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Abstract. Remote sensing target detection has been widely used in industries. In
various application scenarios, complicated contexts may inhibit target identification
and reduce detection accuracy, especially in multi-target detection tasks. In this
paper, a new remote sensing target detection method based on structural reason-
ing is proposed to improve target detection performance by integrating inter-object
relationships and scene information. Based on inter-object information, a rela-
tion structure graph is designed to reduce errors and missed targets. To establish
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contextual constraints, semantic is used as a prior information for Bayesian cri-
terion based on scene information. Experiments conducted on HRRSD dataset
show that the average accuracy of the proposed method is 10.7% higher than the
state-of-the-art algorithms. The experimental results confirm that the proposed
algorithm can achieve significant improvements and adapt to complex scenes in
remote sensing by mining contextual information at both feature and semantic lev-
els.

Keywords: Remote sensing, inter-object relation, scene information

1 INTRODUCTION

Based on the technological progress of data acquisition, remote sensing image pro-
cessing has been adopted for widespread use across industries, including high-re-
solution remote sensing imagery [1], tropical cyclone detection [2], disaster con-
trol [3, 4, 5], road detection [6, 7], and municipal construction [8]. However, various
scenes and complex context information in remote sensing images often pose great
challenges to target detection, especially in multi-target detection. In complex envi-
ronments, targets with small sizes or vague shapes perhaps lose their distinctiveness
from the complicated background. In addition, various factors contribute to the
variability of remote sensing images, such as time, climate, shadow, occlusion, and
illumination [9]. Figure 1 shows some representative detection problems in remote
sensing images. The objects, including a bus stop, a van, and several playground
landmarks, are similar in shape and color. It is not easy to distinguish without the
help of context information. All these problems cause a reduction in the accuracy
and confidence of detection. Therefore, it has become a challenge to detect targets
with features and scales in remote sensing images of various scenes and different
contexts.

Figure 1. Representative detection problems in remote sensing images
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In order to solve the aforementioned problems and to model the scenes and
backgrounds, namely context constraints, researchers have made considerable ef-
forts to advance the detection performance in complex contexts of remote sensing
images. Among the traditional target detection methods, some context knowledge-
based algorithms are proposed in context-aware detectors, which is an offshoot of
knowledge-based object detection [10, 11, 12, 13]. The most frequently used context
knowledge lies in how targets in images interact with adjacent regions, i.e., object-
background relationships. For instance, the appearance of the shadow is supposed
to be an essential clue for the existence of nearby buildings [12]. Based on prior
knowledge, the researchers have tried to encode relationships between manufactured
architectures and their shadows into handcrafted rules for building detection. In
traditional remote sensing target detection studies, the knowledge-based algorithms
have shown the great potential of transforming implicit knowledge into explicit de-
tection rules. However, two problems have gradually emerged as knowledge-based
methods develop. On one hand, to encode a sophisticated and fuzzy understanding
of seemingly endless targets is hard. On the other hand, it is usually challenging
to manually determine the optimal extent of detection rules: false positive cases
will increase when controls need to be strict enough, whereas targets will be missed
under insufficiently strict rules [9].

Compared to traditional methods, deep learning has offered a rich diversity of
remote sensing target detection methodologies and shown significant advantages in
recent years [14, 15, 16, 17, 18]. Learned features have quickly overtaken man-
ual ones. With the help of a multi-layer structure, the convolutional neural net-
work (CNN) can extract more sophisticated and effective features on both low and
high levels than handcrafted features in traditional target detection. Many different
methods based on CNN are proposed and applied to remote sensing object detec-
tion, such as dilated CNN [17] and Region CNN [18]. However, despite various
deep-learning-based algorithms, only some consider contextual information. Since
conventional knowledge-based algorithms have proven the effectiveness of context
constraints in remote image target detection, ignoring the information may reduce
the accuracy [19]. Furthermore, many algorithms are developed from early neural
networks for natural object detection tasks. However, different from object detec-
tion in natural images, targets in remote sensing images are always accompanied by
detailed scenes and blurred backgrounds such as various terrains, landscapes, and
climates which indicates higher importance of context information.

