
Computing and Informatics, Vol. 42, 2023, 1378–1403, doi: 10.31577/cai 2023 6 1378

EMBEDDED PLANT DISEASE RECOGNITION
USING DEEP PLANTNET ON FPGA-SOC

Taoufik Saidani, Refka Ghodhbani, Ahmed Alhomoud

Department of Computer Sciences
Faculty of Computing and Information Technology, Northern Border University
Rafha 91911, Saudi Arabia
e-mail: {Taoufik.Saidan, Refka.Ghodhbani, aalhomoud}@nbu.edu.sa

Mohamed Ben Ammar

Department of Information Systems
Faculty of Computing and Information Technology, Northern Border University
Rafha 91911, Saudi Arabia
e-mail: mohammed.ammar@nbu.edu.sa

Abstract. Technological breakthroughs have ushered in a revolution in a variety
of industries, including agriculture, during the last several decades. This has given
rise to what is now known as Agriculture 4.0, which emphasizes strategy and sys-
tems rather than the traditional obligations of the past. As a result, many human
procedures have been replaced by a new generation of intelligent devices. Crop
production management in Agriculture 4.0, on the other hand, poses a consider-
able challenge, particularly when it comes to prompt and accurate crop disease
identification. Plant diseases are of special significance since they significantly re-
duce agricultural yield in terms of both quality and quantity. Deep learning neural
network models are being utilized for early diagnosis of plant diseases in order to
overcome this difficulty. These models can automatically extract features, generate
high-dimensional features from low-dimensional ones, and achieve better learning
results. In this research, we offer a joint solution involving image processing, phy-
topathology, and embedded platforms that intends to minimize the time necessary
for human labor by leveraging AI to facilitate plant disease detection. We propose
a learning-based PlantNet architecture for detecting plant diseases from leaf images,
in which achieved about 97% accuracy and about 0.27 loss on the PlantVillage
dataset. However, because putting AI techniques on embedded systems can sub-

https://doi.org/10.31577/cai_2023_6_1378

Embedded Plant Disease Recognition Using Deep PlantNet on FPGA-SoC 1379

stantially cut energy consumption and processing times while also minimizing the
costs and dangers involved with data transfer, it is worth considering. The second
goal of this paper is to use high-level synthesis to accelerate the proposed PlantNet
architecture. Moreover, we propose a hardware-software (HW/SW) design for inte-
grating the suggested vision system on an embedded FPGA-SoC platform. Finally,
we present a comparative study with state-of-the-art works, which demonstrates
that the proposed design outperforms the others in terms of normalized GFLOPS
(1.93), reduced power consumption (2.48 W), and minimum required processing
time (0.04 seconds).

Keywords: FPGA, deep CNN, co-design, hardware acceleration, PYNQ-Z1

1 INTRODUCTION

The technologies of agricultural domain are quickly evolving towards a new para-
digm, Agriculture 4.0. In this paradigm, digitization, artificial intelligence, and
automation play a major role in plant production, including pest control and weed
control [1].

This development presents many opportunities full of challenges, as well as the
shift from animal and manual technologies to mechanized and automated equipment
in developing countries and bridging the digital divide. Traditional mechanization of
early agriculture, characterized by using engine power and tractors, will be matched
and even surpassed by the automated mechanism and robotics and the precision
they can provide in agricultural operations [2]. Agriculture 4.0 is considered to be
one of the most important parts of the industry, which, according to the Food and
Agriculture Organization of the United Nations (FAO), faces the challenge of in-
creasing its productivity by up to 60 percent during the 21st century in order to
provide an adequate food supply for the expanding population around the world [3].
Agriculture 4.0 is considered one of the most important parts of the industry. This
target should be accomplished while taking into consideration the demand for com-
puter resources in accordance with sustainable methods and strategies owing to the
rising pressures on ecosystems, biodiversity, land, and water. This objective should
be accomplished while taking into account the necessity of computing resources in
accordance with sustainable techniques and strategies. The widespread use of pre-
cision agriculture (FP) methods, which provide pervasive conceptual advances and
technological improvements from ”smart” agricultural production in the direction of
Agriculture 4.0, is a significant contributor to the advantages cited in [4]. Keeping
in mind that in recent years, the expansion of global commerce and globalization,
in addition to changes in the environment, have led to a rise in the number of plant
diseases. This has reached the level of an epidemic in a number of nations, which
has resulted in the loss of a significant number of crops and therefore threatens the
food and nutritional security of people.

1380 T. Saidani, R. Ghodhbani, A. Alhomoud, M. Ben Ammar

Plants are also vulnerable to several diseases types in their different pheno-
phases, like humans [5]. Therefore, the total crop yield and therefore the farmer’s
net profit is negatively affected. Various diseases of plant have a huge effect on the
growth of the crop’s food. The Irish potato famine of 1845–1849, which claimed the
lives of 1.2 million people in Ireland [6], is an example of iconic. The following Table 1
provides a summary of a number of common plant diseases. Diseases that affect
plants may be organized hierarchically into the categories of hyphomycetes, fungi,
bacteria, and viruses. Several examples of prevalent plant diseases may be found
in Figure 1. Farmers and academics are continuously looking at ways to improve
upon an existing system that is clever and effective for classifying plant diseases.
Enzyme immunoassay, polymerase chain reaction, and loop-mediated isothermal
amplification are some of the methods that have been tried on plant samples by
a large number of researchers. These methods are quite specific and sensitive when
it comes to identifying the disease mentioned in the previous works [7].

Plant
Major Types of Disease

Fungal Bacterial Viral

Cucumber
Downy mildew
mildew, gray mold
spot, anthracnose

Angular spot, brown
spot, target spot

Mosaic virus,
yellow spot
virus

Rice
Rice stripe blight,
false smut, rice blast

Bacterial leaf blight,
bacterial leaf streak

Rice leaf smut,
rice black-streaked
dwarf virus

Maize
Leaf spot disease,
rust disease,
gray leaf spot

Bacterial stalk rot,
bacterial leaf streak

Rough dwarf disease,
crimson leaf disease

Tomato
Early blight, late blight,
leaf mold

Bacterial wilt, soft
rot, canker

Tomato yellow
leaf curl virus

Table 1. Common plants diseases

Currently, AI technology, which crowns deep learning, is already seen as a reality
in the perimeter of precision agriculture. The agricultural AI market was estimated
at nearly 518.7 million dollars in 2017 and is expected to grow by more than 22.5%
per year to reach 2.6 billion dollars by 2025 [8]. A system of object recognition
finds objects in an image, using several models. However, the description-based
algorithmic of this scheme, with the aim is to perform the on board-implementation,
has been very difficult that is why machine learning techniques have been proposed
to facilitate the recognition-based tasks. In order to avoid damage to agricultural
yield, protection of plants against disease is essential to ensure the crops quantity
and quality. An effective and powerful protection method must provide an early
detection of the disease in order to select the right treatment, to prevent the spread,
at the right time [9].

In order to solve plants and crops, in the new generation of agriculture, early
diseases detection of plant is necessary. Manual diseases-based detection in plants

Embedded Plant Disease Recognition Using Deep PlantNet on FPGA-SoC 1381

a) Kidney bean b) Eggplant c) Cucumber d) Snake gourd

e) Tomato f) Pumpkin g) Ginger h) Soybean

Figure 1. Leaf spot in eight common plants

is carried out either by farmers or agronomists [10]. However, this is a very difficult
task and it needs more time. To solve this issue, researchers around the world have
presented various advanced systems for automatic detection of plant diseases using
various machine and deep learning techniques [11]. These schemes are based on arti-
ficial neural networks (ANN) and their other variants, such as convolutional neural
networks (CNN) and recurrent neural networks (RNN) to make an identification
about the internal data structures. Deep learning techniques have two important
advantages over machine learning methods [12]. Firstly, they extract automatically
various characteristics from the raw data, and therefore, there is no requirement
for an additional extraction module. Secondly, these intelligent methods lead to
reducing the time required to the processing task with a high-dimensional data sets.
Therefore, deep learning techniques can be exploited to create hybrid models. CNN
are ones of the most powerful and effective schemes for modeling complex processes
and performing pattern recognition applications with large amounts of data, such
as recognizing patterns in images [13]. Authors in [14] presented a CNN system
for automated plant recognition based on leaf images. Authors in [15] have devel-
oped a powerful neural network to identify three different legume species based on
morphological models of leaf veins. In [16], authors have compared two well-known
and established CNN models to identify 26 plant diseases, on the basis of an open
database of leaf images from 14 different type of plants. Authors in [17] analyze

1382 T. Saidani, R. Ghodhbani, A. Alhomoud, M. Ben Ammar

several deep learning architectures and their merits and shortcomings in the context
of plant disease detection. Their paper also reviews recent research in the subject
and explores the problems and limitations of deep learning for plant disease detec-
tion. Overall, they offer an excellent summary of current research in this topic and
show the promise of deep learning approaches to enhance plant disease detection
and treatment. Further work related to this topic is presented in Section 2.

