical attributes, and WEKA
was utilized to implement classification. The suggested model yielded results with
a higher accuracy of 99.1 % and a lower FAR of 0.9 %.

Fitni and Ramli [I6] proposed an ensemble-based AIDS model using DT, LR,
and gradient boosting as inputs to an ensemble learning stacking classifier. The
Chi-squared correlation approach was used to determine 23 relevant characteristics
from the Communications Security Establishment and Canadian Institute for Cy-
bersecurity 2018 (CSE-CIC-IDS2018) dataset. With 98.8 % percent accuracy and
a 97.1 % percent detection rate score, the proposed model outperforms seven indi-
vidual classifiers.

However, none of the aforementioned works take into account continuous stream-
ing data, and rarely has work been done for anomaly detection for WSNs based on
online ensemble learning in real-time. There has been little research into anomaly
detection in streaming data for embedded systems.

The work in [I7] by authors Bosman et al. presents a new lightweight architecture
focused on ensembles of incremental learners for online anomaly detection in IoT
applications, including WSNs. Also in environments with little a priori knowledge,
their decentralized methodology outperformed each individual centralized offline
learner alternative in detecting anomalies, determining that ensemble schemes are
realistic to adopt.
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Ding et al. [I8] proposed a distributed online ensemble anomaly detector method
in resource-constrained WSNs. Ensemble pruning based on biogeographical-based
optimization (BBO) was employed to reduce the high resource demand and produce
an optimized detector that performs at least as well as the original ones. The
experiments operated on a real WSN dataset and demonstrated the effectiveness of
the proposed method.

Alrashdi et al. [I9] proposed a framework for identifying attacks in the fog
node by employing the Online Sequential Extreme Learning Machine (OS-ELM)
and majority voting to discover anomalies. The authors utilized the NSL-KDD to
analyze and test their framework.

Ifzarne et al. [20] proposed an online learning classifier utilizing the information
gain ratio to choose the relevant features of the sensor data with an online Passive
aggressive algorithm in order to identify different types of DoS attacks. The WSN-
DS dataset was utilized by the authors for the experiment.

Martindale et al. [2I] proposed an approach for detecting intrusions in IoTs
by exploring the performance and run-time trade-offs of a set of several online in-
dividual algorithms as well as a few homogeneous and heterogeneous ensemble ap-
proaches. The massive online analysis (MOA) framework was used for implementing
their approach. The 11 algorithms were run against three different KDDCup99 sub-
sets. This study demonstrated that the ensembles outperformed the individual base
learners, but at a higher cost in terms of run time, and the heterogeneous ensem-
ble, which consisted of an ARF combined with HAT, outperformed the other online
ensembles.

Although there are numerous studies exploring the use of online ensemble ap-
proaches and applying machine learning methods to streams of data, the majority
of them ignore resource constraints and are targeted for Internet-of-Things (IoT)
devices rather than WSNs.

3 RESEARCH METHODOLOGY
3.1 WSN Network Topology Based on LEACH Routing Protocol

Many researchers used IDS to perform their work for WSN. Their work varies de-
pending on the WSN topology and the protection method used, according to [2].
WSN topologies are primarily divided into two types: flat-based and cluster-based.
The LEACH (Low Energy Adaptive Clustering Hierarchy) protocol is one of the
main proactive sensor network protocols and a widely used clustering technique in
WSN. LEACH was proposed by Wendi B. Heinzelman of MIT [22]. Tt is a self-
organizing, hierarchical routing protocol based on adaptive clustering that is used
in WSN to reduce the energy consumption of network elements in order to pro-
long their lifetime [23] 24, 25]. The LEACH consists of three parts: Sensor nodes
(SN), cluster head (CH) nodes, and base stations (BS). The LEACH protocol’s key
concept is to group nodes into clusters in order to spread energy among all nodes
in the network. The CH nodes gather and process the SN data in the cluster and
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transmit it to the base station. The cluster head nodes can monitor the behavior of
the network traffic passing by in real time, and the intrusion detection model can be
deployed as a purely centralized one where the IDS is installed at the base station.
BS detects intrusions by analyzing the monitored network activity data.

(((‘7)) Base Station
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O Sensor Node
. Cluster Head

Node RN

Figure 1. WSN network topology

3.2 Classification Algorithms

There are numerous models and algorithms for machine learning, according to the
“no free lunch” (NFL) theorem stated by Wolpert and McReady [26] claim that
in ML “there is no single learning algorithm that universally performs best across
all domains” [27]. The NFL theorem emphasizes the effectiveness of experiment-
ing with various machine classifiers while tackling classification problems. Testing
different classifiers is the most precise technique to solve domain-specific problems;
in our situation, the problem is intrusion detection. We will focus on two types of
classification algorithms: single classifiers and ensembles.

3.2.1 Single Classifier

Support Vector Machine (SVM): Is a supervised learning algorithm that can
be used for both linear and nonlinear problems. In SVMs, the idea is to find
a max-margin separation hyperplane in the n-dimensional feature space. Be-
cause the separation of hyperplanes is determined by a small number of support
vectors, SVMs can yield satisfying results with small-scale training sets. On the
other hand, SVMs are sensitive to noise around the hyperplane.

k-Nearest Neighbors (KNN): Is a supervised learning algorithm that is very
simplistic and can be used to fill in missing values and resample datasets. The
core idea is to predict the class of a data sample using “feature similarity”. In
the KNN algorithm, the calculation of the distance from the neighbors is used
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to classify a sample based on its neighbors. The performance of KNN models
is heavily influenced by the parameter k. As long as the value of K is very
small, the more complex the model, the higher the risk of overfitting. On the
other hand, the larger k, the simpler the model and the lower the fitting ability
[28, 29]. The value of K in our study is equal to 10.