Motivated by context constraints in knowledge-based algorithms, we propose
a new deep learning network model for remote sensing target detection. Compared
to limited handcrafted rules in traditional methods, the proposed algorithm us-
ing learnable context constraints can adapt to complicated situations in authentic
remote-sensing images. More precisely, the model is based on two genres of con-
textual information, i.e., scene information and inter-object relationship. Thus, the
model can use the relationships of the target with the background and with other
targets to determine the final target. The main contribution of this work can be
summarized as follows:
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An object context-constrained module is proposed. This module is used
to model inter-object relationships. It contains a Region Proposal Network
(RPN) and an Object Relationship Structure Graph (ORSG). After receiving
the information on region proposals from the RPN, the structure graph can ag-
gregate the information and model the relationships between targets, including
relative positions and class flag pairs. The module can learn the adaptive re-
lationships between specified classes and arbitrary targets by building context
constraints.

A scene context-constrained module is engaged. Scene-target relations are
modeled in this module. In our proposed model, the scene context-constrained
module uses a multi-layer perception (MLP) to predict scene classes of remote
sensing images. Based on the predicted scene classes, a Bayes criterion is used
to determine the appearance probability of detected targets.

This paper is structured as follows. The related research is summarized and
briefly reviewed in Section 2. In Section 3, we elaborate on our algorithm in detail.
Section 4 introduces the experimental design with the employed datasets. Finally,
we give the conclusion of our work in Section 5.

2 RELATED WORK

2.1 Object Detection

Generally, traditional methods in remote sensing target detection can be classi-
fied as three groups, template matching-based, object-based image analysis-based
(OBIA) and knowledge-based algorithm [9]. The template matching-based methods
first generate templates for different target classes by hand-crafting or learning al-
gorithms. The template is used to match a source image at any possible position
and measure the similarity of each match [20]. However, template-based methods
need more robustness for targets varying in size or direction; thus, many pieces of
early research are concentrated on this issue, such as deformable template match-
ing [21, 22]. In the knowledge-based method, prior knowledge is translated into
detection rules. The authors in [23] proposed a geometric model detecting buildings
with a shape like “E”, “F” or “T”, which is the handcrafted features extracted by
the model. In another work [12], buildings can be assumed to have a rectangular
shape in remote sensing images, and this rule can be considered a generic model for
detecting buildings. Concerning OBIA methods, also called target-based methods,
the input image is first segmented into homogeneous pixel groups by selected criteria
such as scale, shape, or compactness, and then these groups are classified into dif-
ferent target classes. However, segmentation algorithms and the images’ complexity
can greatly influence the performance of the OBIA method [24].

Apart from the traditional methods, mainstream target detection algorithms
are mostly based on deep learning networks, which can be grouped into two genres:
two-stage and one-stage. In the architecture of two-stage networks, a sub-network
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called region proposal network (RPN) is independent of the feature extraction part,
including Region-based CNN (R-CNN) family models [25, 26] and Feature Pyra-
mid Networks (FPN) [27]. In one-staged-based algorithms, an end-to-end model
is designed to determine the bounding box of predicted targets and calculate their
class probability simultaneously, such as single-shot multi-box detector (SSD) [28],
you-only-look-once (YOLO) family algorithms [29, 30], etc. Law and Deng proposed
a new approach based on a single convolution neural network, where the object de-
tection is considered as a task of predicting a pair of keypoints (top-left corner and
bottom-right corner) [31]. Inspired by the keypoint-based approach, CenterNet is
proposed by Duan et al., which integrates the information from the center part of the
region proposal to enhance the predictions [32]. MultiTask-CenterNet (MCN) [33]
is based on the CenterNet and accomplishes multi-tasks like object detection, like
semantic segmentation and depth estimation. Besides the convolution-based neural
network, FLDS used a multistage residual hybrid attention module to learn robust
and powerful features for target detection [34]. In comparison, one-stage methods
have advantages in location and classification accuracy, whereas two-stage methods
are superior in computational speed.

2.2 Contextual Information

Naturally, context information is beneficial to target detection in a complicated en-
vironment. For instance, the probability of a bridge appearing on the river is much
higher than on the sports field. In early studies, many knowledge-based researchers
have attempted to find a theoretical explanation of how targets interact with pix-
els in their neighboring regions [9, 23]. Much early empirical research proves that
it is helpful to utilize contextual information to enhance object detection perfor-
mance [13]. Taking building recognition as a representative example, many pieces
of research suppose the shadow as a shred of evidence for the existence of man-
ufactured buildings [11, 12]. Bückner et al. proposes a semantic net for building
detection, which contains top-down operators for image segmentation and bottom-
up operators for target labeling [10].