Beyond the real involvement of advanced technologies, Agriculture 4.0’s most
important challenge towards sustainable growth lies on the ability to provide in-
tegrated systems dynamically which implemented more efficient and sophisticated
farming operations (such as irrigation, cultivation, crop disease detection, etc.) at
a lower cost [18]. This is in order to provide more efficient and safer operating
conditions for both parties and the environment (involving farmers, agricultural en-
gineers, policymakers, professionals cooperation development, etc.), and synergies
increasing between all stakeholders by giving them the capacity of making decisions
even on issues that did not generally belong to their expertise [19]. Because of
this, it is almost essential to include AI in vision applications in order to provide
these systems the ability to think for themselves and come to conclusions that are
comparable to or the same as ours [20]. In this setting, the integration of AI offers
a number of challenges, notably with regard to the optimization of algorithms. Nev-
ertheless, the effectiveness of AI systems is highly reliant on the quantity and quality
of the data that they utilize to learn and advance [21]. Embedded systems, notably
the FPGA-SoC which is the most often used, have limited processing, memory, and
communication capacity. This is in addition to the constraints placed on them by
energy consumption and cost [22]. Despite this, accelerating the construction of
CNNs utilizing FPGA SoC has emerged as a novel alternative due to its ability to
maximize parallelism data processing and power efficiency while lowering the costs
and dangers connected with data transmission. Additionally, by taking reconfigu-
ration benefit, different CNN models and architectures can be easily reconfigured in
the FPGA for many application types [23]. In this context many research work has
been proposed to implement vision systems on FPGA-SoC. Authors in [24] proposed
an FPGA-based 20 kfp streaming camera system called BinaryEye that recognizes
interest region within real-time streaming mode. Authors in [25] designed an FPGA-
based hardware architecture for real-time object detection based on CNN. Authors
in [21] proposed a hardware-software architecture to implement a deep traffic sign
recognition application on FPGA SoC. Additional research related to this topic is
presented in Section 2.

In this work we propose an intelligent vision system for detecting leaf disease
that is both low-cost and high-performance. To do so:

• We conduct a review of the five most commonly used deep learning models
in this context and compare their computational complexity on the imageNet
dataset;

• We select the SqueezeNet model with the lowest computational complexity for
further improvement and rectification;

Embedded Plant Disease Recognition Using Deep PlantNet on FPGA-SoC 1383

• We propose improvements to the SqueezeNet model by adjusting the hyper-
parameters and number of layers to create an enhanced topology with lower
computational cost than the original model which is the PlantNet architecture;

• We evaluate their proposed PlantNet architecture on the PlantVillage dataset
and demonstrate its efficient performance;

• We propose to accelerate the PlantNet architecture using high-level synthesis on
reconfigurable FPGA;

• We propose a hybrid hardware/software (HW/SW) design based on the accel-
erated PlantNet architecture and the ARM processor.

We organized this paper as follows. We reviewed the latest CNN networks to pro-
vide leaf disease classification in Section 2. Section 3 introduces the suggested deep
learning model and the GPU software training performance. Section 4 presents the
PlantNet model acceleration on FPGA SoC. Section 5 presents HW/SW PlantNet
architecture for the plant disease detection. After that, we present the implementa-
tion results in Section 6. Finally, the paper is concluded in Section 7.

2 RELATED WORK

Plant diseases cause significant production and economic losses in agriculture. For
example, soybean rust caused significant economic loss and just by eliminating 20%
of the infection, farmers can enjoy a profit of around 11 million dollars. It is es-
timated that crop losses due to plant pathogens in the United States amount to
approximately 33 billion dollars annually. Of that amount, about 65% (21 billion
dollars) could be attributed to non-native plant pathogens [26]. Bacterial, fungal,
and viral infections, as well as insect infestations, lead to plant disease and damage.
In the United States, over 50 000 parasitic and nonparasitic plant diseases affect
plants. When a plant becomes infected, symptoms occur on many regions of the
plant, resulting in a significant agricultural effect [27]. Many of these microbial
illnesses have spread over time in orchards and farms due to the unintentional intro-
duction of vectors or diseased plant debris [27]. Pathogens can also spread through
ornamental plants that act as hosts. These plants are frequently sold in stores before
the disease is discovered. An early disease detection system can assist decrease plant
disease losses and limit disease spread.

In this context, authors in [28] proposed a deep CNN for an accurate detection
and identification of apple leaf disease. This approach achieved an average accuracy
of 97.62%. Authors in [29] proposed a hybrid classification approach-based citrus
diseases detection using feature selection and weighted segmentation techniques.
Here, the Gaussian technique is used for efficient diseases spot segmentation. This
approach achieved an average accuracy of 95.80%. Another hybrid clustering-based
plant leaves images segmentation was proposed in [30]. In this technique authors,
applied the superpixel clustering-based method, which aims to divide the original
leaf color disease into a few hundreds of small compact regions, where the EM algo-

1384 T. Saidani, R. Ghodhbani, A. Alhomoud, M. Ben Ammar

rithm is used for the segmentation of the images leaf color disease. This technique
reaches a higher accuracy of 100%. The authors of [31] have proposed five different
CNN architecture for a disease-based detection tool for the banana plant. These
models were ResNet-152, VGG-16, ResNet-50, InceptionV3, and ResNet-18. How-
ever, the ResNet-152 model outperformed the other architectures with about 99.2%
of accuracy. In the same context, a mobile application was developed also so that
farmers can detect easily banana diseases by downloading images of their banana
leaves taken with their smartphones. This application implemented the InceptionV3
model to predict the plant disease with 99% confidence. Other similar work was
proposed in [32], it uses the PlantVillage dataset and the CNN VGG-19 and Incep-
tionV3 architectures for automated plant disease identification. They also employed
data augmentation in their study to artificially increase the dataset. According to
their article, the VGG-19 model beats the InceptionV3 model with 98% driving
accuracy and 95% test accuracy. Deep Convolutional Encoder Networks were of-
fered by the authors of paper [33] as a method for the detection of diseases affecting
seasonal crops. They analyzed 900 leaf photographs of three crops: potato, tomato,
and maize, arranged in six groups. They were successful in training with an accu-
racy of one hundred percent, however the testing accuracy of their model was only
86.78%. The authors in [34] present a pattern recognition system for identification
and classification of three cotton leaf diseases. A dependent natural image was used
as a data set. Therefore, an active contour model has been used to handle images
and the extracted features are used to train adaptive neuro-fuzzy inference system.
The identification system has achieved an average accuracy of 85%. By the way,
an approach that integrated image processing and automatic learning to allow the
diagnosis of leaves diseases was proposed in [35]. This automated method classifies
diseases on potato plants of the PlantVillage dataset, which is a publicly avail-
able plant image database. The approach of segmentation and the use of an SVM
has demonstrated that the classification of the disease, for more than 300 images,
achieves an average accuracy of 95%.

At the moment, a number of scientific researchers have rethought their ap-
proaches in order to develop deep learning frameworks that are scalable and par-
allel [36]. More recently, their concept has been altered even further to include
moving the learning process to GPUs. GPUs are notorious for the leakage cur-
rents that they produce, which, in turn, prevent any realistic development of deep
learning models on embedded devices [37]. The use of FPGAs is yet another po-
tential answer. Accelerators for deep learning based on field-programmable gate
arrays (FPGAs) have been utilized to boost outcomes dramatically by optimizing
data access pipelines [38]. In the study, a scalable architecture known as a Deep
Learning Accelerator Unit (DLAU) was employed [39]. There are three pipeline
processing units used by the DLAU. By using locality and tiling approaches, they
were able to attain a speed that was 36.1 times quicker than CPUs while only
consuming 234 mW of electricity. Another method, which used an architecture
that was built on low-end FPGAs and included leaks, arc losses, and other such
phenomena, was able to reach a detection rate of 97%. They were able to reach

Embedded Plant Disease Recognition Using Deep PlantNet on FPGA-SoC 1385

a processing speed that was 7.5 times quicker than that of the software implemen-
tation.

These studies show that convolutional neural networks have been widely ap-
plied to the field of recognition of crops and plants and have achieved good results.
However, although several techniques have been presented in the literature for au-
tomatic plant disease detection, a hybrid embedded system that combines a CNN
with hardware-software (HW/SW) architecture has not been proposed until now in
any existing research work to the best of our knowledge. A new CNN-based intel-
ligent HW/SW system detection has been developed in this paper and accelerated
on an FPGA to provide an in-depth embedded learning approach for plant disease
detection.

3 PROPOSED DEEP CNN-BASED PLANT DISEASE DETECTION

Following the requirement of autonomous embedded systems in Agriculture 4.0,
this paper proposes an embedded system for plant disease detection based on a deep
learning approach. To do so, the design methodology of this paper is subdivided into
three phases, as depicted in Figure 2. In the first stage (Phase 1), the deep PlantNet
model will be introduced and optimized, and its results will be analyzed accordingly.
In the second stage (Phase 2), the proposed model will be accelerated using the HLS
tool of Xilinx and then the hardware-software design will be introduced. In the latest
stage (Phase 3), the proposed embedded plant disease detection will be implemented
on an FPGA SoC to create an autonomous embedded system able to recognize crop
disease.