Naive Bayes (NB): Is a well-known classification technique that is based on con-
ditional probability and the concept of attribute independence and uses Bayes’
theorem to forecast the likelihood or probability of an event occurring based on
previous observations of related events [30]. This algorithm is robust to noise
and able to learn incrementally; on the other hand, the NB method performs
poorly on attribute-related data.

Passive Aggressive (PA): Is a family of online learning algorithms generally used
for large-scale learning that can be adopted for both classification and regression
challenges. It is similar to the SVM classifier. The PA classifier attempts to find
hyperplanes that can be used to split the instances into halves [31].

Perceptron (P): Is a supervised learning algorithm for classification, and it is
probably the most basic type of neural network model. The algorithm is made
up of a single node or neuron that processes a row of data and predicts a class
label.

Hoeffding Tree (HT): An extremely fast decision tree technique for streaming
data has been proposed by Domingos and Hulten [32] in which we wait for new
instances to arrive rather than reusing instances to compute the best splitting
attributes. The HT’s most intriguing characteristic is that it constructs a tree
that provably converges to the tree constructed by a batch learner with suitably
large data.

Hoeffding Adaptive Tree (HAT): Adaptive tree monitors the performance of
branches on the tree using the adaptive windowing (ADWIN) algorithm [33] to
recent data and replaces them with new branches when their accuracy declines
if the new branches are more accurate.

3.2.2 Ensemble Classifier

When compared to a single model, ensemble learning enhances machine learning
results by combining several models to improve predictive performance. There are
two possibilities for an ensemble of classifiers:

Homogeneous Ensembles: An ensemble of the same type of classifiers. A well-
known example of this is random forests. A random forest is a homogeneous
ensemble that is a collection of many individual decision trees.

1. Adaptive Random Forest (ARF): A streaming classifier devoted to evolving
data streams, originally proposed in [34]. ARF uses a similar approach to
the classical Random Forest algorithm [35]. In our approach, the ARF was
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performed with the default settings, which consisted of ten HTs algorithms
as base learners and included a drift detection operator. ARF is made up of
20 HT algorithms and is tagged “ARF (20)”.

2. Online Bagging: Authors in [36] proposed the online bagging algorithm,
which employs a weighting approach to approximate the initial random sam-
pling with replacement of instances, giving each arriving example a weight
according to Poisson (1).

Heterogeneous Ensembles: An ensemble of different classifiers, which, for exam-
ple, can contain SVM classifiers, neural network classifiers, and decision trees
all at the same time.

1. Weighted Majority (WM): A simple but widely studied algorithm proposed
by [37] that makes predictions based on a series of expert advices and learns
to adjust its weights over time.

3.3 The Proposed Online Ensemble Intrusion Detector Model for WSNs

The experiments in this work are designed to provide guidance on the appropriate
ensemble technique for complying with the requirements of an ideal IDS for WSNs,
and this is accomplished by comparing the output of homogeneous ensembles com-
posed of the same algorithm to build all the classifiers with that of heterogeneous
ensembles composed of different algorithms. In our approach, we propose online
ensemble classification methods that attain a higher detection rate with the aim of
distinguishing malicious attacks while taking into account the resource constraints
of WSNs.

Designing an ensemble often lies in two main challenges, which are the choice of
available base classifiers and the combiner methods:

e The detection of intrusions in our study consists of using online supervised learn-
ing, and the performance is measured through the use of the prequential (test-
then-train approach) evaluation method, which was developed specifically for
stream applications, where each sample is tested and then trained on in sequence
by constructing a prediction with our current model for each incoming obser-
vation in the stream and scoring that prediction based on how well it matches
the actual observation. The online model is then updated with the observation,
and we proceed to the next instance. This evaluation technique is discussed in
greater detail in the following section.

e We have used WSN-DS, a well-known dataset built exclusively for WSNs, to im-
prove DoS detection and classification, which has been used in previous research
such as [0, B8, [12], and we investigated the application of seven stand-alone al-
gorithms, i.e., SVM, HAT, KNN, NB, PA, P, and HT, to detect intrusions in
WSNE.
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Figure 2. The structure of the proposed approach

e Second, we inspected different homogeneous ensemble approaches, such as HAT
and ARF, using an online bagging algorithm. The final online bagging model
predicts the simple majority vote of the basis classifier predictions.

e The performance of the ensemble is determined by two properties: The individ-
ual success of the ensemble’s base classifiers and the independence of the base
classifiers results from one another. We compared numerous online classifiers
to determine the best appropriate classifiers for online ensemble learning, and
based on the results, the algorithms (HAT, ARF, and NB) were chosen as base
learners for the heterogeneous ensembles since they provided the highest pre-
dictive accuracy on streaming data. We employed a majority vote ensemble to
combine the results of two different stable learners in order to achieve both speed
and precision at the same time. Three heterogeneous ensembles are proposed:

HAT + ARF, ARF + NB, and NB + HAT.

