
Computing and Informatics, Vol. 42, 2023, 1360–1377, doi: 10.31577/cai 2023 6 1360

REVIEW OF HEURISTIC ALGORITHMS
FOR FREQUENT ITEMSETS MINING PROBLEM

Meryem Barik, Imad Hafidi, Yassir Rochd

Laboratory of Process Engineering, Computer Science and Mathematics (LIPIM)
University Sultan Moulay Slimane
Khouribga, Morocco
e-mail: meryem.barik@usms.ac.ma, {i.hafidi, y.rochd}@usms.ma

Abstract. Frequent Itemsets Mining (FIM), which consists of extracting frequent
patterns from a transactional database, is considered one of the most successful
techniques in data mining. Generally, the FIM problem can be solved by either
the exact or metaheuristic-based methods. Exact methods, such as the Apriori al-
gorithm, are highly effective for dealing with small to medium datasets. However,
these methods need more temporal complexity when dealing with large datasets.
Metaheuristic-based methods are becoming more rapid, but the majority still need
to be more precise. Several studies were carried out to address these issues and
improve metaheuristics-based approaches by combining the Apriori algorithm with
several metaheuristics algorithms such as Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO). The result of this combination gave birth to two ap-
proaches: GA-Apriori and PSO-Apriori. Consequently, after performing several
studies on different database instances, the results revealed that the two approaches
outperformed the Apriori algorithm in terms of runtime. PSO-Apriori also beats
GA-Apriori in terms of both runtime and solution efficiency.

Keywords: Frequent itemsets mining, genetic algorithm, particle swarm optimiza-
tion, metaheuristic

1 INTRODUCTION

In the last few years, the data generated from several sources, called Big Data,
has gradually exploded. Several techniques are used in Big Data, such as data
mining, which is the science of extracting important information from a large data

https://doi.org/10.31577/cai_2023_6_1360


Review of Heuristic Algorithms for FIM Problem 1361

set. The application of traditional data mining techniques to large datasets is com-
plicated. Among these techniques, we find the extraction of usable patterns from
a large collection of data. This paper mainly focuses on the Frequent Itemset Mining
(FIM) technique for extracting frequent items from a transactional database. This
technique helps solve real-world problems by applying several algorithms; however,
applying FIM algorithms on a large database can be very time-consuming. Two
categories of approaches solve the FIM problem: exact and metaheuristic-based
approaches.

In exact approaches of FIM, we find algorithms such as Apriori [1],
FP-Growth [2], DIC [3], and AIS [4]. They aim to extract all frequent items, but
it takes a long time to execute due to the multiple scans of an entire transactional
database. The performance of these algorithms decreases in terms of the increase
in database size, the number of items and transactions, and the high number of
generated itemset, which becomes unacceptable for big data instances. To over-
come the performance problem with exact methods, many FIM approaches that use
metaheuristic-based techniques, such as genetic algorithms [5, 6] or swarm intelli-
gence [7, 8], have been proposed.

Metaheuristic-based approaches extract a subset of all frequent itemsets in
a short execution time but cannot find all possible frequent itemsets in a database.
In other words, the efficiency of the solution obtained using metaheuristic-based ap-
proaches is lower than the optimum quality attained by exact approaches, which
discover all possible frequent itemsets. The efficiency of the solutions in FIM
metaheuristic-based approaches is determined by how the randomized search of the
itemsets space is carried out. We contend that existing FIM metaheuristic-based
methods in the literature need to take into account the inherent properties of the
FIM solution space to enhance a search. The most important of these properties
is that frequent itemsets are recursive, which means that if an itemset of size k is
frequent, then all of its sub-itemsets of size s = {1, . . . , k − 1} are also frequent.
This function is essential to the Apriori exact algorithm, but it is seldom used by
FIM metaheuristic-based approaches.

In literature, we find FIM metaheuristic-based approaches that take advantage
of the recursive property of frequently occurring itemsets in a database. These ap-
proaches include GA-Apriori [9, 10, 11] and PSO-Apriori [10, 11], which use a genetic
algorithm, and particle swarm optimization, respectively. The two approaches, GA-
Apriori and PSO-Apriori, are an amelioration of existing algorithms GA-FIM [5]
and PSO-FIM [8] by defining a new search space intensification and diversification
operators, such as crossover and mutation for GA-FIM and particle positioning and
velocity for PSO-FIM, that take the recursive property of frequent itemsets into
account.

This paper is organized as follows: Section 2 introduces the Apriori algorithm,
Section 3 reviews related work on the FIM problem, Section 4 represents the lat-
est metaheuristic-based approaches, in particular, GA-Apriori and PSO-Apriori ap-
proaches, Section 5 represents a comparative study between the two approaches,
and finally, Section 6 introduces the conclusion.



1362 M. Barik, I. Hafidi, Y. Rochd

2 APRIORI ALGORITHM

The principle of the Apriori algorithm [1] is to generate all itemsets candidates of
size k from frequent itemsets of size k−1 iteratively and recursively. This procedure
is repeated until no itemsets candidates are generated during an iteration.