In recent years, many deep-learning-based research have proposed some novel
neural networks that integrate contextual information into object detection, mainly
based on convolutional neural networks. Li et al. propose a two-stage convolu-
tional neural network to integrate global and local contextual information, contain-
ing a context network that detects objects [35]. Similarly, Li et al. use a fusion
network to combine multi-angle and multi-scale characteristics of targets in remote
sensing images [36]. However, scene-level features are ignored in the proposed net-
work. Zhang et al. designed a novel CNN called CAD-Net with a spatial-and-
scale-aware attention module that can capture relations between global scenes and
local objects [37]. Based on CAD-Net, Gong et al. propose a novel context-aware
CNN which includes multi-layer feature maps of context-regions-of-interests (con-
text ROIs) [38]. Sun et al. dedicated a context refinement module that can aggre-
gate multi-scale feature maps to extract context information on different levels [39].
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Cheng et al. proposed a one-stage network containing two sub-networks to handle
object and scene contexts [15].

However, there are several shortcomings of these methods:

1. These methods usually focus only on the internal features of the targets and
ignore the external semantic features around the targets, especially the relation-
ships between the targets.

2. These methods still only target visual features when utilizing scene information,
lacking the guidance of high-level semantic knowledge.

3. These methods do not utilize both target relationship information and scene
context information, but simply utilize one-sided information.

Therefore, a remote sensing image target detection method based on target rela-
tionship information and scene semantic information is designed.

Figure 2. Overall network structure
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3 PROPOSED APPROACH

Figure 2 depicts the framework of our proposed detection network. The network
contains three main parts, including feature extraction, object-constrained network,
and scene constrained network. The CNN-based encoder extracts the features of
the input image and feeds the features into two sub-network. Based on the target
information proposed by the RPN, the object-constrained network uses the gated
recurrent unit (GRU) to build inter-object context information. The scene context-
constrained sub-network uses a multi-layer perceptron (MLP) to classify scenes and
then uses Bayesian criterion to describe scene-object relationships. The detection
network benefits from two sub-networks that can integrate the local object context
and the global scene context to infer inter-object and scene-object relationships.
The framework will be detailed in the following sections.

3.1 Inter-Object Context Constraints

In this section, we delineate the object-constrained module, which describes the
relationships between objects and builds the inter-object context constraints on the
detection output.

3.1.1 Inter-Object Relationship Structure Graph

Figure 3. Inter-object relationship structure graph in remote sensing images

A wealth of context information on the inter-object level makes a difference
to object detection. For instance, the airplane might not appear on a basketball
playground but will likely coexist with aircraft towing tractors. In the proposed
network, we use a graphical model called an inter-object relationship structure graph
to describe the relations among targets.

Figure 3 shows a typical circumstance in a remote sensing image, which depicts
constructing an inter-object relationship. It is natural to model the inter-object
relationships as a directed graph G = (T,E), where nodes t ∈ T denote the possible
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targets proposed by an arbitrary detection network since the graphical model is
independent of the target detection network. In this work, we build the structure
graph based on the regions of interest (RoIs) proposed by an RPN network [26]. The
RPN will propose k RoIs, where the number k is determined by the RPN network.
Each RoI corresponds to a node vi in the structure graph. The RoI pooling layer
will extract the visual features of corresponding nodes, denoted as f v

i .

In addition to visual features, position information is also used in the network.
The edge e ∈ E denotes the relations between the pair of target nodes. Specifically,
ej→i represents the edge from node vj to vi, which indicates the influence of the node
vj on vi. The structure graph integrates the information of visual features and the
relative position of RoIs to model the relation. To describe the information of the
relative position, we use a vector Rp

j→i.

Rj→i =
[
wi, hi, si, wj, hj, sj, d1x, d1y, d2x, d2y, log

(
wi

wj

)
, log

(
hi

hj

)]
,

where

d1x =
(xi − xj)

wj

, d1y =
(yi − yj)

hj

,

d2x =
(xi − xj)

2

w2
j

, d2y =
(yi − yj)

2

h2
j

.