4 EXPERIMENTAL ENVIRONMENT
4.1 Experimental WSN-DS Dataset

In this work, we utilized the simulated wireless sensor network-detection system
(WSN-DS) dataset developed by [38], and the Network Simulator NS-2 was used
to simulate the wireless sensor network environment [39]. Based on the LEACH
routing protocol the required data from the network with different attack scenarios
are gathered. The dataset consists of 23 features identifying the state of each sensor.
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The LEACH protocol was selected because it is one of the most well-known energy-
efficient clustering algorithms for WSNs. The number of samples within the WSN-
DS dataset is 374 661. Four types of Denial of Service (DoS) attacks are implemented
in the constructed dataset: Blackhole, Grayhole, Flooding, and Scheduling attacks,
in addition to the normal behavior (no-attack) records. Using the label encoding
technique, all of the categorical values of the label feature in the sample data are
converted to numeric values to eliminate their impact on the algorithms.
Simulation parameters are summarized in Table[I} The distribution of the data
is illustrated in Table[2l Though only 19 dimensional feature data involving the class
label were in the dataset file, as shown in Table 3] The following are the technical
characteristics of the computer used throughout the implementation phase:

e Central Processing Unit: Intel (R) Core (TM) i7-4610M CPU @ 3.00 GHz;

e Random Access Memory: 8 GB;
e Operating System: Windows 7 Pro 64-bit.

Parameter Value
Number of nodes 100 nodes
Number of clusters 5

Network area 100 m x 100 m
Base station location (50175)

Size of packet header 25 bytes

Size of data packet 500 bytes
Maximum transmission range | 200 m

MAC protocol CSMA/TDMA
Routing protocol LEACH
Simulation time 3600s

Table 1. WSN Simulation parameters

Types of Attack | Quantity | Proportion (%)
Normal 340066 90.77
Grayhole 14596 3.90
Blackhole 10049 2.68
Scheduling 6638 1.77
Flooding 3312 0.88

Table 2. Distribution of WSN-DS dataset

4.2 The Scikit-Multiflow Framework

The experimental setup of this research aims to provide reproducibility, allowing
different researchers to achieve with a high degree of agreement the same results ob-
tained in this experiment by using the same experimental framework. However, the
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155:};2? Symbol Feature Name Description
1id Node Id A unique ID number of the sensor
node
2| Time Time The run-time of the node in the
simulation
3|Is.CH Is CH Describes if the node is a CH or
not
4| Who_CH Who CH Cluster head ID
5 | Dist_To_CH Distance to CH Distance between node and CH
6| ADV_S ADV CH sends Number of the advertise CH’s
broadcast messages sent to nodes
7/ ADV_R ADV CH receives Number of advertise messages re-
ceived by the nodes from CH
8| JOIN_S Join request send Number of join request messages
sent by the nodes to the CH
9| JOIN_R Join request receive | Number of join request messages
received by CH from nodes
10 | SCH_S ADV SCH sends Messages of TDMA schedule
broadcast sent to the nodes
11| SCH_R ADV SCH receives | Number of scheduled messages re-
ceived by the CH
12 | Rank Rank Node order in TDMA scheduling
13| DATA_S Data sent Number of data packets sent from
the node to its CH
14 | DATAR Data received Number of data packets received
by the node from the CH
15| Data_Sent_To_BS | Data sent to BS Number of data packets that are
sent from node to the BS
16 | dist_CH_To_BS Distance CH to BS | Distance between CH and BS
17 | send_code Send code The sending code of the cluster
18 | Consumed_Energy | Energy consumption | Energy consumed
19 | Attack type Attack type Type of attacks or normal traffic

Table 3. Features of the WSN-DS dataset

current experimental machine learning tooling is mainly divided between Java-based
and Python-based implementations. Some researchers implement their experiments
using tools built around Weka [40] or the data stream mining framework MOA [HI].
Others prefer solutions from the scikit-learn environment or the multioutput stream-
ing platform scikit-multiflow [42].

Scikit-multiflow is a Python framework for learning from data streams and multi-
output/multi-label learning. Scikit-multiflow is based on well-known open-source
frameworks like scikit-learn, MOA, and MEKA. It includes techniques for classi-

fication, regression, concept drift detection, and anomaly detection.

It also has
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a collection of data stream generators and evaluators. scikit-multiflow is intended
to work with Python’s numerical and scientific libraries, NumPy and SciPy, as well
as Jupyter Notebooks.

4.3 Evaluation Technique

Considering the unbounded real-world streams of non-stationary data, classic tech-
niques for evaluating the model on batch data such as train-test split and cross-
validation do not apply to models trained on streamed data [43]. To succeed in
dealing with this problem and obtaining accurate measurements, over time, we used
the widely known prequential evaluation method in our experiment.

The Prequential evaluation method or the interleaved test-then-train method.
Each individual sample is used to test the model, which means to make predictions,
and then the same sample is used to train the model, and from this the accuracy
can be incrementally updated. When the evaluation is intentionally performed in
this order, the model is always tested on instances that it has not yet seen. This
approach has the favorable condition that no holdout set is needed for testing,
making maximum use of the available data.

4.4 Evaluation Metrics

The adequacy of the wireless sensor network intrusion detection algorithms was
measured using the following measures: Accuracy (Acc), precision (P), recall (R),
F1-Score (F), as well as the total running time (Training Time + Testing Time) in
seconds (s) of the classification algorithm are collected and compared. Table [f] shows
the definitions of TP, FP, TN and FN.

An abnormal flow is treated as Positive (P) and a normal flow is treated as
Negative (N).

True Positive: The model correctly predicts the positive class. The model cor-
rectly predicts that an instance is an attack by the classifier.

True Negative: The model correctly predicts the negative class. The model cor-
rectly predicts that an instance is normal.

False Positive: The model incorrectly predicts the positive class. The data sam-
ples (attack) were incorrectly predicted as normal.

False Negative: The model incorrectly predicts the negative class. The normal
data samples were incorrectly predicted as an attack.