Let us consider a database contains 9 transactions: ((I1, I2, I5), (I2, I4), (I2,
I3), (I1, I2, I4), (I1, I3), (I2, I3), (I1, I3), (I1, I2, I3, I5), (I1, I2, I3)). We apply the
Apriori heuristic to this database. Figure 1 presents the steps of applying the Apriori
heuristic with a MinSup equal to 30%. First, the database is scanned to calculate
the support of each candidate itemsets containing only one item. Then, the frequent
1-itemsets are extracted (C1). In this case, the frequent itemsets obtained are (I1,
I2, I3) (F1) because their supports are greater than 0.3. The candidate itemsets of
size 2 (C2) are generated in the second iteration by joining the frequent itemsets
of size 1; then, the support of each candidate itemsets of size 2 is calculated (F2).
The frequent itemsets obtained are (I1I2, I2I3, I2I3) (F2). By joining these three
frequent itemsets, we obtain the candidate itemsets of size 3 (I1I2I3) (C3). The
process is stopped since its support is less than 0.3. As an output, we obtain the set
of all frequent itemsets F by the union of the frequent itemsets of size 1 and size 2.
Therefore, F = (I1, I2, I3, I1I2, I1I3, I2I3). The most important disadvantage of
the Apriori heuristic is scanning the entire database at each iteration to determine
the support of each candidate itemsets.

Figure 1. Apriori algorithm

3 RELATED WORKS

In this section, we will present the different approaches for discovering frequent
itemsets existing in the literature. In Table 1, the approaches are classified into



Review of Heuristic Algorithms for FIM Problem 1363

exact and bio-inspired. In the first part, we briefly introduce the Apriori algo-
rithm, which exploits the property of frequent itemsets. Then, we review the related
work using exact and metaheuristic-based approaches. Finally, we discuss the latest
metaheuristic-based approaches in the literature, GA-Apriori and PSO-Apriori.

Type of
approaches

Approaches Limitation

Exact
approaches

Apriori [1], AIS [4], Eclat [12],
FPGrowth [2]

Multiple scans of the database.

Poor runtime performance
for large databases.

Meta-
heuris-
tic-based
approaches

GENAR [13], GAR [14],
ARMGA [15], AGA [16],
PQMA [17], G3PARM [18],
NICGAR [6], GAFIM [5],
ACO [19], HUIM-ACS [20],
PSOFIM [8], HUIM-BPSO [8],
ARMBGSA [21], BSO [7],
PeSOA [22], BATFIM [23]

Inefficient representation
of individuals.

Poor solution quality,
especially with large databases.

Poor runtime performance when
generating new solutions.

Table 1. The different categories of FIM approaches

3.1 Exact Approaches

In addition to the Apriori algorithm, several algorithms belong to exact approaches.
However, the Apriori algorithm has been introduced as an improvement of its pre-
decessor AIS [1] – named after its inventors – which does not employ any optimiza-
tion.

AIS [24] algorithm generates itemsets candidates by analyzing the database and
extending the used frequent itemsets found in previous analysis to itemsets found
in transactions. However, AIS performs many database analyses and consumes
a lot of memory. Several algorithms in the literature are inspired by the Apriori
algorithm.

AprioriTid and AprioriHybrid are two minor extensions proposed in the same
Apriori paper [25]. The first reduces the number of scans of the database to just one.
Indeed, AprioriTid builds, after the first pass, transaction tables reduced to candi-
date patterns, generated in the same way as Apriori. These structures replace the
base. AprioriTid gives inferior results to Apriori in the first iterations since the new
structures produce surcharges in memory (and in time because the data is replaced
on disk). However, as the algorithm progresses, the results outperform Apriori’s
for the opposite reasons. This prompted the authors to suggest AprioriHybrid that
combines the two, in which Apriori is invoked first, then once the structures Apri-
oriTid can lodge in AprioriHybrid memory switches to AprioriTid, to benefit from
the advantages of the two algorithms.



1364 M. Barik, I. Hafidi, Y. Rochd

DHP (Dynamic Hashing and Pruning) [3] is introduced to reduce the number
of candidates. DHP gradually reduces the size of the database and truncates trans-
actions based on the necessary condition that any item i can be deleted if it does
not appear at least k times in the candidate k-patterns of a transaction.

DIC (Dynamic Itemset Counting) [2] is motivated by the reduction in the num-
ber of passes on the database. The philosophy of this algorithm interweaves candi-
date generation. It supports computation by anticipating the formation of longer
candidate patterns of patterns found to be frequent without even waiting to see all
the transactions.

Han et al. have proposed the FPGrowth algorithm [2]. The latter uses a compact
data structure called FPTree (Frequent Pattern tree) to represent the database,
a sort of prefix tree or sort [26] augmented by support information. Thus, each tree
node contains an item and an integer representing the support of the pattern formed
from the items found on the path from the root to this node.

Exact approaches could be more efficient with large database instances in terms
of time and space complexity. Due to various factors, such as the exponential growth
of self-generated data from several sources, extensive databases have become mod-
ern signs [14]. This problem needs more efficient algorithms to extract frequent
itemsets.

In the next section, we will present the different approaches that have been
explored, such as bio-inspired approaches, which target strategies such as reducing
the number of database scans.

3.2 Meta-Heuristic Based Approaches

We can categorize bio-inspired approaches as swarm intelligence-based approaches
and evolutionary-based approaches.