(xi, yi) is the center coordinate of RoI. wi, hi are the width and height of the region.
si represents the area of the region. For node vi, the position and visual features
are integrated into the edge vector e. Therefore, the edge ej→i is calculated by

ej→i = Relu
(
WpR

p
j→i

)
· tanh

(
Wv

[
f v
i , f

v
j

])
,

where Wp and Wv are learnable weight matrices of the visual feature and position,
respectively. [·] denotes the concatenation of vectors.

3.1.2 Gated Recurrent Unit

Figure 4. Gated recurrent unit
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For nodes in the graph, we hope the network can manipulate the information
from a particular node and also memorize the manipulation result of other nodes.
Therefore, the network can learn the interactions between different notes. The
mechanism here is similar to a neural memory network, such as Recurrent Neural
Network (RNN). The Gated Recurrent Unit (GRU) [40], a lightweight practical
RNN module, is used in this paper. The GRU is used to aggregate the information
passed from the structure graph. Figure 4 depicts the details of the GRU.

The reset gate r controls whether the GRU ignores the previous hidden state ht.
Similarly, the zero gate z controls whether a new hidden state h̃ is used to update
the next hidden state ht+1. r and z are both jointly determined by hidden state ht

and state input x. They are computed by

r = σ (Wr [x, ht]) ,

z = σ (Wz [x, ht]) ,

where [·] represents the vector connection. Wr and Wz are the learnable weight
matrix for the zero and reset gates, respectively. σ is the logistic sigmoid function,
which is the activation function of the gates. r decides the use of a new hidden
state h̃ which is computed by

h̃ = tanh (Wx+ U (r ⊙ ht)) ,

where W and U are learnable weights for the hidden state h̃. ⊙ represents the
element-wise multiplication. The weights of the hidden state imitate the selective
memory. Thus, the hidden state can determine whether upcoming information from
new nodes is relevant and whether to ignore useless information.

Finally, the output unit ht+1 is computed by ht and h̃,

ht+1 = zht + (1− z)h̃.

In summary, the GRU has a lightweight practical memory cell to remember
long-term information in sequence. When the network sequentially processes the
proposed target, the GRU can aggregate the context information from different
target nodes in the structure graph. The next section will elaborate how the node
information from the graph is fed into the GRU.

3.1.3 Object Constraints

Figure 5 shows the complete inference process, which takes the inference on the third
target t3 as an instance. After the structure graph is built, the edge information is
integrated with the visual feature as the final message passed to the GRU, which is
denoted as mi→j, calculated by

mi→j = ei→j · f v
i .
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Figure 5. The process of structure inference

We use a pooling layer to consolidate all the relation information. Empirically,
it can be found that the maximum pooling can extract the most important message
in the structure graph, while using average pooling can be interfered with the ROI
of a large number of unrelated regions. Therefore, the final message passed to the
GRU is mi, calculated by

mi = max
j∈T

pooling (ei→j · f v
i )

At the beginning, the structure randomly decides a node as the starting node,
such as t3 in Figure 5. The GRU takes the visual feature f3 of the iterated RoI as
the initial hidden state and the message m3 as the input. In the following iterations,
the GRU will take the message from a new inter-object relation as new input vectors
and compute the next hidden states. After iterating all the remaining nodes, the
final integrated node embeddings will be used to predict the bounding boxes and
object classes.

3.2 Context Constraint

Naturally, the presence of a target will indicate a scene. For example, vehicles are
often seen on roads rather than on the playground. Therefore, utilizing scene se-
mantic information will significantly improve the accuracy and credibility of the
target detection network. But unlike natural images, the scenes of remote sens-
ing images are often too complex to play an active role in target detection. So it
is challenging to build an effective semantic information model for remote sensing
image target detection tasks. This paper presents a scenario context constraint
model based on the Bayes criterion. The network is built by the Bayes’ theo-
rem,

p(t|s) = p(s|t)p(t)
p(s)

,

where p(t) and p(s) represent the probability of the target category and the prob-
ability of the scene category, respectively. p(t|s) represents the probability that the
scene of the target i appears in the scene j. p(t|s) is obtained by a probability
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matrix that computes the correlation relationship between the target and the scene,
as shown in Figure 6.