These performance evaluation metrics are calculated as follows:

Accuracy (Acc): Represents the percentage of instances correctly classified. This
is the number of correct predictions divided by the total number of predictions.
Accuracy alone is not sufficient as a measure of performance, especially for
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Positive real class | Negative real class
(Abnormal) (Normal)

Positive predicted class (Abnormal) | True Positive (TP) | False Negative (FN)
Negative predicted class (Normal) | False Positive (FP) | True Negative (TN)

Table 4. Definition of TP, FP, TN and FN

datasets with unbalanced classes. It can be written as:

TP+ TN (1)
TP+ FP+ FN+ TN

Accuracy =

Precision (P): Or Positive Predictive value (PPV) represents how good the model
is at assigning positive events to the positive class. That is, how accurate the
attack prediction is, and it is defined as follows:

TP
Precision = ——— 2
recision TP+ FP (2)

Recall (R): It is also called the “True Positive Rate (TPR)”, “sensitivity” and
“detection rate”, and it measures how good the model is at detecting the positive
class. So, given that attacks are the positive class, it represents the percentage
of actual attacks that were correctly identified. Equation represents the
formula for calculating recall:

TP
ll = Detecti ==
Reca etectionRate TP FN (3)

F1-Score (F): Or F1-Measure represents the harmonic mean of Precision and Re-
call. Compared to accuracy, the fl-score is the best metric to check the effective-
ness of an intrusion detection algorithm when the IDS model uses an unbalanced
dataset and we search for a balance between precision and recall.

2x P xR

F1-Score = ﬁ (4)

5 EXPERIMENTAL RESULTS
5.1 Individual Algorithms

This subsection presents and discusses the performance evaluation results of each
algorithm when running individually. As can be seen from Figure B the R of the
HAT method reaches 95.86 % which is the highest detection rate compared with
other online methods. The Acc of this method is 99.14 %, and the P and F are
respectively 97.17 % and 96.48 %. In second place, Naive Bayes had a detection rate
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 Accuracy(%) 99,14

97,72

96,64

95,85

91,76

91,75

91,74

' Recall(%) 95,86

89,13

92,98

63,62

60,56

60,64

60,46

i Precision(%) 97,17

91,75

756

90,25

60,66

60,61

60,46

Fi-score(%) 96,48

90,32

80,81

68,92

60,61

60,54

60,46

Figure 3. Comparison of performance of different individual models results

Table 5. Running time (Training Time + Testing Time) in seconds (s)

Models | Run-time (s)
KNN 1089.67
PA 881.58
PM 785.87
SVM 781.18
HAT 218.08
NB 141.95
HT 100.28

of 92.98 % followed by the HT method with a R of 89.13%. In summary, the HAT

method performs better than the other online intrusion detection methods.

Comparing the model total running time, we can see that the HT had the fastest
run-times, followed by the model NB, and in third place, the HAT method has a
lower time than that of KNN, PM, SVM, and PA. On the other hand, the KNN
model exhibits a considerably longer running time of approximately 18 minutes
compared with other tested methods. The necessity to continuously calculate the
distance between the predicted target and every other sample still in memory by
the KNN algorithm might give an explanation for the long running time. In some
critical streaming applications, such as predicting network security intrusions, a fast
but less accurate model is often preferred over a slow but more accurate model.
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5.2 Ensemble Algorithms

5.2.1 Homogeneous Ensembles

Figure [ displays diverse homogeneous ensemble approaches, where each ensemble
is made up of multiple instances of the same base learner. All of the ensemble ap-
proaches that have been tested have produced excellent results, particularly HAT
(10), which has a detection rate (R) of 97.2%. Immediately afterwards, ARF (20)
with a R that attains 96.94 %. When comparing Figure [] with Figure [ in terms
of results concerning HT, HT (10), HAT and HAT (10), as indicated by the ho-
mogeneous ensemble results, combining numerous online learnables for prediction
enhances the detection of attacks greatly when compared to single predictors. In-
creasing the number of trees substantially enhances performance, as is the case when
comparing the results of AFR (10 and 20).

We can observe from Table [f] that HT (10) is faster than the rest of the online
homogeneous ensembles and ARF (20) has a higher classification time. Our results
highlight that the running time of the ensemble algorithms is significantly longer
than the individual methods when comparing Table [f| with Table[§ The number of
estimators does have an impact on the model’s running time.

100
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HT(10) HAT(10) ARF(10) ARF(20)
m Accuracy(%) 99,25 99,48 99,62 99,64
1 Recall(%) 96,09 97,2 96,47 96,94
Wl Precision(%) 98,26 98,29 98,92 99,09
Fl-score(%) 97,12 97,72 97,65 97,98

Figure 4. Homogeneous ensembles results

5.2.2 Heterogeneous Ensembles

Restating that the ARF was run with the default settings, which included 10 HTs
algorithms. As can be seen from Figure [J] which presents the predictive performance
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Table 6. Running time metric in seconds (s)

Models | Run-time (s)
HT (10) 971.95
HAT (10) 2400.01
ARF (10) 2049.89
ARF (20) 1214.41

ARF+HAT ARF+NB

'

HAT+NB
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m Accuracy(%)

99,42

96,8

96,69

i Recall(%)

96,84

93,05

92,49

i Precision(%)

97,23

77,2

76,65

F1-score(%)

96,96

81,55

80,99

Figure 5. Heterogeneous ensembles results

of the heterogeneous ensembles, the online evaluation results show that the detec-
tion rate of the method (ARF +HAT) in this paper reaches 96.84 %, which is higher
than that of (ARF 4+ NB) and (HAT + NB). The Acc, P, and F are respectively
99.42 %, 97.23% and 96.96 %. According to the performance comparisons of ARF
with a R of 96.47% and HAT with a R of 95.86 %, the heterogeneous ensemble
of (ARF 4 HAT) methodology outperforms the seven stand-alone algorithms and
the homogeneous ensemble of ARF (10) in overcoming the misclassification of at-
tacks. The reason is that the accuracy of individual models and the diversity among
individual models are all aspects that contribute to the heterogeneous ensemble’s

success.