3.2.1 Evolutionary-Based Approaches

In evolutionary-based approaches, we found approaches based on genetic algorithms.
The first approach based on a genetic algorithm for association rule mining and
frequent itemset mining is GAR [16]. The limitation of GAR is that it uses an inef-
ficient representation of individuals. Individuals are represented according to their
size and the number of items they contain. The size of individuals may differ across
the populations, and it degrades the performance of both the crossover and muta-
tion operators. Then, genetic algorithms that rely on an improved representation
of individuals have been proposed. In particular, a more efficient way to represent
individuals is to use a vector of n elements, whereby the ith element is set to 1 if the
ith item belongs to the itemset and 0 otherwise. This is the representation we use in
our framework and which are also used by the algorithms discussed in the remain-
der of this section. Then we have the two algorithms AGA [15] and ARMGA [15].
The significant difference between ARMGA and AGA is the mutation and crossover
operators. ARMGA adopts a two-point crossover, whereas AGA considers a simple



Review of Heuristic Algorithms for FIM Problem 1365

crossover operator. Another algorithm is G3PARM [18], which uses G3P (Grammar
Guided Genetic Programming) to avoid finding invalid individuals. G3PARM can be
used with various types of data using context-free grammar. In [27], a new Niching
Genetic Algorithm is proposed to obtain diversified patterns from a solution space.
Patterns are mined in each niche. A selection procedure is then applied to find the
best patterns representing the whole niche using similarity measures between the
extracted patterns. Mart́ın et al. [6] integrated a windowing-based learning scheme
in a genetic algorithm for discovering frequent itemsets in large-scale datasets. The
algorithm first partitions a data instance into disjoint subsets. Then, these subsets
are used to calculate the fitness of the current population using a round-robin ap-
proach. Recently, an efficient genetic algorithm named GAFIM was introduced [5].
The main innovation in GAFIM is a delete and decomposition strategy, which is
developed to divide infrequent itemsets into pairs of frequent itemsets.

3.2.2 Swarm Intelligence Based Approaches

According to recent research, swarm intelligence methods can be used successfully
in data mining problems such as feature collection, clustering, and periodic itemsets
mining [28]. The first swarm intelligence-based approach using ACO (Ant Colony
Optimization) [29] is proposed in [30]. It combines clustering and ACO. [29] develops
an extension of this method for continuous domains. HUIM-ACS [20] is a more
recent ACO-based technique that adapts the TWU heuristic [31] to lead the ants in
exploring the solution space. The biggest disadvantage of ACO-based approaches
to FIM is runtime efficiency.

The authors of [32] suggested a particle swarm optimization method for the FIM
problem. The neighborhood space is discovered by relocating each particle’s front
and back points. This algorithm outperforms AGA, but the search based on front
and back points yields more neighborhoods, favoring the intensification search over
the diversity search. PSOFIM [8] has modified this algorithm to strike a balance
between intensification and diversification.

The authors suggested ARMBGSA in [21], inspired by recent metaheuristics fo-
cused on Newtonian gravity and the rule of motion. Each itemset is represented as
a mass. Using the rule of motion, all masses draw each other. After each iteration,
the k-heaviest masses are chosen to exert power on the new masses in the next iter-
ation. When opposed to other evolutionary algorithms, the ARMBGSA algorithm
produces fewer itemsets. The FIM problem is solved using bees swarm optimization
in [7]. The bees’ search area is decided first, and then each region is searched by one
bee to locate regular itemsets. The bees coordinate using a dance table to overlap
at each iteration. The bees interact using a dance table at each iteration to agree
on the strongest collection of itemsets.

According to [33] and [34], genetic algorithms and particle swarm optimization
outperform other bio-inspired methods regarding runtime efficiency and solution
consistency when solving the FIM problem. However, due to the design of the
randomized search mechanism used, which does not consider the complexity of the



1366 M. Barik, I. Hafidi, Y. Rochd

FIM problem, the accuracy of the solutions obtained by these algorithms remains
inefficient.

BATFIM [23] has recently used the bat metaheuristic [35] to solve the FIM
dilemma. A community of bats searches for relevant itemsets in the same area of
the solutions space. Various methods are proposed to pick up the best-repeated
itemsets from the total bats. The findings reveal that BATFIM outperforms the
current evolutionary and swarm intelligence-based approaches to FIM.

4 THE LATEST META-HEURISTIC BASED APPROACHES

In this part, an item is considered a vector of n elements, and n is the number
of items in the database. The vector’s ith element takes a 1 if the item i belongs
to the itemset and 0 otherwise. For example, we consider a database T contain-
ing the following items: {a, b, c, d}. The itemset {a, b, c} is presented by the vector
{1, 1, 1, 0}, and the item {a, d} by {1, 0, 0, 1}. In [10, 11], the authors proposed a new
framework presented in Figure 2 to guide FIM approaches based on metaheuristics
using the recursive property of frequent itemsets. This framework is an iterative
algorithm. At first, it scans the entire database to find the frequent itemsets of size
1 by calculating their support and reserving the items with support greater than
the minSup. Then, space exploration is done by joining the frequent itemsets to
obtain larger ones iteratively. In other words, itemsets of iteration k are generated
by joining frequent itemsets found in iteration k − 1. In iteration k, the gener-
ated itemsets are of size k. To facilitate the generation of frequent itemsets, the
itemsets space is divided into k regions, and each region Rk contains itemsets of
size k. If k is the size of the largest transaction in the database, then there are
k regions to be explored at most, and the number of iterations cannot be greater
than k.