CNN Analysis GPU-based
Training

PHASE 1

CNN Design
and

Optimization

Network Scope

CNN
Topology

High-Level
Synthesis

Customized
Accelerator

 Accelerator
Code and

Configurations

FPGA
(PL)

ARM
(PS)

Tuned
Weights

Memory
AXI

interconnect

PHASE 2

PHASE 3
Hardware

Design

Hrdware-Software
Design implementation

on FPGA SoC

FPGA SoC

Deep CNN-based
Plant Desease

Detection

Acceleration and
Design

Figure 2. Design methodology

3.1 Deep PlantNet Model

Although research in the CNN field is very active and new architectures are emerging
every day, much of the awareness currently appears to be focused on improving
accuracy and efficiency. As we worked on how to improve CNN, we noticed that

1386 T. Saidani, R. Ghodhbani, A. Alhomoud, M. Ben Ammar

there is a huge lack of tools to visualize, analyze and compare CNN topologies which
remains a critical issue. Therefore, we found the Netscope CNN analyzer [40] which
represents a web-based tool written in CoffeScript, CSS, and HTML to analyze
CNNs flow’s data and memory requirements.

In the first step we starting by evaluating, using Netscope CNN analyzer, the
most used deep pretrained CNN as well as InceptionV3, ResNet-50, VGG-16, Squee-
zeNet, and AlexNet. These CNN models compared are usually trained on ImageNet
and expect input images of 227×227 or 224×224 pixels. The evaluated parameters
are in term of Cnv layers that indicates the number of convolutional layers. Then,
the multiply operations number for one forward pass is considered and denoted as
MACC. The Activation parameter is computed for each deep pretrained model to
quantify the total number of pixels in all output feature maps. In addition, the
ImageNet top-5 error rate is listed for each model to demonstrate the performance
of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in terms of
the percentage of times that the target label does not appear among the 5 highest-
probability predictions [41]. The evaluation between these models is summarized in
Table 2.

Models Cnv layers
MACC Parameters Activation Top-5 Error

(M) (M) (M) (%)

VGG-16 16 15 470 183.3 29 8.1
ResNet-50 50 3 870 25.5 46.7 7.0
InceptionV3 48 5 710 23.8 32.6 5.6
AlexNet 5 1 140 60.7 2.4 19.7
SqueezeNet 18 861 1.2 12.5 19.7

Table 2. CNN models evaluation for image classification on ImageNet

Table 1 shows that SqueezeNet has the lowest computational complexities in
terms of MACCs, followed by AlexNet. In addition, the same four CNNs require
the least amount of enabled memory. Looking at the amount of parameters, the
SqueezeNet model has the fewest with a 19.7% inaccuracy in the top 5. SqueezeNet,
on the other hand, was chosen as the foundation for our CNN model because of
its appropriateness for a SoC-based FPGA implementation in terms of decreased
computational complexity and limited activations and parameter sets that can fit
into a SoC FPGA memory. To do so, three types of improvements were implemented
during the transformation of the original SqueezeNet, as depicted in Figure 3, to
PlantNet CNN, which are efficiency improvements, FPGA-related improvements,
and accuracy improvements.

As denoted in Figure 3, an initial convolutional layer, eight stacked firing units,
a final convolutional layer, three grouping layers, and a layered dropout layer com-
prised the SqueezeNet architecture. A nonlinear ReLU enables these convolutional
levels, and the structure concludes with a global mean pool level. Each firing unit,
however, includes a compression layer (1× 1 convolution and ReLU) as well as two
parallel layers (1× 1 and 3× 3 convolutions and ReLU). In this context, 1× 1 and

Embedded Plant Disease Recognition Using Deep PlantNet on FPGA-SoC 1387

data

conv1

relu_conv1

fire2/squeeze1x1

fire2/relu_squeeze1x1

fire2/expand1x1

fire2/relu_expand1x1

fire2/expand3x3

fire2/relu_expand3x3

fire2/concat

fire3/concat

fire3/squeeze1x1

fire3/relu_squeeze1x1

fire3/expand1x1

fire3/relu_expand1x1

fire3/expand3x3

fire3/relu_expand3x3

fire4/concat

fire4/squeeze1x1

fire4/relu_squeeze1x1

fire4/expand1x1

fire4/relu_expand1x1

fire4/expand3x3

fire4/relu_expand3x3

fire5/concat

fire5/squeeze1x1

fire5/relu_squeeze1x1

fire5/expand1x1

fire5/relu_expand1x1

fire5/expand3x3

fire5/relu_expand3x3

fire6/concat

fire6/squeeze1x1

fire6/relu_squeeze1x1

fire6/expand1x1

fire6/relu_expand1x1

fire6/expand3x3

fire6/relu_expand3x3

fire7/concat

fire7/squeeze1x1

fire7/relu_squeeze1x1

fire7/expand1x1

fire7/relu_expand1x1

fire7/expand3x3

fire7/relu_expand3x3

conv10

relu_con10

pool1

loss

96ch. 111x111

16ch. 55x55

64ch. 55x55

128ch. 55x55

16ch. 55x55

64ch. 55x55

128ch. 55x55

32ch. 55x55

128ch. 55x55

256ch. 55x55

32ch. 27x27

128ch. 27x27

256ch. 27x27

84ch. 27x27

192ch. 27x27

384ch. 27x27

84ch. 27x27

192ch. 27x27

1000ch. 1x1

pool1

96ch. 55x55

pool4

256ch. 27x27

fire8/concat

fire8/squeeze1x1

fire7/relu_squeeze1x1

fire8/expand1x1

fire8/relu_expand1x1

fire8/expand3x3

fire8/relu_expand3x3

64ch. 27x27

256ch. 27x27

384ch. 27x27

pool8

512ch. 27x27

fire9/concat

drop9

fire9/squeeze1x1

fire9/relu_squeeze1x1

fire9/expand1x1

fire9/relu_expand1x1

fire9/expand3x3

fire9/relu_expand3x3

64ch. 13x13

256ch. 13x13

512ch. 27x27

512ch. 13x13

512ch. 13x13

1000ch. 15x15

3ch. 227x227

Figure 3. SqueezeNet topology

3× 3 convolutions are essential operations in convolutional neural networks (CNN)
for feature extraction. They apply a sliding window of size 1 × 1/3 × 3 on the in-
put data and perform element-by-element multiplication between the kernel values
and the corresponding input values. 1 × 1 convolution provides dimensionality re-
duction, nonlinearity, and feature fusion by compressing channel information. On
the other hand, 3 × 3 convolution captures local spatial dependencies, facilitates
hierarchical feature extraction and enables translation invariance. Each compres-
sion layer has its own set of output channels that are in charge of compressing the
internal representation. The 1 × 1 and 3 × 3 cores are assessed for the expansion
level in this feature map, and their outputs are concatenated along the channel
size.

1388 T. Saidani, R. Ghodhbani, A. Alhomoud, M. Ben Ammar

As our goal is to rectify the SqueezeNet architecture to provide a PlantNet
model that reaches a minimum computational complexity to fit the FPGA imple-
mentation, Figure 4 depicts the PlantNet model, the layer widths wout, the layer
capacities wout × hout × chout, and the number of output channels chout in each
network stage. However, the proposed PlantNet model consists of six fire mod-
ules (fire1, fire2, fire3, fire4, fire5, and fire6) of SqueezeNet followed by and output
convolution and pooling layers. Each convolution layer is complemented by ReLU
function. In addition, we designed the spatial layer dimensions (width and height)
for the proposed PlantNet to be powers of 2, such as 256 × 256 pixels. The intent
behind this design choice is to allow repeated scaling of stride 2, resulting in integer
dimensions.

data

conv1

relu_conv1

fire1/squeeze3x3

fire1/relu_squeeze3x3

fire1/expand1x1

fire1/relu_expand1x1

fire1/expand3x3

fire1/relu_expand3x3

fire1/concat

fire2/concat

fire2/squeeze3x3

fire2/relu_squeeze3x3

fire2/expand1x1

fire2/relu_expand1x1

fire2/expand3x3

fire2/relu_expand3x3

fire3/concat

fire3/squeeze3x3

fire3/relu_squeeze3x3

fire3/expand1x1

fire3/relu_expand1x1

fire3/expand3x3

fire3/relu_expand3x3

fire4/concat

fire4/squeeze1x1

fire4/relu_squeeze1x1

fire4/expand1x1

fire4/relu_expand1x1

fire4/expand3x3

fire4/relu_expand3x3

fire5/concat

fire5/squeeze3x3

fire5/relu_squeeze3x3

fire5/expand1x1

fire5/relu_expand1x1

fire5/expand3x3

fire5/relu_expand3x3

fire6/concat

drop6

fire6/squeeze1x1

fire6/relu_squeeze3x3

fire6/expand1x1

fire6/relu_expand1x1

fire6/expand3x3

fire6/relu_expand3x3

conv2/split1 conv3/split2

conv2

pool1

loss

3ch. 256x256

64ch. 128x128

16ch. 64x64

16ch. 64x64

128ch. 64x64

32ch. 32x32

128ch. 32x32

256ch. 32x32

64ch.16x16

256ch.16x16

512ch.16x16

64ch.16x16

192ch.16x16

384ch.16x16

112ch.8x8

256ch.8x8

512ch.8x8

112ch.8x8

368ch.8x8

736ch.8x8

512ch.8x8

1024ch.8x8

1024ch.1x1

Figure 4. PlanNet topology

In each PlantNet individual layer the computational complexity has been ana-
lyzed with Netscope, and then the results are presented in Table 3. The most com-
putational layer in SqueezeNet has been reduced in our proposed PlantNet model.
However, the number of convolutional layers has been reduced from 18 (SqueezeNet)
to 14 layers in PlantNet. In addition, the multiply and accumulate operations num-
ber for one forward pass (MACC) is also reduced from 861M to 428.64M which
prove that our proposed PlantNet can reduce about 50% of the computational com-
plexity of the network. The number of activations also has been reduced from 12.5M
to 6.05M in the proposed PlantNet model means about 50% has been saved.