Table 7. Running time metric in seconds (s)

Models Run-time (s)
ARF + HAT 2345
ARF + NB 2192
HAT + NB 403
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We can see from Table [7] that the heterogeneous ensemble of the (HAT + NB)
technique has a relatively short running time as it contains two base learners. On
the other hand, the (ARF + HAT') and (ARF + NB) classification times are close to
each other, with the (ARF + HAT) method being more time-consuming and having
the correspondingly highest detection rate.

5.2.3 Concept Drift Results

Accuracy
1.00 A
0.75 A |
g 0.50 -
m
0.25 A
0.00 A
0 50000 100000 150000 200000 250000 300000 350000
Recall
1.00
0.75 4
T 0.50 -
g
0.25 A
0.00 4
0 50000 100000 150000 200000 250000 300000 350000
Samples
—— ARF+HAT (current, 200 samples) ===+ ARF+HAT (mean)
= HAT(10) (current, 200 samples) ==+« HAT(10) (mean)

Figure 6. Concept drift results

The existence of concept drift in streaming data is a significant element that
contributes to a decrease in predictive accuracy over time. Figure [f] depicts a plot of
the predictive accuracy offered over time for the homogencous ensemble HAT (10)
as well as the heterogeneous ensemble ARF+HAT presented by (orange) and (blue),
respectively, both of which performed favorably in terms of accuracy and classifi-
cation of attacks. In terms of concept drift, however, there is no evident perfor-
mance advantage between these two. While the HAT (10) ensemble’s classifica-
tion performance suffers from significant dips in our results, there are several small
areas where the HAT (10) ensemble tackles concept drifts more effectively than
the ARF 4+ HAT. Even though the model performance of HAT (10) was similar to
the combined ARF + HAT, the results demonstrated that the performance of the
model alone does not necessarily indicate how an algorithm responds to concept
drift.
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Based on the experimental findings, the following conclusions can be drawn:

e The results showed that nearly all ensemble techniques, both homogeneous and
heterogeneous, significantly outperformed single classification models in terms of
Acc, R, P, and F1 performance measures, although at the expense of increasing
run-time.

e Thus, based on our experiments, depending on specific application requirements
and resource constraints, one can note by comparing the models’ performances
of the seven ensembles that the best model can be either the heterogeneous
ensemble (ARF+HAT) or the homogeneous ensemble HAT (10), since both have
delivered the highest predictive performance and overcome the misclassification
of attacks in WSNs.

e The online ensemble algorithm demonstrates great abilities to continuously pro-
cess traffic data on a large scale because, while the classifier learns and attempts
to train the model better, the detection rate of attacks continues to improve
over time/iterations as made evident by the improvement in recall, and it is
also applicable to any application, making it advantageous compared to existing
models that are specific to their applications.

6 CONCLUSION

Wireless sensor networks are often referred to as an emerging technology that will
impact our daily lives. These electromechanical components, which are very small
and communicate via a ubiquitous wireless network, widely open the horizons of
applications built up to now. Being exposed to numerous risks, the main challenge
of the evolution of intrusion detection systems in WSNs is to identify the attacks with
great accuracy and respond to the constraints and challenges required to extend the
life of the entire network. Given that much more attention is paid to the detection
techniques used, this goal could be achieved in a variety of ways.

Our paper presents a novel perspective on the malicious security attacks in
WSNs by involving a fast intrusion detection scheme based on ensemble learning that
satisfies the dynamic and continuous streaming of data. Our experiments with the
WSN-DS attack database show that the ensemble approach performed better than
any online classifier as an individual learner, despite having a generally longer run-
time in distinguishing attacks from benign samples; thus, we propose heterogeneous
ensemble (ARF + HAT) and homogeneous ensemble HAT (10), as both achieve
higher detection rates in the aim of distinguishing malicious attacks while taking
into account the resource constraints of WSNs when compared to other intrusion
detection methods, and its prediction performance improves over time as new data
points are integrated. In general, our proposed model is effective for real-time WSN
intrusion detection.

In future work, we will explore different methods, such as preprocessing with
data reduction and parameter tuning, that can improve the efficiency of the classifier.
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The performance can be further improved using deep learning techniques to enhance
WSN’s attack detection performance.

REFERENCES

[1] MARRIWALA, N.—RATHEE, P.: An Approach to Increase the Wireless Sensor Net-
work Lifetime. 2012 World Congress on Information and Communication Technolo-
gies, IEEE, 2012, pp. 495-499, doi: [10.1109/WICT.2012.6409128!

OSANAIYE, O.A.—ALFA, A.S.—HANCKE, G.P.: Denial of Service Defence for
Resource Availability in Wireless Sensor Networks. IEEE Access, Vol. 6, 2018,
pp. 6975-7004, doi: 10.1109/ACCESS.2018.2793841.