4.1 GA-Apriori

This part will present the framework’s applicability to the genetic algorithm intro-
duced in [10, 11]. At first, an initial population of itemset of size 1 is randomly
generated. Then, the crossover and mutation operators are applied. At the end
of each iteration, a selection operator will be applied to select the most frequent
itemsets only for the next iteration. The process (crossover, mutation, selection) is
repeated for a maximum number of iterations. This approach combines the recursive
property of frequent itemsets with a genetic algorithm to improve the exploration of
space itemsets. The GA-Apriori differs from the previous algorithms in how genetic
algorithm operators (initialization, crossover, mutation, and selection) are defined
according to the proposed framework. In the following, we are going to describe
these operators in detail:

Step 1 (Population Initialization): In this step, we choose the first frequent
popSize itemsets by computing the itemset of size 1 and calculating their sup-



Review of Heuristic Algorithms for FIM Problem 1367

Figure 2. The main framework of the approaches

port, then sorting them according to their support. Then, the first frequent
popSize itemsets are kept, and the others are removed.

For example, we have a database T containing 4 items T = {a, b, c, d}, with
the following supports {sup(a) = 0.4, sup(b) = 0.5, sup(c) = 0.1, sup(d) = 0.3}.
With the MinSup = 0.3, the frequent items found are {a, b, d}. If the popSize =
2, the initial population is {1, 0, 0, 0} and {0, 1, 0, 0}, representing items a and b,
respectively.

Step 2 (Crossover): The objective of the crossover operator is to generate two
itemsets child of size k from two frequent itemsets parents of size k − 1. The
first step is to select two parents from the given population, and then we apply
the crossover constraints inspired by the Apriori heuristic to generate the new
children:

• Copying all items from the first parent to the first child and from the second
parent to the second child;



1368 M. Barik, I. Hafidi, Y. Rochd

• Choosing randomly the item e1 equal to 1 in the second parent, which equals
0 in the first parent, then we modify his value to 1 in the first child. By the
same, we randomly choose the item e2 equal to 1 in the first parent and 0 in
the second parent, then we set his value to 1 in the second child.

As an illustration, we have a database T containing 4 items T = {a, b, c, d}, we
select two parents parent1 = {1, 1, 0, 0}, that represents the itemset {a, b} and
parent2 = {0, 0, 1, 1}, that represents the itemset {a, d}. We choose e1 = c, the
most frequent item in the second parent, and e2 = a, the most frequent item
in the first parent. So, the two children generated are child1 = {1, 1, 1, 0}, and
child2 = {1, 0, 1, 1}, that represent the itemsets {a, b, c}, and {a, c, d}, respec-
tively.

Step 3 (Mutation): This step aims to generate frequent itemsets of size k from
infrequent itemsets of the same size for each itemset obtained from the new
set of itemsets after applying the crossover operator. If we found an infrequent
itemset indiv of size k, we randomly choose two items, e1 equal to 1, and e2
equal to 0 in indiv. The two values will be switched, meaning item e1 will be
set to 0, and e2 to 1 in indiv. We repeat the operation until we find a frequent
itemset of size k.

For instance, we have a database T containing 4 items T = {a, b, c, d}, and
indiv = {1, 0, 1, 0}, that represents the itemset {a, c}. If we choose e1 = a, and
e2 = b, then indiv becomes {0, 1, 1, 0}, representing the itemset {b, c}. If the
new itemset is infrequent, the process will be repeated until a frequent itemset
of size 2 is found. Otherwise, the process will be stopped.

Step 4 (Selection): This step aims to select the best frequent itemsets from item-
sets generated by the crossover and the mutation operators. Then, the best
popSize frequent itemsets are kept for the next iteration, and they will be the
new population.

The algorithm takes as input the transactional database to calculate the sup-
port of the generated itemsets and the minimum support designated by the user
to determine the frequent itemsets. Then, the algorithm looks for frequent items
of size 1 with the FindFrequentOneItemset() function. This function lists all items
and calculates their support. Then, it puts the frequent items in descending order,
takes the first popSize frequent items, and uses them as an initial population. These
frequent items are added to the set of frequent items F. Then, the crossover and
mutation operators are applied. First, the crossover operator is applied to each pair
of parents in the current population. The result is added to the new population.
Second, the mutation operator defines the new population by transforming infre-
quent itemsets into frequent itemsets. Then, the new population is modified by
applying the mutation operator, and the frequent itemsets will be added to the set
of frequent itemsets F. Finally, the selection procedure is applied. In this step, the
new population becomes the current population for the next iteration.

This process is repeated until the current population is empty.



Review of Heuristic Algorithms for FIM Problem 1369

4.2 PSO-Apriori

In the previous works of particle swarm optimization based on FIM problem [32,
36], each swarm particle represents an itemset randomly positioned in the itemset
space. During the ith iteration, the particle pi explores the itemset space using the
position xi and the velocity vi.

xi(t) = xi(t− 1) + vi(t) (1)

with
vi(t) = W ∗ vi(t− 1) + C1 ∗ (xpi − xi) + C2(xgi − xi). (2)

In Equations (1) and (2), xpi is the most frequent item position found by xi, and
xgi is the best particle in the swarm, i.e., the most frequent itemset observed by all
particles. W is the inertia weight of a particle, and it controls the trade-off between
global and local exploration. The parameters C1 and C2 control the importance of
the best individual and global items.