Figure 6. The probability matrix between the target and the scene

The probability i of target category pt(i) is obtained at layer Softmax in the
following way:

pt(i) =
exp(fi)∑M
k=1 exp(fk)

.

fi is the feature map of the target, and M is the total number of target categories.
The target probability matrix pt = {pt(1), pt(2), . . . , pt(M)} is constructed by prob-
ability pt(i). Scenes are classified by CaffeNet [41], an image classifier with excellent
performance. In layer Softmax, the probability distribution of scenario categories
can be constructed by

ps(j) =
exp(fj)∑N
k=1 exp(fk)

,

where fj represents the feature graph of the jth scene, N denotes the total number
of scene categories, and the scene probability matrix ps is composed of probability
ps(j).

3.3 Loss Function

The framework proposed in this paper is shown in Figure 2. The model mainly con-
sists of target context constrained network and scene context constrained network.
The target context constrained network has two output layers including discrete
probability distribution and bounding box regression migration. The loss function
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of the target context constrained network is defined as

lt = lcls (pt, p
∗
t ) + λlbbox (b, b

∗) .

The loss contains a classification loss and a bounding box loss, where the clas-
sification loss is calculated by

lcls(pt, p
∗
t ) = − log [ptp

∗
t + (1− pt)(1− p∗t )] .

The loss for the predicted bounding boxes is

lbbox = smoothL1 (b− b∗) ,

where

smoothL1(x) =

{
0.5x2, if |x| < 1,

|x| − 0.5, otherwise.

b and b∗ represent the predicted boundary box and the real boundary box, respec-
tively, p∗t represents the real probability of the target. The smoothL1 loss is used as
the loss function of the prediction frame, which is used to make the loss lbbox more
robust to outliers and prevent the gradient explosion. The scene context constraint
network has an output layer that gives the probability of classification. Assume
that the true class probability of the scenario is p∗s(i). The loss function of the scene
context constrained network is defined as

ls = −
N∑
i=1

p∗s(i) log ps(i).

The target context constraint network and the scene context constraint net-
work are trained separately. When the classification of the target scene is inac-
curate, the information provided for the Bayesian classifier is not conducive to
the convergence. Thus, we train the Scene Constrained Network first. After the
Scene classifier is optimized, we jointly train it with the Object Constrained Net-
work.

4 EXPERIMENT RESULTS AND ANALYSIS

4.1 Datasets

NWPU VHR-10 [42] and HRRSD [43] datasets are used to verify the performance
of remote sensing image target detection based on target relationship and scene
information. These two datasets are widely used in the field of remote sensing in
Google Earth and Baidu Map. The NWPU VHR-10 has 800 images and a total of 10
target categories. HRRSD has 21761 images in 13 target categories, including boats,
bridges, track fields, oil storage tanks, basketball courts, tennis courts, airplanes,
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baseball fields, ports, cars, intersections, T-junctions, and parking lots. In this
dataset, the image background is complex and diverse, which can make a reasonable
verification of our proposed method.

4.2 Experimental Environment and Parameters

The experimental environment is 24GB NVIDIA TATIAN GPUs, the Python frame-
work is PyTorch, and the operating system is Ubuntu 14.04. VGG-16 is used as the
backbone network in the experiment. First, we train the target context constraint
network, including the target detection network, and then train the scene context
constraint network, including scene classification. Both target and scenario context
constraint networks are optimized end-to-end and brought together by Bayesian cri-
teria. During training, the learning rate of the network is 0.001, and the weight
is 0.0005. Average accuracy (AP) and average AP (mAP) are used as evaluation
indexes with the formulas:

AP =
N∑
k=1

P (k)∆r(k),

mAP =

∑N
k=1APi

K
,

where P (k) is the precision-recall curve, N is the total amount of data, and k is the
index of each sample point. AP is a comprehensive evaluation standard for accuracy
and recall, ranging from 0 to 1. mAP is the average of all kinds of APs.

4.3 Experiment Results and Analysis

Ablation experiments are performed on NWPU VHR-10 and HRRSD datasets.
Five mainstream methods (SSD [28], FRCNN [26], YOLOv4 [29], DCIFF [44], and
SCCM-BR [15]) are introduced for comparative experiments to verify the effective-
ness of the proposed method.

