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Abstract. In this paper, an electromagnetism-like approach (EM) for solving the
two-level hierarchical covering location problem (TLHCLP) is proposed. An EM
metaheuristic is a powerful algorithm for global optimization that converges rapidly
to the optimum. Therefore, it has the potential to solve this type of problem
since movement based on the attraction-repulsion mechanisms, combined with the
proposed scaling technique, directs EM to promising search regions. The fast im-
plementation of the objective function and local search procedure for TLHCLP
additionally improves the efficiency of the overall EM system. The proposed EM
approach reaches all optimal solutions in a relatively short amount of computational
time. EM also obtains high-quality solutions for large-scale problem instances that
are out of reach for exact methods.
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1 INTRODUCTION

The network-based facility location modeling has been very popular in the last two
decades since it has many practical applications in diverse areas such as telecom-
munications and computer networking, health-care systems, supply chain, waste
management, etc. Only several recent applications will be mentioned, such as un-
popular location problems on networks [1] and reverse logistics facility location [2].

Location models are usually application specific, i.e. there is no general location
model that is appropriate for all existing and potential discrete location problems.
Much work has been done in the facility location modeling because new and flexible
location models are being formulated. It will be adequate for various applications
and for developing efficient solution techniques to solve more general models.

One specific branch of these problems are covering location models. They are
very suitable in the case related to the location of emergency facilities. A demand
area is covered if it is within a predefined service distance from at least one of the
existing facilities. A primary objective is to establish some of the potential facilities,
in order to cover as much of the potential customer demand as possible. A recent
review of various covering problems in facility location can be seen in [3].

The importance of the facility location modeling cannot be overstated, as it has
numerous practical applications across different industries. One of the significant
advantages of network-based facility location modeling are that it can provide in-
sights into the optimal location of facilities based on network considerations, such as
minimizing transportation costs and maximizing accessibility to customers. How-
ever, developing effective location models can be challenging since they need to be
tailored to specific applications. Therefore, researchers have focused on developing
new and flexible location models that can be adapted to different scenarios, as well
as efficient solution techniques for solving them. One type of location model which
has gained attraction is the covering location model. This model is particularly
relevant to emergency facilities, where the objective is to cover as much demand as
possible within a predefined service distance. Researchers have extensively studied
various covering problems in facility locations, as highlighted in [3].

In this paper, the authors present an electromagnetism-like approach (EM) for
solving facility location problems. The electromagnetism-like approach (EM) is
applied to this problem for the first time and represents a completely new method
for solving the problem.

The two-level hierarchical covering location problem (TLHCLP) is a complex
optimization problem which involves two levels of decision-making: locating facilities
at the first level and assigning customers to these facilities at the second level.

EM is a population-based optimization method that is inspired by the physics
of electromagnetism. It simulates the behaviour of charged particles which are
attracted to each other by electrostatic forces and repelled by like charges. In the
context of optimization, EM algorithms use these forces to move candidate solutions
in search of better solutions. The use of EM in solving the TLHCLP allows for a more
efficient and effective search for optimal solutions. The algorithm can explore the
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search space more thoroughly and quickly than traditional optimization methods,
such as linear programming or genetic algorithms. Additionally, the use of EM
allows for the inclusion of multiple objectives in the optimization process, such as
minimizing total cost and maximizing coverage.

Overall, the use of an EM metaheuristic to solve the TLHCLP represents a novel
and promising approach to solving this complex optimization problem.

This approach is described in detail in Section 4, and the computational results
are presented in Section 5. The authors also provide directions for future work in
Section 6, emphasizing the need to investigate how the EM approach can be applied
to other types of location models. Overall, this paper contributes to the ongoing
efforts to develop effective location models and solution techniques for solving them.

The rest of the paper is organized as follows. In Section 2, previous work is
presented, while the existing mathematical formulations are given in Section 3. The
next two sections contain the main features of the electromagnetism-like approach
(EM) and computational results on existing and new generated instances, respec-
tively. Section 6 contains conclusions and directions for future work.

2 PREVIOUS WORK

One well-known and important case of the covering location problems is the maximal
covering location problem (MCLP). A node is covered if there exists an established
facility within a predefined coverage radius. The objective is to maximize the total
coverage by establishing a fixed predefined number of facilities. For more information
about this problem and its applications, the interested reader could refer to [4].