The authors of [10, 11] proposed PSO-Apriori that instantiates the framework
in Figure 2 with the PSO algorithm. The application of the recursive property of
frequent itemsets is used to update the particle’s positions by updating the operators
of the PSO algorithm. These newly updated operators are proposed instead of the
old position and speed operators used in the literature to explore the solution space.
In the following, we are going to describe the initialization and the new operators
in detail:

Particle initialization: The initialization of the particle positions is done by
choosing the frequent P items of size 1. The P most frequent items are selected.
Then, each position Ii will be assigned to a particle pi. At the beginning, the
particle velocity is initialized to 0.

For example, we have {a, b, c, d}, the frequent items sorted by support. If P = 3,
then the initial positions of the particles are: {1, 0, 0, 0} that represent the first
particle, the item a, {0, 1, 0, 0} that represent the second particle, the item b,
and {0, 0, 1, 0} that represent the third particle, the item c.

Update positions: In [10], in an iteration k the authors define new operators
joining (⊙) and combining (⊕) to explore the solution space of the particles. The
position xi(k) of the particle pi is updated by applying the following equations
during an iteration k:

xi(k) = xi(k − 1)⊕ vi(k) (3)

with
vi(k) = xpi(k − 1)⊙ xgi(k − 1). (4)

• Joining operator ⊙: Equation (4) shows the velocity of each particle pi
by joining the best itemset (the most frequent) xpi of the swarm pi, and an
itemset xgi selected at random from the set of the most frequent elements



1370 M. Barik, I. Hafidi, Y. Rochd

observed until now and not belonging to xpi. This step produces an itemset
of size k by choosing randomly an item from xpi and joining it to xgi.

For instance, we consider a database T contains 4 items T = {a, b, c, d, e}
if the best itemset xgi of the second iteration is {1, 1, 0, 0, 0} and the best
local itemset xpi observed by the second particle p2 is {0, 0, 0, 1, 1}. Hence,
the velocity of the second particle in the third iteration is {1, 1, 0, 1, 0}, by
choosing randomly the item d from xpi and joining it to xgi.

• Combining operator ⊕: Equation (3) shows the position of each particle
pi by combining the new velocity and the position of the current particle.
By replacing the item with low support in the velocity vector with an item
with high support in the current position of pi, which does not appear in the
velocity vector of this particle.

As an illustration, we have the following items sorted by their support
{a, b, c, d, e}, and the velocity of the particle p2 is {1, 1, 0, 1, 0} and the cur-
rent position of p2 is {1, 0, 1, 0, 0}. Then, by replacing item d with item c in
the vector of velocity of p2, we obtain the new position of p2 {1, 1, 1, 0, 0}.

This process is repeated until the set of current itemsets is empty. The al-
gorithm takes as input a transactional database to calculate the support of the
generated itemsets and the minimum support designated by the user to determine
the frequent itemsets. Then, the algorithm looks for frequent items of size 1 with
the FindFrequentOneItemset() function. This function lists all items and calculates
their support. Then, it puts the frequent items in descending order, takes the first
P frequent items, assigns each particle to a position, and sets the initial velocity of
each particle to 0. These frequent items are added to the set of frequent items F.
The operators of joining and combining are applied to each particle to update the
particle’s velocity and position. The frequent itemsets found in the current iteration
are collected, stored, sorted, and added to the set of frequent itemsets F.

This process is repeated until the current population is empty.

5 EXPERIMENTAL RESULTS

Several studies on medium, high, and large databases were done to evaluate the
performance of GA-Apriori and PSO-Apriori. These instances of data are de-
scribed in Table 2, they can be downloaded from https://archive.ics.uci.edu/

ml/datasets.html, http://fimi.ua.ac.be/data/, and https://sourceforge.

net/projects/ibmquestdatagen/. These experiments have been run on a laptop
equipped with an Intel I5 processor and 8 GB memory, and all algorithms have been
implemented in Java.

Figure 3 shows that PSO-Apriori outperforms GA-Apriori in terms of quality
of solutions, i.e., percentage of frequent itemsets found. Knowing that the Apriori
algorithm finds all frequent itemset (100%) in all cases. The PSO-Apriori converges
to 100% of solutions in almost all cases.

https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html
http://fimi.ua.ac.be/data/
https://sourceforge.net/projects/ibmquestdatagen/
https://sourceforge.net/projects/ibmquestdatagen/


Review of Heuristic Algorithms for FIM Problem 1371

Figure 3. Percentage (%) of frequent itemsets



1372 M. Barik, I. Hafidi, Y. Rochd

Figure 4. Runtime (Sec) of approaches



Review of Heuristic Algorithms for FIM Problem 1373

Instance Name No. of Transactions No. of Items Avg. Size of Transaction

Zoo 102 17 17

Australian 690 60 60

Segment 2 310 19 19

Splice 3 190 6 6

Mushroom 8 124 119 23

Pumbs star 40 385 7 116 50

BMSWebView1 59 602 497 2.5

BMSWebView2 77 512 3 340 5

IBMArtificial 100 000 999 10

BMP POS 515 597 1 657 2.5

Table 2. Data instances description

The runtime performance is compared in Figure 4. The results revealed that
PSO-Apriori and GA-Apriori outperform the Apriori algorithm regarding computing
time. When dealing with small instances (such as Zoo, Australian, and Segment),
the execution time is almost the same with all small instances. Moreover, with
the most significant instances, like BMP POS, the runtime of metaheuristic-based
approaches is lower than that of the Apriori algorithm.