Embedded Plant Disease Recognition Using Deep PlantNet on FPGA-SoC 1389

Layers MACC Parameters Activation

conv1 28.31 Millions 1.79 k 1.05 Millions
fire1 (sub-module) 79.69 Millions 19.6 k 1.7 Millions
fire2 (sub-module) 79.69 Millions 78.11 k 851.97 k
fire3 (sub-module) 79.69 Millions 311.87 k 425.98 k
fire4 (sub-module) 39.85 Millions 156.1 k 327.68 k
fire5 (sub-module) 43.12 Millions 674.42 k 112.64 k
fire6 (sub-module) 30.05 Millions 470.35 k 155.65 k
drop6 – – 47.1 k
conv2/split1, conv3/split2 48.23 Millions 754.69 k 65.54 k
conv4 – – 65.54 k
pool1 – – 1.02 k

Total 428.64 Millions 2.47 Millions 6.05 Millions

Table 3. Layer’s PlantNet topology evaluation for image classification on ImageNet

So the proposed plantNet model was trained on the PlantVillages dataset con-
sisting of about 20 000 images [42] of healthy and diseased plants. The used dataset
contains 15 sub-directories in which each of them contains a number of crops images,
as well as the pepper-bell-bacteria, the pepper-bell-healthy, the potato-early-blight,
the potato-late-blight, the potato-healthy, the tomato-bacterial-spot, the tomato-
early blight, the tomato-late-blight, the tomato-leaf-mold, the tomato-septoria-leaf,
the tomato-spider-mites, the tomato-target-spot, the tomato-tomato-yello, the to-
mato-mosaic-virus, and the tomato-healthy. The Python programming language was
used to train and evaluate the suggested deep learning model. Adam’s optimization
is a sophisticated optimization approach that changes the weights at each iteration
and minimizes the gradient error between the ground truth labels and the predic-
tion outputs. Furthermore, the studies were carried out using an Intel®core TM
i7-3770@3.4GHz CPU with 16GB of RAM. We also employ an NVIDIA GeForce
RTX 2070 GPU to speed up the deep trained model. The number of epochs, learning
rate, and batch size were experimentally adjusted at 350, 10−4, and 64, respectively,
for deep learning parameters used in this study.

The datasets are gathered into two sub-sets, 75% for training and 20% for
testing, and 5% for validation including healthy and diseased plants. Figure 5
shows the accuracy and loss curves of the training and validation process in order
to evaluate the performance of the proposed PlantNet model, after about 10 hours
of training. The achieved training and validation accuracy is about 97%. Similarly,
the training and validation loss is about 0.27 for the proposed model. Consequently,
the proposed deep CNN model reaches a good classification performances.

The suggested PlantNet architecture attained the best accuracy of 97% when
evaluated on the PlantVillage dataset, according to the performance statistics shown
in Table 4. This outperforms the other models, including SqueezeNet, which is a
common option in many similar publications. The results indicate that the sug-
gested architecture is successful at detecting plant diseases from leaf images and has

1390 T. Saidani, R. Ghodhbani, A. Alhomoud, M. Ben Ammar

real-world applicability. As a result, the suggested PlantNet architecture may be
regarded as a viable solution for plant disease detection and classification tasks.

Figure 5. PlanNet training performance

Study Architecture Dataset Accuracy Loss

[43] SqueezeNet – 92.78% –

[44] SqueezeNet PlantVillage 95.05% –

[45] SqueezeNet-MOD2 Strawberry Leaves 92.61% –

[46] SqueezeNet Strawberry Leaves 93% –

Our work PlantNet PlantVillage 97% 0.27

Table 4. Performance comparison of CNN models for plant disease detection

4 PLANTNET MODEL ACCELERATION ON FPGA SOC

Within the context of the agricultural industry, the PlantNet model was developed
specifically for high-performance disease detection in plants. The Xilinx PYNQ-Z1
System-on-a-Chip (SoC) is the foundation of the embedded platform. This device
integrates a programmable FPGA fabric and a dual-core ARM Cortex-A9 CPU
into a single package. The PYNQ-Z1 is equipped with a System-on-Chip (SoC)
manufactured by Xilinx called the ZYNQ XC7Z020-1CLG400C, 512MB of DDR3
memory dedicated to the ARM CPU, 4 GB of independent external SD memory, and
a wide variety of connectivity options including USB, HDMI, and Gigabit Ethernet.
The PYNQ-Z1 System-on-a-Chip (SoC) has a total of 133×103 logic slices, 53.2×103

look-up tables (LUTs), 630×103 (kB) of block RAM, 106.4×103 flip-flops, and 220
DSP slices [47].

Convolutional and average pooling layers make up the deep PlantNet model,
and the ReLU nonlinearities are put to use as the activation function. The net-
work is highly organized, which demonstrates the greatest layer-by-layer organiza-
tion possible in the fire module architecture. Each firing module is made up of three

Embedded Plant Disease Recognition Using Deep PlantNet on FPGA-SoC 1391

convolutional layers, including one compression layer, two expansion layers, and one
intermediate layer. After that, the output channels of the two expansion layers are
concatenated to create a single feature map with twice as many channels as the orig-
inal map had. While the dropout layer, also known as drop6, is only useful during
the training phase of the process, it is safe to disregard it entirely during the infer-
ence phase. In this context, the concatenation capability of two layers is re-utilized
in the convolution layer, which is computed into two separate divisions conv2\split1
and conv3\ split2 to reduce memory requirements followed by a convolutional layer.
After that, the pooling layer is used in order to reduce the dimensions by averaging
from 8× 8 to 1× 1 pixels, while leaving the intactness of the channel dimension. In
the final stage, the softmax function is applied to predict the class probabilities.

The computational complexity of the Deep PlantNet results entirely from the
1×1 and 3×3 convolution operations, which accumulate approximately 428.64 mil-
lion MACC operations. The ReLU nonlinearities function add about 1.048 million
comparisons operations. While, the average pooling needs 65 536 additions, and the
final softmax executes 1 024 additions, divisions, and exponentiation. However, the
softmax layer will be implemented on the ARM processor. While the convolutional
layers, the ReLU, the concatenation layers, and the global average pooling layer are
left to the FPGA. These layers must be efficiently accelerated in order to successfully
run the PlantNet on the PYNQ-Z1 SoC.

The two-dimensional convolution (2DC) of several input feature is denoted as
the most important operation that needs acceleration on FPGA SoC. The 2DC for
an input image is represented as the result from filter sliding over the image, and
computes the dot product between the filter and the pixels at each filter position.
Thus, the convolution formula, of 2DC for an input image I with a height H and
width W and a filter F with a kernel of k × k, is denoted for each pixel (y, x) in
Equation (1). Given an RGB image, we typically consider three channels with an
input channel size of chin. Therefore, the input feature maps of an image can be

denoted as I
(ci)
(y,x). The output maps of feature with a number of output channel chout

by applying a filters bank F (ci,co) is denoted by O
(co)
(y,x) in Equation (2). Although

computationally intensive, the mathematical operations of convolutional layers are
not complex and offer many opportunities for data reuse and pipelining.

CONV (x,y,k) =

k/2∑
j=−[k/2]

k/2∑
i=−[k/2]

Iy−j,x−i · Fj,i, (1)

O
(co)
(y,x) =

chin−1∑
0

 k/2∑
j=−[k/2]

k/2∑
i=−[k/2]

I
(ci)
(y−j,x−i) · F

(co)
(j,i)

 . (2)

To optimize the performance of the PlantNet accelerator, it is crucial to utilize
the different available resources on the FPGA SoC board, including DSP slices,
block memories, and other components. In light of this, we introduce the PlantNet

1392 T. Saidani, R. Ghodhbani, A. Alhomoud, M. Ben Ammar

algorithm, which will be accelerated using the Xilinx High-Level Synthesis (HLS)
tool. The proposed algorithm organizes the loops in a specific order: layer, height,
width, input channels, output channels, and kernel elements. Within each layer,
the outer loops traverse the pixels from left to right and top to bottom. At each
pixel position, the algorithm focuses on one input channel at a time, calculating
and accumulating the corresponding output channels. This systematic organization
of loops ensures efficient computation and optimal utilization of resources. The
detailed algorithm can be found in Algorithm 1.