[3] SaLmoN, H.M.—DE  Farias, C.M.—LOUREIRO, P.—PIRMEZ, L.—
RosseTTO, S.—DE A. RODRIGUES, P.H.—PIRMEZ, R.—DELICATO, F.C.—
DA CosTA CArRMO, L.F.R.: Intrusion Detection System for Wireless Sensor
Networks Using Danger Theory Immune-Inspired Techniques. International Jour-
nal of Wireless Information Networks, Vol. 20, 2013, No. 1, pp. 39-66, doi:
10.1007/s10776-012-0179-z.

[4] ABDUVALIYEV, A.—PATHAN, A.S.K.—ZHou, J.—RomaN, R.—Wong, W. C.:
On the Vital Areas of Intrusion Detection Systems in Wireless Sensor Networks.
IEEE Communications Surveys and Tutorials, Vol. 15, 2013, No. 3, pp. 1223-1237,
doi: 10.1109/SURV.2012.121912.00006

[6] MITROKOTSA, A.—KARYGIANNIS, A.: Intrusion Detection Techniques in Sensor
Networks. In: Lopez, J., Zhou, J. (Eds.): Wireless Sensor Network Security. I10S
Press, 2008, pp. 251-272.

[6] OpiTZ, D.—MACLIN, R.: Popular Ensemble Methods: An Empirical Study. Journal
of Artificial Intelligence Research, Vol. 11, 1999, pp. 169-198, doi: 10.1613/jair.614.

[7] SEN, J.—MEHTAB, S.: Machine Learning Applications in Misuse and Anomaly
Detection. In: Kalloniatis, C., Travieso-Gonzalez, C. (Eds.): Security and Privacy
from a Legal, Ethical, and Technical Perspective. IntechOpen, Rijeka, 2020, doi:
10.5772 /intechopen.92653.

[8] ZAMRY, N.M.—ZAINAL, A.—RaAssaM, M.A.—ALKHAMMASH, E.H.—

GHALEB, F.A.—SAEED, F.. Lightweight Anomaly Detection Scheme Using

Incremental Principal Component Analysis and Support Vector Machine. Sensors,

Vol. 21, 2021, No. 23, Art. No. 8017, doi: [10.3390/s21238017.

ALQAHTANI, M.—GUMAEI, A.—MATHKOUR, H.—MAHER BEN IsSMAIL, M.:

A Genetic-Based Extreme Gradient Boosting Model for Detecting Intrusions in

Wireless Sensor Networks. Sensors, Vol. 19, 2019, No. 20, Art.No. 4383, doi:

10.3390/519204383.

[10] LE, T.T.H.—PARrk, T.—CHO, D.—KiM, H.: An Effective Classification for
DoS Attacks in Wireless Sensor Networks. 2018 Tenth International Conference
on Ubiquitous and Future Networks (ICUFN), IEEE, 2018, pp. 689-692, doi:
10.1109/ICUFN.2018.8436999.

[2

9


https://doi.org/10.1109/WICT.2012.6409128
https://doi.org/10.1109/ACCESS.2018.2793841
https://doi.org/10.1007/s10776-012-0179-z
https://doi.org/10.1109/SURV.2012.121912.00006
https://doi.org/10.1613/jair.614
https://doi.org/10.5772/intechopen.92653
https://doi.org/10.3390/s21238017
https://doi.org/10.3390/s19204383
https://doi.org/10.1109/ICUFN.2018.8436999

An OEL Model for Detecting Attacks in WSNs 1033

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Biswas, P.—SAMANTA, T.: Anomaly Detection Using Ensemble Random Forest in
Wireless Sensor Network. International Journal of Information Technology, Vol. 13,
2021, No. 5, pp. 2043-2052, doi: 10.1007/s41870-021-00717-8.

Dong, R. H—YAN, H. H.—ZHANG, Q. Y.: An Intrusion Detection Model for Wire-
less Sensor Network Based on Information Gain Ratio and Bagging Algorithm. In-
ternational Journal of Network Security, Vol. 22, 2020, No. 2, pp. 218-230, doi:
10.6633 /IJNS.202003_22(2).05.

OtouM, S.—KaNTARCI, B.—MourTaH, H.T.: A Novel Ensemble Method
for Advanced Intrusion Detection in Wireless Sensor Networks. ICC 2020, 2020
IEEE International Conference on Communications (ICC), 2020, pp. 1-6, doi:
10.1109/ICC40277.2020.9149413|.

MALMIR, Z.—REZVANI, M. H.: A Novel Ensemble Approach for Anomaly Detection
in Wireless Sensor Networks Using Time-Overlapped Sliding Windows. Journal of
Computer and Robotics, Vol. 12, 2019, No. 1, pp. 1-13.

KuMARI, A.—MEHTA, A.K.: A Hybrid Intrusion Detection System Based on De-
cision Tree and Support Vector Machine. 2020 IEEE 5" International Conference
on Computing Communication and Automation (ICCCA), 2020, pp. 396-400, doi:
10.1109/ICCCA49541.2020.9250753.

Frrni, Q.R.S.—RaMLI, K.: Implementation of Ensemble Learning and Fea-
ture Selection for Performance Improvements in Anomaly-Based Intrusion De-
tection Systems. 2020 IEEE International Conference on Industry 4.0, Artificial
Intelligence, and Communications Technology (IAICT), 2020, pp. 118-124, doi:
10.1109/TAICT50021.2020.9172014.

BosMmaN, H. H. W. J.—Iacca, G.—TEJADA, A.—WORTCHE, H. J.—LIOTTA, A.:
Ensembles of Incremental Learners to Detect Anomalies in Ad Hoc Sensor Networks.
Ad Hoc Networks, Vol. 35, 2015, pp. 14-36, doi: 10.1016/j.adhoc.2015.07.013.