6 CONCLUSION

This paper presents exciting research directions to improve algorithms for extract-
ing frequent items for Big Data. As seen in this paper, various algorithms have
been proposed to discover frequent items. Metaheuristic-based algorithms are ones
of those. Recently, two metaheuristic-based methods have been proposed to solve
the FIM problem. The itemset space is explored by integrating the recursive prop-
erty of frequent itemsets and the stochastic search mechanism of metaheuristics.
Two new metaheuristic-based methods for FIM have been established using this
method. In the first (GA-Apriori), the crossover operator generates itemsets of size
k from frequent itemsets of size k− 1 for each iteration k. In contrast, the mutation
operator finds frequent itemsets from the itemsets generated by the crossover. In
the second (PSO-Apriori), the recursive property of frequent itemsets directs the
direction and velocity of the particles exploring the itemsets solution space. Several
studies on medium, high, and extensive database instances were done to evaluate
the efficiency of these approaches. The results revealed that PSO-Apriori outper-
forms GA-Apriori regarding both runtime and solution efficiency. As a perspective,
we aim to facilitate the GA-Apriori approach by modifying the crossover operator
or the mutation operator to have a good result in terms of runtime and number of
frequent itemsets found. As far as we know some have been designed to work with
distributed frameworks such as Hadoop, MapReduce, and Spark. In future work,
we plan to apply distribution using Apache Spark to the approach GA-Apriori and
PSO-Apriori.



1374 M. Barik, I. Hafidi, Y. Rochd

REFERENCES

[1] Agrawal, R.—Imieliński, T.—Swami, A.: Mining Association Rules Between
Sets of Items in Large Databases. Proceedings of the 1993 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD ’93), 1993, pp. 207–216, doi:
10.1145/170035.170072.

[2] Han, J.—Pei, J.—Yin, Y.: Mining Frequent Patterns Without Candidate
Generation. ACM SIGMOD Record, Vol. 29, 2000, No. 2, pp. 1–12, doi:
10.1145/335191.335372.

[3] Brin, S.—Motwani, R.—Ullman, J.D.—Tsur, S.: Dynamic Itemset Count-
ing and Implication Rules for Market Basket Data. Proceedings of the 1997 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’97), 1997,
pp. 255–264, doi: 10.1145/253260.253325.

[4] Hart, E.—Timmis, J.: Application Areas of AIS: The Past, the Present and
the Future. Applied Soft Computing, Vol. 8, 2008, No. 1, pp. 191–201, doi:
10.1016/j.asoc.2006.12.004.

[5] Djenouri, Y.—Nouali-Taboudjemat, N.—Bendjoudi, A.: Association Rules
Mining Using Evolutionary Algorithms. The 9th International Conference on Bio-
Inspired Computing: Theories and Applications (BIC-TA 2014), 2014.

[6] Mart́ın, D.—Alcalá-Fdez, J.—Rosete, A.—Herrera, F.: NICGAR: A Nich-
ing Genetic Algorithm to Mine a Diverse Set of Interesting Quantitative As-
sociation Rules. Information Sciences, Vol. 355-356, 2016, pp. 208–228, doi:
10.1016/j.ins.2016.03.039.

[7] Djenouri, Y.—Drias, H.—Habbas, Z.: Bees Swarm Optimisation Using Mul-
tiple Strategies for Association Rule Mining. International Journal of Bio-Inspired
Computation, Vol. 6, 2014, No. 4, pp. 239–249, doi: 10.1504/IJBIC.2014.064990.

[8] Lin, J. C.W.—Yang, L.—Fournier-Viger, P.—Wu, J.M.T.—Hong, T. P.—
Wang, L. S. L.—Zhan, J.: Mining High-Utility Itemsets Based on Particle Swarm
Optimization. Engineering Applications of Artificial Intelligence, Vol. 55, 2016,
pp. 320–330, doi: 10.1016/j.engappai.2016.07.006.

[9] Djenouri, Y.—Comuzzi, M.: GA-Apriori: Combining Apriori Heuristic and Ge-
netic Algorithms for Solving the Frequent Itemsets Mining Problem. In: Kang, U.,
Lim, E. P., Yu, J.X., Moon, Y. S. (Eds.): Trends and Applications in Knowledge Dis-
covery and Data Mining (PAKDD 2017). Springer, Cham, Lecture Notes in Computer
Science, Vol. 10526, 2017, pp. 138–148, doi: 10.1007/978-3-319-67274-8 13.

[10] Djenouri, Y.—Comuzzi, M.: Combining Apriori Heuristic and Bio-Inspired Al-
gorithms for Solving the Frequent Itemsets Mining Problem. Information Sciences,
Vol. 420, 2017, pp. 1–15, doi: 10.1016/j.ins.2017.08.043.

[11] Djenouri, Y.—Djenouri, D.—Belhadi, A.—Fournier-Viger, P.—
Lin, J. C.W.: A New Framework for Metaheuristic-Based Frequent Itemset
Mining. Applied Intelligence, Vol. 48, 2018, pp. 4775–4791, doi: 10.1007/s10489-018-
1245-8.