Our suggested PlantNet model will be accelerated using the Xilinx Vivado High-
Level Synthesis (HLS) tool, which transforms C, C++, or SystemC sources into RTL
implementations. The ZYNQ board is capable of synthesizing and implementing this
design. A C-based testbench has been developed to assess the functioning of the
deployed function and test the inputs into the HLS process. To do this, we will need
a gold standard to evaluate the results of the synthesized function, which might be
a predefined set of output values or an element of the testbench.

After going through the process of HLS synthesis, the internal hardware layout
of the PlantNet accelerator may be seen in a high-level overview in Figure 6, in this
case, upon the completion of the synthesis process using the HLS tool. The cost
of the accelerated PlantNet model’s hardware is shown in Table 5. At a working
frequency of 150MHz, the PlantNet accelerator uses up 30% of the Block RAM,
6% of the DSP, 4% of the flip-flops (FF), and 7% of the LUTs. In addition to
the cost, the number of cache memory blocks is required, knowing that our image
size of 256 × 256 × 3 and DDR3 memory with a capacity of 512MB and a 16-bit
bus (PYNQ-Z1). The memory size required for one image is approximately 192 kB.
While, the available memory size in DDR3 memory is 512MB, but considering the
16-bit bus width, the effective memory size is approximately 256MB. Dividing the
effective memory size by the memory size per frame gives a value of approximately
1 393.67 blocks of cache memory. Since we cannot have a fraction of a memory
block, we round to the nearest integer, which gives 1 393 cache memory blocks.

Name BRAM 18K DSP48E FF LUT

DSP 10 24 520 –
Expression – 26 0 953
FIFO 5 50 165 –
Register 12 70 1 826 –
Memory 50 – 40 –
Multiplexer 4 30 – 570
Instance 2 5 1 561 2 381

Total 83 15 3 387 3 904

Available 280 220 106 400 53 200

Utilization (%) 30 6 4 7

Table 5. PlantNet IP hardware cost

Embedded Plant Disease Recognition Using Deep PlantNet on FPGA-SoC 1393

Algorithm 1: Deep PlantNet-based Accelerator for HLS tool
Input: Layer Configs, Image I, Weights W .
Output: Images Classes.

1 BEGIN
2 for the whole model do
3 for Each layer do
4 Load Output width wout and Output height hout

5 Load Input channels chin and Output channel chout

6 Load Kernel size k and stride length s
7 Load Indicator A to designate layer types: A = 10 for split1 layer and A = 01 for

split2 layer.
8 Feat maps = L
9 for y = 0 to hout − 1 do

10 for x = 0 to wout − 1 do
11 for ci = 0 to chin − 1 do
12 for co = 0 to chout − 1 do
13 Conv Product = 0
14 for j = −k/2 to k/2 do
15 for i = −k/2 to −k/2 do
16 Image pixel = input [L, s.y + j, s.x+ i, ci]
17 Filter pixel = W [L, ci, co, j, i]
18 Conv Product = Conv Product+Filter pixel*Image pixel
19 END for
20 END for
21 if split2 then
22 Feat maps[L, y, x, co + chout] = Feat maps[L, y, x,

co + chout]+ Conv Product
23 else
24 Feat maps[L, y, x, co] = Feat maps[L, y, x, co]+ Conv Product
25 END if
26 END for
27 END for
28 for co = 0 to chout − 1 do
29 Feat maps [L, y, x, co] = ReLU(Feat maps[L, y, x, co] +W [L, bias, co])
30 END for
31 END for
32 if split1 then
33 Feat maps input [L+ 1, . . .] = Feat maps input [L, . . .]
34 Feat maps output [L+ 1, . . .] = Feat maps output [L, . . .]
35 else
36 Feat maps input [L+ 1, . . .] = Feat maps output [L, . . .]
37 END if
38 for co = 0 to chout − 1 do
39 Feat maps output [layers, 0, 0, co] =∑

y,x Feat maps input [layers, y, x, co] · 1
hout·wout

40 END for
41 END for
42 Layers classes = Softmax (Feat maps output [layers, . . .])
43 END for
44 END for

5 HW/SW PLANTNET ARCHITECTURE
FOR THE PLANT DISEASE DETECTION

The IP created by the HLS till must be integrated into an HW/SW architecture for
the FPGA SoC which has been realized by the Xilinx Vivado Design Suite. After
importing the exported ”IP Catalog” as a new repository file into the Vivado cata-

1394 T. Saidani, R. Ghodhbani, A. Alhomoud, M. Ben Ammar

Load Weights W Load Weights W Load Weights WLoad Weights W

Processing
Elements

....

Image (pixels) Input

Processing
Elements

Processing
Elements

Processing
Elements

....

Memory
Controller

Image Input Cache
Memory

Outputs (O) Cache
Memory

Outputs (O) Cache
Memory Outputs (O) Cache

Memory
Outputs (O) Cache

Memory
....

+ + + +

+ Bias
ReLU

+Pooling Cache
Memory

AXI Interconnect

Figure 6. PlanNet accelerator

log, the block diagram of the design is created and the accelerator design is added
as a new IP element. As shown in Figure 7, the HW/SW architecture for plant dis-
ease detection based on the PlantNet accelerator is composed of two main elements:
the ZYNQ processing system (PS) which includes ARM Cortex dual cores and the
programmable logic part (PS). The PS IP has been added and configured, before
making connection between all IP components automatically. In this context, the
m axi and s axilite interfaces are used in our conception, to reduce the interconnec-
tion of the design into a larger system architecture. The AXI-Master (M00 AXI)
interface is used to connect to the memory via the AXI bus. The AXI-Lite intercon-
nection is used for configuring, starting and stopping the PlantNet accelerator. The
block RST processing System provides a reset action for the whole system while the
IP processing system AXI periph is used to route all transaction between FPGA
fabric and PS system. In addition, the PS is used to communicate with the PL
part and process the softmax layer. This is done via the Jupyter Notebook Overlay
interface that offers the possibility to test the application by entering test data.
After the allocation of the physical memory addresses and the validation of the
design, the implementation steps which cover the synthesis and implementation lev-
els will be launched. The purpose is to convert RTL components to Netlist before
determining the best balance of runtime optimization, area optimization, routing
optimization, and so on. After that, the optimized architecture is saved in the
bitstream file.

Embedded Plant Disease Recognition Using Deep PlantNet on FPGA-SoC 1395

ZYNQ Processing
System PYNQ Z1

+
+
+

DDR

 FIXED_IO

M_AXI_GP

+
+

S_AXI_HP0_FIFO_CTRL

S_AXI_HP0

M_AXI_GP0_ACLK
S_AXI_HP0_ACLK
IRQ_F2P

DDR

 FIXED_IO

Processing System
AXI_periph

+M_AXI_GP

+ S00_AXI
ACLK
ARESETN[0:0]
S00_ACLK
S00_ARESETN[0:0]
M00_ACLK
M00_ARESETN[0:0]

FCLK_CLK0
FCLK_RESET0

ZYNQ7

AXI Interconnect

PlantNet
Accelerator

ap_rst_n
Interupt

+ M_axi_memory
ap_clk

+S_axi_AXIlite

 AXI_memory_interconnect

+M00_AXI

+ S00_AXI
ACLK
ARESETN[0:0]
S00_ACLK
S00_ARESETN[0:0]
M00_ACLK
M00_ARESETN[0:0]

AXI Interconnect

RST_Processing_System7

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug

dcm_locked

mb_reset

bus_reset

peripheral_reset

connect_aresetn[0:0]

peripheral_aresetn[0:0]

Figure 7. HW/SW PlantNet architecture

6 RESULTS AND DISCUSSION

The costs associated with the PYNQ-Z1 board’s hardware are outlined in Table 6
for the prototype that was recommended based on the accelerated PlantNet model.
It is clear from this that the proposed architecture makes use of around 7% of LUTs,
20% of LUTRAMs, 6% of FFs, 32% of BRAMs, 7% of DSPs, and 3% of BUFGs.
However, with the Vivado IPI power analysis tool, it was determined that the power
consumption of the design is 2.485 W. In addition, using the bitstream file that was
generated together with the weights and biases that were saved, we generate our
very own bespoke overlay in order to carry out the implementation of the hybrid
architecture on the PYNQ-Z1 board. At this stage, we will test the application and
determine how long it takes to execute a photograph once it has been processed.
As a consequence of this, we were able to determine the mean inference time per
frame for the accelerated PlantNet model by using a pseudo-code implementation
on the ARM processor of the FPGA. It has been determined that acceleration has
been achieved because the time it takes to process a photograph is around 0.04
seconds. In addition, by using Equations (3) and (4), we determine the maximum
computational roof as well as its maximum bandwidth roof [48].