In some situations, locations are not equal, but they are in some type of hi-
erarchy. For example, health care facilities have several levels of services. In the
case of health care, clinics as lower-level facilities provide only a basic service, while
hospitals can provide both lower and higher levels of services. The hierarchy is
backwards inclusive since every facility on a certain level provides its own level of
service and all lower level services. Another example is production-distribution sys-
tems consisting factories and warehouses, where a given product can be shipped to
a client directly from the factory or through one of the warehouses. A third ex-
ample is higher education where technical schools can cover applied studies, while
universities can cover both academic and applied studies. In this paper, we consider
a two-level hierarchical covering location problem (TLHCLP), as a direct general-
ization of the maximal covering problem, since two levels of hierarchy are usually
enough for practical applications.

Moore and ReVelle in [5] first proposed a MLHCLP and applied it to the health
services of Honduras. In their model, the lower-level facilities (clinics) provide
only a level-one service, whereas the higher-level facilities (hospitals) provide both
the level-two service and the level-one service. This hierarchy is said to be succes-
sively inclusive in the sense that a facility provides its own level of service and all
lower levels of services. The problem was formulated as a 01 programming problem
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and used the linear programming relaxation of their formulation how to solve it. The
authors recommend that this relaxation should be supplemented, where necessary,
by a branch-and-bound algorithm. However, their computational experience was
restricted to a test network developed from the provinces in Honduras, for which no
use of a branch-and-bound algorithm is reported.

In [6], five heuristic approaches based on a combined Lagrangean surrogate (LS)
relaxation were proposed, which reduce TLHCLP to a 01 knapsack problem. Tests
were carried out using a sub-gradient-based heuristic incorporating the LS relax-
ation, with the resulting knapsack problems being solved both with and without the
integrality constraints relaxed. Results were obtained for test problems available in
the literature ranging from 55-node to 700-node networks. These were compared,
where possible, with exact results obtained using CPLEX. It was found that com-
puting times were reasonable.

Genetic algorithm for solving TLHCLP was proposed in [7, 8]. The binary
encoding with new genetic operators which keep the feasibility of individuals was
proposed. Computational performance is additionally improved by caching tech-
nique. A modification to resolve the problem of frozen bits in the genetic code was
proposed and tested. The genetic algorithm was tested, its parameters were ad-
justed on instances up to 100 nodes. It performed well and proved robust and the
optimal solutions were reached in all cases.

The description of all contributions in the literature about hierarchical facility
location models is out of the scope of this paper, so only several of them will be
mentioned which are devoted to similar but still slightly different problems:

• Hierarchical maximal covering location problems in the presence of partial cov-
erage were studied in [9, 10];

• A coherent hierarchical covering location problem was proposed in [11];

• The two-stage maximal covering location problem was used for missile mainte-
nance activity in [12].

• The bi-level maximal covering location problem considers two decision levels,
one associated with facility location, and the other related to the allocation of
customers to open facilities in [13].

Interested readers can also consult the excellent survey about various hierarchical
facility location models in [14].

3 MATHEMATICAL FORMULATION

Let J = {1, 2, . . . , n} be the set of nodes that represent demand areas, I = {1, 2, . . . ,
m} be the set of potential facility sites, dij be the distance between potential facility
i and node j, fj be the weight of node j, and R1, T1 and R2 be the cover radia.
A node is level-1 service covered if its distance from some level-1 established facility
is not more than R1 or if the distance from some level-2 established facility is not
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more than T1. Similarly, a node is level-2 service covered if its distance from some
level-2 established facility is not more than R2. The objective of TLHCLP is to
establish exactly p level-1 facilities and q level-2 facilities to maximize the sum
of weights of completely service-covered nodes (which are both level-1 and level-2
service covered).

In real life, people may be willing to travel a greater distance to receive the
same service from a facility with more resources (a higher-level facility). Therefore,
the service distance for the level-2 facility T1 is expected to satisfy T1 > R1. How-
ever, in practice, people may also be willing to travel further to receive the more
sophisticated level-2 service. Therefore, in the TLHCLP model, it is considered that
R1 < T1 < R2.

The two-level hierarchical covering location problem considered in the paper
is common in some real-life cases. Practical aspects can be seen in the following
example: shopping in small and large markets, such as mini markets and Metro. The
lower level, such as mini markets, can provide only smaller quantities of products,
while Metros (higher level), in addition to small quantities, can also provide much
larger quantities of products. As can be seen from the above, the two levels of
hierarchy are generally sufficient to describe real problems.

Example 1. Let the number of objects be n = 5, where on the first and second
level can be determined, i.e. p = 1 and q = 1. Let be the radii R1 = 15, T1 = 20
and R2 = 30. Let be the cost of covering the objects f = [11, 10, 9, 5, 12], (fi – the
cost of covering the object i) and the distance matrix between objects d given below
(also in Figure 1)

d =


0 13 28 19 33
13 0 31 32 22
28 31 0 35 9
19 32 35 0 44
33 22 9 44 0

 .