[12] Zaki, M. J.—Parthasarathy, S.—Ogihara, M.—Li, W.: Parallel Algorithms
for Discovery of Association Rules. Data Mining and Knowledge Discovery, Vol. 1,

https://doi.org/10.1145/170035.170072
https://doi.org/10.1145/335191.335372
https://doi.org/10.1145/253260.253325
https://doi.org/10.1016/j.asoc.2006.12.004
https://doi.org/10.1016/j.ins.2016.03.039
https://doi.org/10.1504/IJBIC.2014.064990
https://doi.org/10.1016/j.engappai.2016.07.006
https://doi.org/10.1007/978-3-319-67274-8_13
https://doi.org/10.1016/j.ins.2017.08.043
https://doi.org/10.1007/s10489-018-1245-8
https://doi.org/10.1007/s10489-018-1245-8


Review of Heuristic Algorithms for FIM Problem 1375

1997, No. 4, pp. 343–373, doi: 10.1023/A:1009773317876.

[13] Mata, J.—Alvarez, J. L.—Riquelme, J. C.: Mining Numeric Association Rules
with Genetic Algorithms. In: Kůrková, V., Neruda, R., Kárný, M., Steele, N.C.
(Eds.): Artificial Neural Nets and Genetic Algorithms. Springer, Vienna, 2001,
pp. 264–267, doi: 10.1007/978-3-7091-6230-9 65.

[14] Mata, J.—Alvarez, J. L.—Riquelme, J. C.: An Evolutionary Algorithm to Dis-
cover Numeric Association Rules. Proceedings of the 2002 ACM Symposium on Ap-
plied Computing (SAC ’02), 2002, pp. 590–594, doi: 10.1145/508791.508905.

[15] Yan, X.—Zhang, C.—Zhang, S.: Genetic Algorithm-Based Strategy for Iden-
tifying Association Rules Without Specifying Actual Minimum Support. Ex-
pert Systems with Applications, Vol. 36, 2009, No. 2, pp. 3066–3076, doi:
10.1016/j.eswa.2008.01.028.

[16] Alataş, B.—Akin, E.: An Efficient Genetic Algorithm for Automated Mining of
Both Positive and Negative Quantitative Association Rules. Soft Computing, Vol. 10,
2006, No. 3, pp. 230–237, doi: 10.1007/s00500-005-0476-x.

[17] Liu, D.: Improved Genetic Algorithm Based on Simulated Annealing and Quantum
Computing Strategy for Mining Association Rules. Journal of Software, Vol. 5, 2010,
No. 11, pp. 1243–1249.

[18] Romero, C.—Zafra, A.—Luna, J.M.—Ventura, S.: Association Rule Mining
Using Genetic Programming to Provide Feedback to Instructors from Multiple-Choice
Quiz Data. Expert Systems, Vol. 30, 2013, No. 2, pp. 162–172, doi: 10.1111/j.1468-
0394.2012.00627.x.

[19] Kuo, R. J.—Shih, C.W.: Association Rule Mining Through the Ant Colony
System for National Health Insurance Research Database in Taiwan. Computers
& Mathematics with Applications, Vol. 54, 2007, No. 11-12, pp. 1303–1318, doi:
10.1016/j.camwa.2006.03.043.

[20] Wu, J.M.T.—Zhan, J.—Lin, J. C.W.: An ACO-Based Aproach to Mine High-
Utility Itemsets. Knowledge-Based Systems, Vol. 116, 2017, pp. 102–113, doi:
10.1016/j.knosys.2016.10.027.

[21] Sheikhan, M.—Sharifi Rad, M.: Gravitational Search Algorithm-Optimized Neu-
ral Misuse Detector with Selected Features by Fuzzy Grids-Based Association Rules
Mining. Neural Computing and Applications, Vol. 23, 2013, No. 7, pp. 2451–2463,
doi: 10.1007/s00521-012-1204-y.

[22] Gheraibia, Y.—Moussaoui, A.—Djenouri, Y.—Kabir, S.—Yin, P.Y.: Pen-
guins Search Optimisation Algorithm for Association Rules Mining. Journal of
Computing and Information Technology, Vol. 24, 2016, No. 2, pp. 165–179, doi:
10.20532/cit.2016.1002745.

[23] Heraguemi, K. E.—Kamel, N.—Drias, H.: Multi-Swarm Bat Algorithm for As-
sociation Rule Mining Using Multiple Cooperative Strategies. Applied Intelligence,
Vol. 45, 2016, pp. 1021–1033, doi: 10.1007/s10489-016-0806-y.

[24] Agrawal, R.—Srikant, R.: Fast Algorithms for Mining Association Rules. Pro-
ceedings of the 20th International Conference on Very Large Data Bases (VLDB ’94),
Vol. 1215, 1994, pp. 487–499.

[25] Park, J. S.—Chen, M. S.—Yu, P. S.: An Effective Hash-Based Algorithm for

https://doi.org/10.1023/A:1009773317876
https://doi.org/10.1007/978-3-7091-6230-9_65
https://doi.org/10.1145/508791.508905
https://doi.org/10.1016/j.eswa.2008.01.028
https://doi.org/10.1007/s00500-005-0476-x
https://doi.org/10.1111/j.1468-0394.2012.00627.x
https://doi.org/10.1111/j.1468-0394.2012.00627.x
https://doi.org/10.1016/j.camwa.2006.03.043
https://doi.org/10.1016/j.knosys.2016.10.027
https://doi.org/10.1007/s00521-012-1204-y
https://doi.org/10.20532/cit.2016.1002745
https://doi.org/10.1007/s10489-016-0806-y


1376 M. Barik, I. Hafidi, Y. Rochd

Mining Association Rules. ACM SIGMOD Record, Vol. 24, 1995, No. 2, pp. 175–186,
doi: 10.1145/568271.223813.