4.3.1 Ablation Experiments

Figure 7 and Figure 8 show the ablation experiments under the data sets NWPU
VHR-10 and HRRSD, respectively. Legend a indicates the situation where the target
relationship diagram is not included in the scene context constraint network. Legend
b represents that only the target relationship diagrams are used. Legend c means
that only the scene context constraint network is used. Finally, the legend d indicates
our complete neural network. The original FRCNN (Faster R-CNN, FRCNN) is
first used for detection, and it can be seen that the overall target detection result
was not ideal. When adding the target-relational structure diagram and training
the end-to-end target context constraint network, the detection result is greatly
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Figure 7. Ablation experiments with NWPU VHR-10 dataset

Figure 8. Ablation experiments with HRRSD dataset
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improved, especially for the track-and-field and basketball court, where the target
context is closely related. The results demonstrate the effectiveness of the target-
relational structure diagram. When the scene context constraint network is added,
the detection effect is improved to some extent, but the effect is not as apparent as
the target context constraint network. However, the detection effect is improved for
the target in specific scenes, such as ports, bridges, etc. The results show that both
the target context constraint network and the scene context constraint network have
made extraordinary contributions.

Scene Airport Basketball field Parking lot Playground

Accuracy 92.34% 95.91% 85.61% 97.01%

Scene Harbour River Road Sports field

Accuracy 92.93% 93.76% 97.94% 95.82%

Scene Storage tank Urban street Sea

Accuracy 95.44% 87.10% 90.43%

Table 1. Scene classification accuracy

In this paper, 21 761 images in HRRSD dataset are divided into 11 categories of
scenarios, with approximately 50% of the images used for training and tuning the
model and the other 50% for testing the model. The result of scene classification is
shown in Table 1. It can be seen that the accuracy of most scene classifications can
reach 90%. It is worth noting that parking lots are similar to city streets, so their
accuracy is reduced.

4.3.2 Comparative Experiment

In this experiment, five state-of-the-art methods (SSD, FRCNN, YOLOv4, DCIFF,
and SCCM-BR) are selected to compare with the method in this paper. Table 2
and Table 3 respectively show the detection results of different detection methods
in NWPU VHR-10 data set and HRRSD data set, including AP value and average
mAP value of detection accuracy of different categories. Table 2 shows the detection
results of these methods on the NWPU VHR-10 dataset. As seen from Table 2, our
method obtains the highest average detection accuracy mAP among all methods
and the highest AP value among all targets. For objects with explicit scenes, such
as ships, ports, bridges, and vehicles, the AP value increases significantly because
the scene context constraint network can constrain corresponding targets according
to different scenarios. For baseball court, tennis courts, basketball courts, and track
and field with similar scenes, the role of the scene context constraint network is rel-
atively weakened, but the role of the target context constraint network is enhanced.
Therefore, these targets still achieve good detection results, proving that the target
context constraint network can enhance the target based on the objects around the
target.
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SSD FRCNN YOLOv4 DCIFF SCCM Ours