Optimal solution value is 33 and it is obtained by total enumeration.

At level-1 (p = 1) facility 3 is established.

At level-2 (q = 1) facility 2 is established.

At level-2 (q = 1) nodes 1, 2 and 5 are covered. (d21 = 13 ≤ 30, d22 = 0 ≤ 30
and d25 = 22 ≤ 30).

At level-1 (p = 1) nodes 1, 2, 3 and 5 are covered. With level-1 nodes 3 and 5
are covered (d33 = 0 ≤ 15 and d35 = 9 ≤ 15) and with level-2 nodes 1 and 2 are
covered (d21 = 13 ≤ 20 and d22 = 0 ≤ 20).

Since nodes 1, 2 and 5 are completely covered, the objective function has value
f1 + f2 + f5 = 11 + 10 + 12 = 33.

In this paper, the integer linear programming formulation of HCLP from [5]

is used. Let aij =

{
1, dij ≤ R1,

0, dij > R1,
bij =

{
1, dij ≤ T1,

0, dij > T1,
and cij =

{
1, dij ≤ R2,

0, dij > R2.
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Figure 1. Distances graph in Example 1

Let decision variables be defined as follows: xj =

{
1, j is completely covered,

0, otherwise,

yi =

{
1, i is level-1 facility,

0, otherwise,
and zi =

{
1, i is level-2 facility,

0, otherwise.

Then, integer linear programming (ILP) formulation is:

max
∑
j∈J

fjxj (1)

s.t. ∑
i∈I

yi = p, (2)

∑
i∈I

zi = q, (3)

∑
i∈I

aijyi +
∑
i∈I

bijzi − xj ≥ 0, j ∈ J, (4)
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i∈I

cijzi − xj ≥ 0, j ∈ J, (5)

xj ∈ {0, 1} , j ∈ J, (6)

yi, zi ∈ {0, 1} , i ∈ I. (7)

In the presented ILP formulation, the objective function (1), to be maximized,
represents the sum of weights of the completely covered nodes. Constraints (2)
and (3) provide that the number of established level-1 and level-2 facilities is p and
q, respectively. Constraint (4) states that for each covered node j there exists at
least one established level-1 facility with a distance of at most R1 (i.e. aij = 1) or
at least one established level-2 facility with a distance of at most T1 (i.e. bij = 1).
Similarly, constraint (5) states that for each covered node j there exists at least
one established level-2 facility with a distance of at most R2 (i.e. cij = 1). Finally,
constraints (6) and (7) represent the binary nature of the decision variables.

4 PROPOSED EM METHOD

An electromagnetism-like (EM) metaheuristic was introduced in the literature by
Birbil and Fang in [15] as a powerful algorithm for global optimization that converges
rapidly to the optimum. The method is also used for combinatorial optimization
as a stand-alone approach or as an accompanying algorithm for other methods.
It is a robust and effective metaheuristic, which can be seen from its successful
applications for solving various problems. A detailed description of different EM
variants is out of the scope of this paper, so only several recent and successful EM
applications will be mentioned:

• Wei et al. presented an EM algorithm in order to solve cell formation problems
in [16]. Based on the attraction-repulsion principle in electromagnetic theory,
each combination of the part and machine groups was regarded as a charged
particle. A comparison with other algorithms in the related literature found
that the final result of the EM algorithm met the expected quality in terms of
the exceptional elements and number of vacancies, regardless of whether or not
new cells were added.

• The next successful application, described in [17] was performed for solving
the response time variability problem, which has a real-life application in the
automobile industry. The EM method was compared with three metaheuristic
algorithms from the literature, and it was shown that, on average, the EM
procedure strongly improved the previously obtained results.

• In [18], the uncapacitated hub location problem with multiple allocations was
considered. An appropriate objective function, which natively conformed with
the problem, 1-swap local search, and scaling technique were used to achieve
good overall performance. Computational tests demonstrated the reliability
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of this method, since the EM-inspired metaheuristic reached all optimal/best-
known solutions, except one, in a reasonable time.

• Su and Lin in [19] utilized an electromagnetism-like mechanism combined with
the 1-nearest-neighbor method as a wrapper approach to feature selection and
classification in data mining. Experimental results indicated that the proposed
method outperformed other well-known algorithms in not only balanced classi-
fication accuracy but also efficiency of feature selection.