Computation roof = 2× NDSP

NRDSP

× f = 33GFLOPS, (3)

Bandwidth roof =
64

8
×NHP × f = 1.9GByte/s. (4)

1396 T. Saidani, R. Ghodhbani, A. Alhomoud, M. Ben Ammar

Resource Utilization Available Utilization (%)

LUT 3 700 53 200 6.9
LUTRAM 3407 17 400 19.9
FF 5 989 106 400 5.6
BRAM 90.50 280 32.3
DSP 16 220 7.2
BUFG 1 32 3.13

Table 6. Hardware cost for HW/SW architecture

The suggested architecture has a maximum processing capacity of about 33
GFLOPS and a maximum bandwidth of approximately 1.9 GB/s. The PYNQ-Z1
board has a total of NDSP digital signal processors (DSPs). The highest frequency
of the system, which is about 120MHz, is denoted by f , and the minimum number
of digital signal processors, denoted by NRDSP

, is reported as the value. The value of
the NHP variable represents the total number of high-performance ports. The design
that has been offered has also been contrasted with many relevant architectures that
have been proposed in related publications. The needed references are included, as
well as an illustration of the performance comparison, in Table 7. The purpose of the
suggested study that is mentioned in [48] is to develop a CNN model by hastening
the process of depth-separable convolution in addition to regular convolution. The
Xilinx ZYNQ 7100 board was used in the implementation of the design. In contrast
to our designs, which are built on the XC7Z020 board, the implementation results
demonstrate a greater hardware cost occupancy. This is the case despite the fact
that our designs are used. In addition, our solutions were able to achieve a lower
power consumption of 2.48 watts and a higher computational roof of 33 GFLOPS in
comparison to the identical workload, which required 3.99 watts and 17.11 GFLOPS,
as well as a higher operating frequency of 120MHz as opposed to 100MHz. In
addition, the proposed vision system has the capability of processing one image per
4 800 000 clock cycles, with the clock period being around 8.33 nanoseconds.

[48] [49] Our Design

Platform ZYNQ 7100 XC7VX690T XC7Z020

LUTs 51% 62.9% 6.9%
BRAMs 46% 50.2% 32.3%
FFs 38% 26.6% 5.6%
DSPs 95% 99.8% 7.2%

Power (W) 3.99 15.8 2.485

Frequency (MHz) 100 120 120

Clock Cycle (nanoseconds) – – 8.33333

Number of Clock Cycles (per image) – – 4 800 013

Computational roof (GFLOPS) 17.11 – 33

Bandwidth roof (GByte/s) 3.2 – 1.9

Table 7. Comparative study

Embedded Plant Disease Recognition Using Deep PlantNet on FPGA-SoC 1397

This is because the solutions that we have provided are optimized with high-
performance connections in order to speed up the data transfers. The work that was
suggested was compared to the standard design that was mentioned in [49] in order
to further investigate the efficacy of our collaborative designs. The latter intends
to increase the processing speed of 2D and 3D CNNs running on the Xilinx VC709
platform. Nevertheless, it is interesting that the proposed design uses practically
all of the available resources on the FPGA (99.8% of DSPs, 60% of LUTs, 50% of
FFs, and 26.6% of BRAMs) while having a greater power usage (15.8 watts) than
ours does. Based on this comparison with methods that are considered to be state-
of-the-art, our proposed design is superior to the methods that are currently being
used since it delivers excellent performance in terms of low power consumption, low
hardware resource occupancy on the FPGA, more processing, and bandwidth cap.
Our designs were able to achieve the ideal trade-off between resource cost, power
consumption, bandwidth, and computatational roof as a consequence of this, which
made them suitable for deployment on embedded devices with constrained resource
budgets.

On the other hand, it is critical to normalize the findings based on the unique
hardware specifications to ensure a fair comparison across different hardware plat-
forms utilized to evaluate the proposed approach. Depending on the nature of the
task and the available hardware resources, one common approach is to normal-
ize performance metrics such as execution time or throughput by the number of
GFLOPS or the bandwidth limit of the memory interface in GByte/s. However, be-
cause different hardware platforms have different GFLOPS and memory bandwidth,
we can normalize the execution time or throughput by dividing it by the number
of GFLOPS or memory bandwidth of each platform. This normalization approach
can assist to reduce the impact of hardware heterogeneity and give a more realistic
comparison of the performance of various hardware platforms. In this context, to
normalize the measured performance of each platform (from Table 7) by dividing it
by the corresponding maximum achievable performance. This will give us a value
between 0 and 1, which represents the percentage of the maximum achievable per-
formance that the platform is able to achieve.

• For the first platform (ZYNQ 7100):

– Normalized GFLOPS = 17.11GFLOPS/17.11GFLOPS = 1,

– Normalized Bandwidth = 3.2GByte/s/3.2GByte/s = 1.

• For the second platform (XC7Z020):

– Normalized GFLOPS = 33GFLOPS/17.11GFLOPS = 1.93,

– Normalized Bandwidth = 1.9GByte/s/3.2GByte/s = 0.59.

By comparing the normalized performance values, of both platforms to make
a fair comparison, we can see that the XC7Z020 platform (used in our work) has
a higher normalized GFLOPS value (1.93) than the ZYNQ 7100 platform (1). This

1398 T. Saidani, R. Ghodhbani, A. Alhomoud, M. Ben Ammar

indicates that it can achieve a higher percentage of its maximum achievable GFLOPS
performance. However, it has a lower normalized bandwidth value (0.59), indicating
that it may be limited in its ability to transfer data efficiently.

7 CONCLUSION

On the basis of the PlantNet model, a hybrid architecture for plant disease detec-
tion is developed. The concept was initially executed on the GPU platform, where
training and test results demonstrate its usefulness. Following that, a HW/SW ar-
chitecture is shown to accelerate data streaming and processing on the PYNQ Z1
platform. The implementation findings reveal that the suggested design outperforms
all others in terms of processing time, computational roof, and bandwidth roof. The
quantization approach and Xilinx’s new Vitis tool will be utilized in future work to
use the new deep learning processor on new embedded platforms.

Declarations

The authors have no relevant financial or non-financial interests to disclose. The
authors have no competing interests to declare that are relevant to the content of
this article.

Acknowledgments

The authors gratefully acknowledge the approval and the support of this research
study by the grant No. CSCR-2022-11-1144 from the Deanship of Scientific Research
at Northern Border University, Arar, K.S.A.

REFERENCES

[1] Zhai, Z.—Mart́ınez, J. F.—Beltran, V.—Mart́ınez, N. L.: Decision Support
Systems for Agriculture 4.0: Survey and Challenges. Computers and Electronics in
Agriculture, Vol. 170, 2020, Art. No. 105256, doi: 10.1016/j.compag.2020.105256.

[2] Megeto, G.A. S.—da Silva, A.G.—Bulgarelli, R. F.—Bublitz, C. F.—
Valente, A.C.—da Costa, D.A.G.: Artificial Intelligence Applications in
the Agriculture 4.0. Revista Ciência Agronômica, Vol. 51, 2020, Art. No. e20207701,
doi: 10.5935/1806-6690.20200084.

[3] Symeonaki, E.—Arvanitis, K.—Piromalis, D.: A Context-Aware Middle-
ware Cloud Approach for Integrating Precision Farming Facilities into the IoT To-
ward Agriculture 4.0. Applied Sciences, Vol. 10, 2020, No. 3, Art. No. 813, doi:
10.3390/app10030813.

[4] Symeonaki, E.G.—Arvanitis, K.G.—Piromalis, D.D.: Current Trends and
Challenges in the Deployment of IoT Technologies for Climate Smart Facility Agricul-

https://doi.org/10.1016/j.compag.2020.105256
https://doi.org/10.5935/1806-6690.20200084
https://doi.org/10.3390/app10030813

Embedded Plant Disease Recognition Using Deep PlantNet on FPGA-SoC 1399

ture. International Journal of Sustainable Agricultural Management and Informatics,
Vol. 5, 2019, No. 2-3, pp. 181–200, doi: 10.1504/IJSAMI.2019.101673.

[5] Ahmed, K.—Shahidi, T.R.—Alam, S.M. I.—Momen, S.: Rice Leaf Dis-
ease Detection Using Machine Learning Techniques. 2019 International Confer-
ence on Sustainable Technologies for Industry 4.0 (STI), 2019, pp. 1–5, doi:
10.1109/STI47673.2019.9068096.

[6] Hughes, D.—Salathé, M.: An Open Access Repository of Images on Plant
Health to Enable the Development of Mobile Disease Diagnostics. CoRR, 2015, doi:
10.48550/arXiv.1511.08060.

[7] Kianat, J.—Khan, M.A.—Sharif, M.—Akram, T.—Rehman, A.—Saba, T.:
A Joint Framework of Feature Reduction and Robust Feature Selection for Cu-
cumber Leaf Diseases Recognition. Optik, Vol. 240, 2021, Art. No. 166566, doi:
10.1016/j.ijleo.2021.166566.

[8] Sharma, R.: Artificial Intelligence in Agriculture: A Review. 2021 5th Interna-
tional Conference on Intelligent Computing and Control Systems (ICICCS), 2021,
pp. 937–942, doi: 10.1109/ICICCS51141.2021.9432187.