DiNG, Z.—WAaNG, H.—FEI, M.—Du, D.: A Novel Distributed Online Anomaly
Detection Method in Resource-Constrained Wireless Sensor Networks. International
Journal of Distributed Sensor Networks, Vol. 11, 2015, No. 10, Art. No. 146189, doi:
10.1155/2015/146189.

ALRASHDI, .—ALQAZZAZ, A.—ALHARTHI, R.—ALOUFI, E.—ZoOHDY, M. A.—
MinGg, H.: FBAD: Fog-Based Attack Detection for IoT Healthcare in Smart
Cities. 2019 IEEE 10" Annual Ubiquitous Computing, Electronics and Mobile
Communication Conference (UEMCON), 2019, pp. 0515-0522, doi: [10.1109/UEM-
CONA47517.2019.8992963.

IFZARNE, S.—TABBAA, H.—HAFIDI, I.-—LAMGHARI, N.: Anomaly Detection Us-
ing Machine Learning Techniques in Wireless Sensor Networks. Journal of Physics:
Conference Series, Vol. 1743, 2021, No. 1, Art.No. 012021, doi: |10.1088/1742-
6596/1743/1/012021.

MARTINDALE, N.—ISMAIL, M.—TALBERT, D. A.: Ensemble-Based Online Machine
Learning Algorithms for Network Intrusion Detection Systems Using Streaming Data.
Information, Vol. 11, 2020, No. 6, Art. No. 315, doi: 10.3390/info11060315.
HEINZELMAN, W. R.—CHANDRAKASAN, A.—BALAKRISHNAN, H.: Energy-Efficient
Communication Protocol for Wireless Microsensor Networks. Proceedings of the 33t


https://doi.org/10.1007/s41870-021-00717-8
https://doi.org/10.6633/IJNS.202003_22(2).05
https://doi.org/10.1109/ICC40277.2020.9149413
https://doi.org/10.1109/ICCCA49541.2020.9250753
https://doi.org/10.1109/IAICT50021.2020.9172014
https://doi.org/10.1016/j.adhoc.2015.07.013
https://doi.org/10.1155/2015/146189
https://doi.org/10.1109/UEMCON47517.2019.8992963
https://doi.org/10.1109/UEMCON47517.2019.8992963
https://doi.org/10.1088/1742-6596/1743/1/012021
https://doi.org/10.1088/1742-6596/1743/1/012021
https://doi.org/10.3390/info11060315

1034 H. Tabbaa, S. Ifzarne, I. Hafidi

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Annual Hawaii International Conference on System Sciences, IEEE, Vol. 2, 2000,
pp. 1-10, doi: 10.1109/HICSS.2000.926982.

Xu, J.—JiN, N.—Lou, X.—PEeNG, T.—ZHou, Q.—CHEN, Y.: Improvement of
LEACH Protocol for WSN. 2012 9! International Conference on Fuzzy Systems and
Knowledge Discovery, IEEE, 2012, pp. 2174-2177, doi: [10.1109/FSKD.2012.6233907.

Liu, H—L1, L.—JIN, S.: Cluster Number Variability Problem in LEACH. In:
Ma, J., Jin, H., Yang, L. T., Tsai, J.J.P. (Eds.): Ubiquitous Intelligence and Com-
puting. Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 4159,
2006, pp. 429-437, doi: 10.1007/11833529_44.

HEINZELMAN, W. B.—CHANDRAKASAN, A.P.—BALAKRISHNAN, H.:
An Application-Specific Protocol Architecture for Wireless Microsensor Net-
works. IEEE Transactions on Wireless Communications, Vol. 1, 2002, No. 4,
pp. 660-670, doi: 10.1109/TWC.2002.804190.

WOLPERT, D. H.—MACREADY, W. G.: No Free Lunch Theorems for Optimization.
IEEE Transactions on Evolutionary Computation, Vol. 1, 1997, No. 1, pp. 67-82, doi:
10.1109/4235.585893.

Doucgras, P. K.—HARRIS, S.—YUILLE, A.—COHEN, M. S.: Performance Com-
parison of Machine Learning Algorithms and Number of Independent Components
Used in fMRI Decoding of Belief vs. Disbelief. Neurolmage, Vol. 56, 2011, No. 2,
pp. 544-553, doi: [10.1016/j.neuroimage.2010.11.002.

Ma, Z.—KaBaAN, A.: K-Nearest-Neighbours with a Novel Similarity Measure for
Intrusion Detection. 2013 13 UK Workshop on Computational Intelligence (UKCT),
IEEE, 2013, pp. 266—271, doi: 10.1109/UKCI.2013.6651315.

CovER, T.—HART, P.: Nearest Neighbor Pattern Classification. IEEE Trans-
actions on Information Theory, Vol. 13, 1967, No. 1, pp. 21-27, doi:
10.1109/TIT.1967.1053964.

KorsianTis, S. B.: Supervised Machine Learning: A Review of Classification Tech-
niques. Emerging Artificial Intelligence Applications in Computer Engineering, 10S
Press, 2007, pp. 3-24.

CRAMMER, K.—DEKEL, O.—KESHET, J.—SHALEV-SHWARTZ, S.—SINGER, Y.:
Online Passive Aggressive Algorithms. Journal of Machine Learning Research, Vol. 7,
2006, No. 19, pp. 551-585, http://jmlr.org/papers/v7/crammerO6a.html.

DominGos, P.—HULTEN, G.: Mining High-Speed Data Streams. Proceedings of
the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’00), 2000, pp. 71-80, doi: 10.1145/347090.347107.