Ship 0.881 0.780 0.884 0.895 0.915 0.921

Storage tank 0.869 0.827 0.873 0.872 0.901 0.911

Vehicle 0.863 0.845 0.872 0.865 0.890 0.901

Bridge 0.855 0.832 0.864 0.855 0.887 0.899

Harbour 0.860 0.755 0.871 0.877 0.894 0.902

Track field 0.890 0.706 0.881 0.891 0.901 0.913

Basketball field 0.901 0.714 0.899 0.907 0.913 0.921

Airplane 0.906 0.896 0.890 0.910 0.919 0.923

Baseball diamond 0.908 0.860 0.894 0.901 0.910 0.919

Tennis court 0.883 0.799 0.830 0.735 0.905 0.908

mAP 0.882 0.801 0.876 0.871 0.904 0.912

Table 2. Detection results on the NWPU VHR-10 dataset

SSD FRCNN YOLOv4 DCIFF SCCM Ours

Ship 0.535 0.623 0.614 0.745 0.706 0.841

Bridge 0.408 0.525 0.524 0.635 0.607 0.789

Track field 0.529 0.650 0.853 0.802 0.870 0.905

Storage tank 0.589 0.651 0.652 0.741 0.763 0.856

Basketball field 0.451 0.534 0.504 0.623 0.742 0.912

Tennis court 0.457 0.531 0.654 0.741 0.801 0.901

Airplane 0.698 0.811 0.931 0.809 0.875 0.954

Baseball diamond 0.543 0.687 0.791 0.702 0.698 0.805

Harbour 0.656 0.753 0.759 0.801 0.816 0.904

Vehicle 0.327 0.457 0.514 0.614 0.678 0.781

Crossroads 0.468 0.668 0.708 0.696 0.751 0.893

T-junction road 0.587 0.678 0.774 0.697 0.789 0.847

Parking lot 0.589 0.665 0.689 0.784 0.759 0.863

mAP 0.525 0.634 0.690 0.722 0.758 0.865

Table 3. Detection results on the HRRSD dataset

Table 3 displays the detection results of these methods on the HRRSD dataset.
As shown in Table 3, SSD adopts multiple feature mapping and pixel resampling
stages, so its performance is better than some traditional methods. However, SSD
extracts each pixel’s features, reducing the performance of small target detection.
For example, the detection result of automobiles is only 0.327. The detection ac-
curacy of vehicles is improved by 0.454, and the average detection accuracy mAP
is improved by 0.34, which indicates the effectiveness of our method, especially
for the detection of small targets. FRCNN and YOLOv4 are currently two of the
most advanced target detection algorithms. However, due to the lack of correla-
tion, these two algorithms are not effective in detecting remote sensing images and
cannot identify multiple clustered targets in complex backgrounds. Remote sensing
images have complex target types and backgrounds, which require targeted process-
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ing. Compared with these methods, our method improved by 0.231 and 0.175 mAP,
respectively, indicating the effectiveness of our target relational structure diagram
and scenario context constraint network. DCIFF integrates multi-scale and object
background information. It achieves an average detection accuracy of 0.634 mAP
on remote sensing images containing multiple targets. However, this method does
not use background information and has particular error detection. Our method in-
tegrates background information and increases the average detection accuracy mAP
by 0.143. The result effectively proves the effectiveness of our scene context con-
straint network. SCCM-BR network uses LSTM to extract features and adds scene
information to constrain detection results. In the complex scene of post storage
tanks, ships, and ports, AP values reach 0.763, 0.706, and 0.816, respectively, but
the detection effect of similar targets such as baseball courts, tennis courts, basket-
ball courts, and track and field is not good. By comparison, the target relational
structure graph is added in our method to aggregate information from the target con-
text and improve the detection effect of similar targets. The mAP value increases
by 0.107, which powerfully demonstrates the effectiveness of the target relational
structure graph.

4.3.3 Visualization Results

Some typical detection results of our method on the HRRSD dataset are presented
in Figure 9. Figure 9 a) shows the ports detected. Figure 9 b) shows the detected
aircrafts of different sizes and directions. Figure 9 c) shows the detected bridges.
Figure 9 d) shows objects of different shapes, sizes, and colors detected against
a complex background, including vehicles and baseball fields. Figures 9 e) and 9 f)
show a dense array of oil storage tanks and vessels of different sizes and directions
detected against a complex background. Figure 9 g) shows the detected tennis and
basketball courts. Figures 9 h) and 9 i) show the detection results of vehicles un-
der different backgrounds. The experimental results demonstrate that our method
can obtain accurate and stable target detection and recognition results in different
categories and complex scenes.

5 CONCLUSION

Remote sensing targets are always accompanied by complex scenes and blurred
backgrounds, which bring difficulties to the task of target detection in remote sensing
images. In this paper, a novel remote sensing target detection model using structure-
based inference has been proposed, including a target context constraint network and
a scene context constraint network. The target context constraint network is used
to detect targets, and its key component module is the target relationship structure
graph, which is used to self-adaptively aggregate information from different targets.
The scene context constraint network, on the other hand, builds a scene semantic
information model to help improve the accuracy of target detection. Experiments
were conducted on NWPU VHR-10 and HRRSD datasets. The results indicate that
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a) b) c)

d) e) f)

g) h) i)

Figure 9. Results of our proposed network

the proposed method effectively improves the detection accuracy of remote sensing
images in complex scenes and can also be adapted to the complex scene information
of remote sensing images.
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