[9] Panigrahi, K. P.—Das, H.—Sahoo, A.K.—Moharana, S. C.: Maize Leaf Dis-
ease Detection and Classification Using Machine Learning Algorithms. In: Das, H.,
Pattnaik, P.K., Rautaray, S. S., Li, K.C. (Eds.): Progress in Computing, Analytics
and Networking (ICCAN 2019). Springer Singapore, Advances in Intelligent Systems
and Computing, Vol. 1119, 2020, pp. 659–669, doi: 10.1007/978-981-15-2414-1 66.

[10] Kartikeyan, P.—Shrivastava, G.: Review on Emerging Trends in Detec-
tion of Plant Diseases Using Image Processing with Machine Learning. Interna-
tional Journal of Computer Applications, Vol. 174, 2021, No. 11, pp. 39–48, doi:
10.5120/ijca2021920990.

[11] Sladojevic, S.—Arsenovic, M.—Anderla, A.—Culibrk, D.—
Stefanovic, D.: Deep Neural Networks Based Recognition of Plant Diseases
by Leaf Image Classification. Computational Intelligence and Neuroscience,
Vol. 2016, 2016, Art. No. 3289801, doi: 10.1155/2016/3289801.

[12] Liu, J.—Wang, X.: Plant Diseases and Pests Detection Based on Deep Learning:
A Review. Plant Methods, Vol. 17, 2021, No. 1, Art. No. 22, doi: 10.1186/s13007-
021-00722-9.

[13] LeCun, Y.—Bottou, L.—Bengio, Y.—Haffner, P.: Gradient-Based Learning
Applied to Document Recognition. Proceedings of the IEEE, Vol. 86, 1998, No. 11,
pp. 2278–2324, doi: 10.1109/5.726791.

[14] Lee, S.H.—Chan, C. S.—Wilkin, P.—Remagnino, P.: Deep-Plant: Plant Iden-
tification with Convolutional Neural Networks. 2015 IEEE International Conference
on Image Processing (ICIP), 2015, pp. 452–456, doi: 10.1109/ICIP.2015.7350839.

[15] Grinblat, G. L.—Uzal, L. C.—Larese, M.G.—Granitto, P.M.: Deep
Learning for Plant Identification Using Vein Morphological Patterns. Com-
puters and Electronics in Agriculture, Vol. 127, 2016, pp. 418–424, doi:
10.1016/j.compag.2016.07.003.

[16] Mohanty, S. P.—Hughes, D. P.—Salathé, M.: Using Deep Learning for Image-
Based Plant Disease Detection. Frontiers in Plant Science, Vol. 7, 2016, Art. No. 1419,

https://doi.org/10.1504/IJSAMI.2019.101673
https://doi.org/10.1109/STI47673.2019.9068096
https://doi.org/10.48550/arXiv.1511.08060
https://doi.org/10.1016/j.ijleo.2021.166566
https://doi.org/10.1109/ICICCS51141.2021.9432187
https://doi.org/10.1007/978-981-15-2414-1_66
https://doi.org/10.5120/ijca2021920990
https://doi.org/10.1155/2016/3289801
https://doi.org/10.1186/s13007-021-00722-9
https://doi.org/10.1186/s13007-021-00722-9
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ICIP.2015.7350839
https://doi.org/10.1016/j.compag.2016.07.003

1400 T. Saidani, R. Ghodhbani, A. Alhomoud, M. Ben Ammar

doi: 10.3389/fpls.2016.01419.

[17] Hasan, R. I.—Yusuf, S.M.—Alzubaidi, L.: Review of the State of the Art of
Deep Learning for Plant Diseases: A Broad Analysis and Discussion. Plants, Vol. 9,
2020, No. 10, Art. No. 1302, doi: 10.3390/plants9101302.

[18] Tan, L.: Cloud-Based Decision Support and Automation for Precision Agricul-
ture in Orchards. IFAC-PapersOnLine, Vol. 49, 2016, No. 16, pp. 330–335, doi:
10.1016/j.ifacol.2016.10.061.

[19] Selmani, A.—Oubehar, H.—Outanoute, M.—Ed-Dahhak, A.—
Guerbaoui, M.—Lachhab, A.—Bouchikhi, B.: Agricultural Cyber-
Physical System Enabled for Remote Management of Solar-Powered Pre-
cision Irrigation. Biosystems Engineering, Vol. 177, 2019, pp. 18–30, doi:
10.1016/j.biosystemseng.2018.06.007.

[20] Messaoud, S.—Bradai, A.—Bukhari, S. H.R.—Quang, P.T.A.—
Ahmed, O.B.—Atri, M.: A Survey on Machine Learning in Internet of
Things: Algorithms, Strategies, and Applications. Internet of Things, Vol. 12, 2020,
Art. No. 100314, doi: 10.1016/j.iot.2020.100314.

[21] Maraoui, A.—Messaoud, S.—Bouaafia, S.—Ammari, A.C.—Khriji, L.—
Machhout, M.: PYNQ FPGA Hardware Implementation of LeNet-5-Based Traffic
Sign Recognition Application. 2021 18th International Multi-Conference on Systems,
Signals & Devices (SSD), 2021, pp. 1004–1009, doi: 10.1109/SSD52085.2021.9429480.

[22] Liang, S.—Yin, S.—Liu, L.—Luk, W.—Wei, S.: FP-BNN: Binarized Neu-
ral Network on FPGA. Neurocomputing, Vol. 275, 2018, pp. 1072–1086, doi:
10.1016/j.neucom.2017.09.046.

[23] Shawahna, A.—Sait, S.M.—El-Maleh, A.: FPGA-Based Accelerators of Deep
Learning Networks for Learning and Classification: A Review. IEEE Access, Vol. 7,
2019, pp. 7823–7859, doi: 10.1109/ACCESS.2018.2890150.

[24] Jokic, P.—Emery, S.—Benini, L.: BinaryEye: A 20 kfps Streaming Camera
System on FPGA with Real-Time On-Device Image Recognition Using Binary Neural
Networks. 2018 IEEE 13th International Symposium on Industrial Embedded Systems
(SIES), 2018, pp. 1–7, doi: 10.1109/SIES.2018.8442108.

[25] Sharma, A.—Singh, V.—Rani, A.: Implementation of CNN on Zynq Based
FPGA for Real-Time Object Detection. 2019 10th International Conference on Com-
puting, Communication and Networking Technologies (ICCCNT), 2019, pp. 1–7, doi:
10.1109/ICCCNT45670.2019.8944792.

[26] Roberts, M. J.—Schimmelpfennig, D.—Ashley, E.—Livingston, M.—
Ash, M.—Vasavada, U.: The Value of Plant Disease Early-Warning Systems:
A Case Study of USDA’s Soybean Rust Coordinated Framework. USDA Economic
Research Service, 2006.

[27] Pimentel, D.—Zuniga, R.—Morrison, D.: Update on the Environmental and
Economic Costs Associated with Alien-Invasive Species in the United States. Ecologi-
cal Economics, Vol. 52, 2005, No. 3, pp. 273–288, doi: 10.1016/j.ecolecon.2004.10.002.

[28] Liu, B.—Zhang, Y.—He, D.—Li, Y.: Identification of Apple Leaf Diseases Based
on Deep Convolutional Neural Networks. Symmetry, Vol. 10, 2018, No. 1, Art. No. 11,
doi: 10.3390/sym10010011.

https://doi.org/10.3389/fpls.2016.01419
https://doi.org/10.3390/plants9101302
https://doi.org/10.1016/j.ifacol.2016.10.061
https://doi.org/10.1016/j.biosystemseng.2018.06.007
https://doi.org/10.1016/j.iot.2020.100314
https://doi.org/10.1109/SSD52085.2021.9429480
https://doi.org/10.1016/j.neucom.2017.09.046
https://doi.org/10.1109/ACCESS.2018.2890150
https://doi.org/10.1109/SIES.2018.8442108
https://doi.org/10.1109/ICCCNT45670.2019.8944792
https://doi.org/10.1016/j.ecolecon.2004.10.002
https://doi.org/10.3390/sym10010011

Embedded Plant Disease Recognition Using Deep PlantNet on FPGA-SoC 1401

[29] Sharif, M.—Khan, M.A.—Iqbal, Z.—Azam, M.F.—Lali, M. I. U.—
Javed, M.Y.: Detection and Classification of Citrus Diseases in Agricul-
ture Based on Optimized Weighted Segmentation and Feature Selection. Com-
puters and Electronics in Agriculture, Vol. 150, 2018, pp. 220–234, doi:
10.1016/j.compag.2018.04.023.

[30] Zhang, S.—You, Z.—Wu, X.: Plant Disease Leaf Image Segmentation Based
on Superpixel Clustering and EM Algorithm. Neural Computing and Applications,
Vol. 31, 2019, No. Suppl 2, pp. 1225–1232, doi: 10.1007/s00521-017-3067-8.

[31] Sanga, S.—Mero, V.—Machuve, D.—Mwanganda, D.: Mobile-
Based Deep Learning Models for Banana Diseases Detection. 2020, doi:
10.48550/arXiv.2004.03718.