BIFET, A.—GAVALDA, R.: Learning from Time-Changing Data with Adaptive Win-
dowing. Proceedings of the 2007 SIAM International Conference on Data Mining
(SDM), 2007, pp. 443448, doi: [10.1137/1.9781611972771.42,

GoMmESs, H.M.—BIFET, A.—READ, J.—BARDDAL, J.P.—ENEMBRECK, F.—
PFHARINGER, B.—HOLMES, G.—ABDESSALEM, T.: Adaptive Random Forests
for Evolving Data Stream Classification. Machine Learning, Vol. 106, 2017, No. 9,
pp. 1469-1495, doi: [10.1007/s10994-017-5642-8.

BREIMAN, L.: Random Forests. Machine Learning, Vol. 45, 2001, No. 1, pp. 5-32,
doi: 10.1023/A:1010933404324.


https://doi.org/10.1109/HICSS.2000.926982
https://doi.org/10.1109/FSKD.2012.6233907
https://doi.org/10.1007/11833529_44
https://doi.org/10.1109/TWC.2002.804190
https://doi.org/10.1109/4235.585893
https://doi.org/10.1016/j.neuroimage.2010.11.002
https://doi.org/10.1109/UKCI.2013.6651315
https://doi.org/10.1109/TIT.1967.1053964
http://jmlr.org/papers/v7/crammer06a.html
https://doi.org/10.1145/347090.347107
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1007/s10994-017-5642-8
https://doi.org/10.1023/A:1010933404324

An OEL Model for Detecting Attacks in WSNs 1035

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

0OzA, N. C.—RUSSELL, S.J.: Online Bagging and Boosting. In: Richardsom, T.S.,
Jaakkola, T.S. (Eds.): Proceedings of the Eighth International Workshop on Artifi-
cial Intelligence and Statistics. Proceedings of Machine Learning Research (PMLR),
Vol. R3, 2001, pp. 229-236, https://proceedings.mlr.press/r3/ozal0la.htmll
LiTTLESTONE, N.—WARMUTH, M.K.: The Weighted Majority Algorithm.
Information and Computation, Vol. 108, 1994, No. 2, pp. 212-261, doi:
10.1006/inco.1994.1009.

ALMOMANTI, I.—AL-KASASBEH, B.—AL-AKHRAS, M.: WSN-DS: A Dataset for In-
trusion Detection Systems in Wireless Sensor Networks. Journal of Sensors, Vol. 2016,
2016, Art. No. 4731953, doi: 10.1155/2016/4731953.

ISSARIYAKUL, T.—HoOsSAIN, E.: Introduction to Network Simulator 2 (NS2). In-
troduction to Network Simulator Ns2, Springer, Boston, 2009, pp. 21-40, doi:
10.1007/978-1-4614-1406-3 2.

HoLMmEs, G.—DoNKIN, A.—WITTEN, I. H.: WEKA: A Machine Learning Work-
bench. Proceedings of ANZIIS’94 — Australian New Zealand Intelligent Information
Systems Conference, IEEE, 1994, pp. 357-361, doi: [10.1109/ANZIIS.1994.396988.
BireT, A.—HOLMES, G.—PFAHRINGER, B.—KRANEN, P.—KREMER, H.—
JANSEN, T.—SEIDL, T.: MOA: Massive Online Analysis, a Framework for Stream
Classification and Clustering. Proceedings of the First Workshop on Applications of
Pattern Analysis, Proceedings of Machine Learning Research (PMLR), Vol. 11, 2010,
pp. 44-50, https://proceedings.mlr.press/vil/bifet10a.html.

MoNTIEL, J.—READ, J.—BIFET, A.—ABDESSALEM, T.: Scikit-Multiflow: A
Multi-Output Streaming Framework. The Journal of Machine Learning Research,
Vol. 19, 2018, No. 1, pp. 2015-2914.

GAMA, J.—SEBASTIAO, R.—RODRIGUES, P.P.: Issues in Evaluation of Stream
Learning Algorithms. Proceedings of the 15" ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’09), 2009, doi:
10.1145/1557019.1557060.


https://proceedings.mlr.press/r3/oza01a.html
https://doi.org/10.1006/inco.1994.1009
https://doi.org/10.1155/2016/4731953
https://doi.org/10.1007/978-1-4614-1406-3_2
https://doi.org/10.1109/ANZIIS.1994.396988
https://proceedings.mlr.press/v11/bifet10a.html
https://doi.org/10.1145/1557019.1557060

1036

H. Tabbaa, S. Ifzarne, I. Hafidi

Hiba TABBAA is a Ph.D. student at the National School of Ap-
plied Sciences in Khouribga (Sultan Moulay Slimane University,
Morocco). She received her Master’s degree in big data and de-
cision making in 2020 from the same school. Her main research
interests include WSN, big data, machine learning, cybersecu-
rity, cloud computing.

Samir IFZARNE received his Engineering degree from the Mo-
hamadia School of Engineers (EMI), Rabat, in 2001. In 2021,
he received his Ph.D. degree in security of wireless sensor net-
works from the University Sultan Moulay Slimane at the Na-
tional School of Applied Sciences (ENSA) Khouribga. His re-
search interests include WSN, compressed sensing, and homo-
morphic encryption.

Imad HAFIDI is currently a Professor at the National School
of Applied Science (ENSA), Khouribga. He is the Head of
the Department of Mathematics and Computer Engineering,
along with being the Director of the Laboratory of Process Engi-
neering, Computer Science and Mathematics (LIPIM) of ENSA
Khouribga. His research interests include WSN, machine learn-
ing, big data, equilibria and computer vision.