[26] Chen, C. L. P.—Zhang, C.Y.: Data-Intensive Applications, Challenges, Tech-
niques and Technologies: A Survey on Big Data. Information Sciences, Vol. 275,
2014, pp. 314–347, doi: 10.1016/j.ins.2014.01.015.

[27] Parpinelli, R. S.—Lopes, H. S.—Freitas, A.A.: Data Mining with an Ant
Colony Optimization Algorithm. IEEE Transactions on Evolutionary Computation,
Vol. 6, 2002, No. 4, pp. 321–332, doi: 10.1109/TEVC.2002.802452.

[28] Fong, S.—Wong, R.—Vasilakos, A.V.: Accelerated PSO Swarm Search Fea-
ture Selection for Data Stream Mining Big Data. IEEE Transactions on Services
Computing, Vol. 9, 2016, No. 1, pp. 33–45, doi: 10.1109/TSC.2015.2439695.

[29] Kuo, R. J.—Lin, S.Y.—Shih, C.W.: Mining Association Rules Through Integra-
tion of Clustering Analysis and Ant Colony System for Health Insurance Database
in Taiwan. Expert Systems with Applications, Vol. 33, 2007, No. 3, pp. 794–808, doi:
10.1016/j.eswa.2006.08.035.

[30] Olmo, J. L.—Luna, J.M.—Romero, J. R.—Ventura, S.: Mining Association
Rules with Single and Multi-Objective Grammar Guided Ant Programming. In-
tegrated Computer-Aided Engineering, Vol. 20, 2013, No. 3, pp. 217–234, doi:
10.3233/ICA-130430.

[31] Tseng, V. S.—Shie, B. E.—Wu, C.W.—Yu, P. S.: Efficient Algorithms for
Mining High Utility Itemsets from Transactional Databases. IEEE Transactions
on Knowledge and Data Engineering, Vol. 25, 2012, No. 8, pp. 1772–1786, doi:
10.1109/TKDE.2012.59.

[32] Kuo, R. J.—Chao, C.M.—Chiu, Y.T.: Application of Particle Swarm Optimiza-
tion to Association Rule Mining. Applied Soft Computing, Vol. 11, 2011, No. 1,
pp. 326–336, doi: 10.1016/j.asoc.2009.11.023.

[33] del Jesus, M. J.—Gamez, J.A.—Gonzalez, P.—Puerta, J.M.: On the Dis-
covery of Association Rules by Means of Evolutionary Algorithms. WIREs Data Min-
ing and Knowledge Discovery, Vol. 1, 2011, No. 5, pp. 397–415, doi: 10.1002/widm.18.

[34] Krishna, G. J.—Ravi, V.: Evolutionary Computing Applied to Customer Rela-
tionship Management: A Survey. Engineering Applications of Artificial Intelligence,
Vol. 56, 2016, pp. 30–59, doi: 10.1016/j.engappai.2016.08.012.

[35] Yang, M.H.—Li, L.—Hung, Y. S.—Hung, C. S.—Allain, J. P.—Lin, K. S.—
Tsai, S. J. L.: The Efficacy of Individual-Donation and Minipool Testing to Detect
Low-Level Hepatitis B Virus DNA in Taiwan. Transfusion, Vol. 50, 2010, No. 1,
pp. 65–74, doi: 10.1111/j.1537-2995.2009.02357.x.

[36] Sarath, K.N.V.D.—Ravi, V.: Association Rule Mining Using Binary Particle
Swarm Optimization. Engineering Applications of Artificial Intelligence, Vol. 26,
2013, No. 8, pp. 1832–1840, doi: 10.1016/j.engappai.2013.06.003.

https://doi.org/10.1145/568271.223813
https://doi.org/10.1016/j.ins.2014.01.015
https://doi.org/10.1109/TEVC.2002.802452
https://doi.org/10.1109/TSC.2015.2439695
https://doi.org/10.1016/j.eswa.2006.08.035
https://doi.org/10.3233/ICA-130430
https://doi.org/10.1109/TKDE.2012.59
https://doi.org/10.1016/j.asoc.2009.11.023
https://doi.org/10.1002/widm.18
https://doi.org/10.1016/j.engappai.2016.08.012
https://doi.org/10.1111/j.1537-2995.2009.02357.x
https://doi.org/10.1016/j.engappai.2013.06.003


Review of Heuristic Algorithms for FIM Problem 1377

Meryem Barik is a Ph.D. student at the National School of
Applied Sciences in Khouribga, Sultan Moulay Slimane Univer-
sity, Morocco. She received her Master’s degree in big data and
decision making in 2020 from the same school. Her main re-
search interests include big data, data mining, frequent itemsets
mining, and heuristics.

Imad Hafidi is currently serving as Professor at the National
School of Applied Science (ENSA), Khouribga, Morocco. He
is the Head of the Department of Mathematics and Computer
Engineering and the Director of the Laboratory of Process Engi-
neering, Computer Science and Mathematics (LIPIM) of ENSA,
Khouribga. His main research interests include big data, data
mining, frequent itemsets mining, and heuristics.

Yassir Rochd is currently Professor at the National School of
Applied Science (ENSA), Khouribga, Morocco, affiliated to the
Mathematics and Computer Science Department, member of the
LIPIM Laboratory (Process Engineering, Computer Science and
Mathematics). His research interests include data mining, big
data, and artificial intelligence.