[32] Chohan, M.—Khan, A.—Chohan, R.—Katpar, S.H.—Mahar, M. S.: Plant
Disease Detection Using Deep Learning. International Journal of Recent Technology
and Engineering, Vol. 9, 2020, No. 1, pp. 909–914, doi: 10.35940/ijrte.A2139.059120.

[33] Kim, W. S.—Lee, D.H.—Kim, Y. J.: Machine Vision-Based Automatic Disease
Symptom Detection of Onion Downy Mildew. Computers and Electronics in Agricul-
ture, Vol. 168, 2020, Art. No. 105099, doi: 10.1016/j.compag.2019.105099.

[34] Rothe, P.R.—Kshirsagar, R.V.: Cotton Leaf Disease Identification Using Pat-
tern Recognition Techniques. 2015 International Conference on Pervasive Computing
(ICPC), 2015, pp. 1–6, doi: 10.1109/PERVASIVE.2015.7086983.

[35] Islam, M.—Dinh, A.—Wahid, K.—Bhowmik, P.: Detection of Potato Dis-
eases Using Image Segmentation and Multiclass Support Vector Machine. 2017 IEEE
30th Canadian Conference on Electrical and Computer Engineering (CCECE), 2017,
pp. 1–4, doi: 10.1109/CCECE.2017.7946594.

[36] Dahl, G.E.—Yu, D.—Deng, L.—Acero, A.: Context-Dependent Pre-Trained
Deep Neural Networks for Large-Vocabulary Speech Recognition. IEEE Transactions
on Audio, Speech, and Language Processing, Vol. 20, 2012, No. 1, pp. 30–42, doi:
10.1109/TASL.2011.2134090.

[37] Fadhel, M.A.—Al-Shamma, O.—Oleiwi, S. R.—Taher, B.H.—
Alzubaidi, L.: Real-Time PCG Diagnosis Using FPGA. In: Abraham, A.,
Cherukuri, A.K., Melin, P., Gandhi, N. (Eds.): Intelligent Systems Design and
Applications (ISDA 2018). Springer, Cham, Advances in Intelligent Systems and
Computing, Vol. 940, 2018, pp. 518–529, doi: 10.1007/978-3-030-16657-1 48.

[38] Paramesh, V.: DLAU: A Scalable Deep Learning Accelerator Unit on FPGA. Tech-
nical Report. 2019, https://easychair.org/publications/preprint_download/
ckW5.

[39] Zhang, C.—Li, P.—Sun, G.—Guan, Y.—Xiao, B.—Cong, J.: Optimizing
FPGA-Based Accelerator Design for Deep Convolutional Neural Networks. Proceed-
ings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA ’15), 2015, pp. 161–170, doi: 10.1145/2684746.2689060.

[40] Bäuerle, A.: Visualization-Based Neural Network Introspection. Ph.D. Thesis. Uni-
versität Ulm, 2023, doi: 10.18725/OPARU-47825.

[41] Guo, Y.—Liu, Y.—Bakker, E.M.—Guo, Y.—Lew, M. S.: CNN-RNN:
A Large-Scale Hierarchical Image Classification Framework. Multimedia Tools and

https://doi.org/10.1016/j.compag.2018.04.023
https://doi.org/10.1007/s00521-017-3067-8
https://doi.org/10.48550/arXiv.2004.03718
https://doi.org/10.35940/ijrte.A2139.059120
https://doi.org/10.1016/j.compag.2019.105099
https://doi.org/10.1109/PERVASIVE.2015.7086983
https://doi.org/10.1109/CCECE.2017.7946594
https://doi.org/10.1109/TASL.2011.2134090
https://doi.org/10.1007/978-3-030-16657-1_48
https://easychair.org/publications/preprint_download/ckW5
https://easychair.org/publications/preprint_download/ckW5
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.18725/OPARU-47825

1402 T. Saidani, R. Ghodhbani, A. Alhomoud, M. Ben Ammar

Applications, Vol. 77, 2018, No. 8, pp. 10251–10271, doi: 10.1007/s11042-017-5443-x.

[42] Emmanuel, T.O.: PlantVillage Dataset. Kaggle, 2018, https://www.kaggle.com/
emmarex/plantdisease.

[43] Hidayatuloh, A.—Nursalman, M.—Nugraha, E.: Identification of Tomato
Plant Diseases by Leaf Image Using Squeezenet Model. 2018 International Con-
ference on Information Technology Systems and Innovation (ICITSI), IEEE, 2018,
pp. 199–204, doi: 10.1109/ICITSI.2018.8696087.

[44] Restrepo-Arias, J. F.—Branch-Bedoya, J.W.—Awad, G.: Plant Disease De-
tection Strategy Based on Image Texture and Bayesian Optimization with Small
Neural Networks. Agriculture, Vol. 12, 2022, No. 11, Art. No. 1964, doi: 10.3390/agri-
culture12111964.

[45] Shin, J.—Chang, Y.K.—Heung, B.—Nguyen-Quang, T.—Price, G.W.—
Al-Mallahi, A.: A Deep Learning Approach for RGB Image-Based Powdery
Mildew Disease Detection on Strawberry Leaves. Computers and Electronics in Agri-
culture, Vol. 183, 2021, Art. No. 106042, doi: 10.1016/j.compag.2021.106042.

[46] Abbas, I.—Liu, J.—Amin, M.—Tariq, A.—Tunio, M.H.: Strawberry Fun-
gal Leaf Scorch Disease Identification in Real-Time Strawberry Field Using
Deep Learning Architectures. Plants, Vol. 10, 2021, No. 12, Art. No. 2643, doi:
10.3390/plants10122643.

[47] Bobrowicz, S.: PYNQ-Z1 Reference Manual – Digilent Reference. https://

digilent.com/reference/programmable-logic/pynq-z1/reference-manual.

[48] Liu, B.—Zou, D.—Feng, L.—Feng, S.—Fu, P.—Li, J.: An FPGA-Based CNN
Accelerator Integrating Depthwise Separable Convolution. Electronics, Vol. 8, 2019,
No. 3, Art. No. 281, doi: 10.3390/electronics8030281.

[49] Liu, Z.—Chow, P.—Xu, J.—Jiang, J.—Dou, Y.—Zhou, J.: A Uniform Ar-
chitecture Design for Accelerating 2D and 3D CNNs on FPGAs. Electronics, Vol. 8,
2019, No. 1, Art. No. 65, doi: 10.3390/electronics8010065.

https://doi.org/10.1007/s11042-017-5443-x
https://www.kaggle.com/emmarex/plantdisease
https://www.kaggle.com/emmarex/plantdisease
https://doi.org/10.1109/ICITSI.2018.8696087
https://doi.org/10.3390/agriculture12111964
https://doi.org/10.3390/agriculture12111964
https://doi.org/10.1016/j.compag.2021.106042
https://doi.org/10.3390/plants10122643
https://digilent.com/reference/programmable-logic/pynq-z1/reference-manual
https://digilent.com/reference/programmable-logic/pynq-z1/reference-manual
https://doi.org/10.3390/electronics8030281
https://doi.org/10.3390/electronics8010065

Embedded Plant Disease Recognition Using Deep PlantNet on FPGA-SoC 1403

Taoufik Saidani is currently Assistant Professor in the De-
partment of Computer Sciences, Faculty of Computing and In-
formation Technology, Northern Border University, Rafha, King-
dom of Saudi Arabia. He received his Ph.D. degree in computer
science and engineering from the Faculty of Sciences, Monastir
University, Tunisia, in 2014. His research interests include real-
time image and video processing, embedded system, high level
synthesis, machine learning, deep learning, image compression,
JPEG2000, FPGA accelaration of image and processing system.

Refka Ghodhbani is currently serving as Assistant Professor
in the Department of Computer Sciences, Faculty of Computing
and Information Technology, Northern Border University, Rafha,
Kingdom of Saudi Arabia. She received her Ph.D. degree in
computer science and engineering from the Faculty of Sciences,
Monastir University, Tunisia, in 2021. Her research interests in-
clude real-time image and video processing, embedded system,
high level synthesis, machine learning, deep learning, image com-
pression, JPEG2000, FPGA accelaration of image and process-
ing system.

Ahmed Alhomoud is Assistant Professor in the Department
of Computer Sciences, Faculty of Computing and Information
Technology, Northern Border University, Rafha, Kingdom of
Saudi Arabia. He received his Ph.D. in computer science from
the University of Southampton, United Kingdom. His research
interests include but are not limited to digital forensics, cyber
security, Internet of Things and blockchain.

Mohamed Ben Ammar is currently serving as Assistant Pro-
fessor in the Department of Information Systems at the Fac-
ulty of Computing and Information Technology, Northern Bor-
der University, Rafha, Kingdom of Saudi Arabia. He received
his Ph.D. degree in engineering of information systems from the
National Engineering School of Sfax (ENIS), Sfax University,
Tunisia. His research interests include affective computing, in-
telligent tutoring systems, and multimodal emotion recognition.