• In [20], an EM approach for solving the maximum set splitting problem was pre-
sented. The hybrid approach consisted of movement based on the attraction-
repulsion mechanisms combined with the proposed scaling technique directed
EM to promising search regions. The fast implementation of the local search
procedure additionally improved the efficiency of the overall EM system. The re-
sults showed that except in one case, EM reached optimal/best-known solutions
from the literature.

• Abdullah et al. [21] proposed a hybrid metaheuristic that combines an electro-
magnetic-like mechanism (EM) and the great deluge algorithm (GD) for the uni-
versity course timetabling problem. The proposed method was applied to a range
of benchmark university course timetabling test problems from the literature,
demonstrating that the method can produce improved solutions compared to
those currently published.

The proposed EM algorithm for solving TLHCLP is given by the following pseu-
docode in Algorithm 1.

Algorithm 1: EM pseudo code

Algorithm EM ;
1 Random Init() ;
while iteration < max iteration do

foreach EM point pk in the solution set do
2 Calculate objective value(pk);
3 Local search(pk);
4 Scale solution(pk);

5 end
6 Calculate charge and forces();
7 Move();

end

4.1 Objective Function

EM is a population-based algorithm that can solve nonlinear optimization problems.
In the following text, each member pk, k = 1, 2, . . . , Np of the population maintained
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by the algorithm will be referred to as an EM point (or solution), and the popu-
lation itself will be referred to as a solution set. Each EM point is a real vector
of length 2m, divided into m segments of two rational numbers related to decision
variables zi and yi, respectively. Numbers related to decision variables z are sorted
in non-increasing order, and potential facilities related to the q highest numbers are
established as level-2 facilities. For the remaining m − q non-established potential
facilities, decision variables y are sorted in a non-increasing order, and potential facil-
ities related to the p highest numbers are established as level-1 facilities. EM points
in the first iteration are randomly initialized from [0, 1]2m (function Random Init()).
It should be noted that for all instances is m = n, i.e. potential facilities are actually
nodes. Therefore, distance matrices are symmetric and (∀i), dii = 0.

After determining which facilities are established as p level-1 and q level-2 ones,
it is necessary to identify which nodes are completely covered and which ones are
not. Since this step is the most computationally expensive part of the objective
function evaluation, it must be implemented very efficiently. Therefore, the decision
as to whether a particular node is covered by some established level-1 and level-2
facilities is divided into two parts.

The first part, which is computationally expensive, is performed only once, as
preprocessing, in the initialization part of the algorithm. For each potential facility
(at that moment, it is not known whether this facility will be later established or
not), indices of nodes that are covered by radia R1, T1 and R2, are computed and
stored. Since a particular potential facility usually does not cover all nodes, this
step significantly speeds up the objective function evaluations later on.

The second part is performed within the objective function evaluation. For each
node, three values are noted: av, bv and cv representing the number of established
facilities covering that node by R1, T1 and R2 radius, respectively. All three values,
av, bv and cv are initialized to zero. At this point, it is known which potential
facilities are established as level-1 and level-2 ones. Therefore, for each established
level-1 facility, the value of av is increased by one for all memorized indices of nodes
that are covered by radius R1. Similarly, for each established level-2 facility, the
values of bv and cv are increased by one for all memorized indices of nodes that are
covered by radius T1 and R2, respectively. After that, nodes with value cv ≥ 1 and
at least one of the two conditions av ≥ 1 or bv ≥ 1 are completely covered, while
others are not covered.

4.2 Local Search and Scaling

This step is used to move the sample points towards the local optima that are near
them. Points are pushed towards the local valleys using a neighborhood search
procedure. The local search method used in this algorithm is simple but effective.

In every step, the first strategy tries a swap of one level-1 established facility with
one level-2 established facility, checking if it obtains a better objective value. In order
to obtain the new objective value, only coverage for the given two facilities must
be recomputed. That recomputation can be made much faster than the evaluation
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of the objective function, since the last configuration about coverage of each node
was memorized by av, bv and cv values. The second strategy tries to swap one
of the level-2 facilities with one non-established facility, checking if it improves the
objective function value. Similarly to the previous strategy, only the coverage for
the given two facilities must be recomputed, so recomputations are made using the
av, bv and cv values. The last strategy tries to swap one of the level-1 facilities with
one non-established facility, also performing a recomputation using the av, bv and
cv values.

The proposed local search procedure uses the first improvement strategy, which
means that when an improvement is detected, the improvement is immediately ap-
plied, and the local search is performed again. For example, if some strategy is
successful in swapping one facility with another, that swap is performed, and the
local search is applied again with the first strategy. If all swaps in some strategy
fail to produce a better objective value, the next strategy is applied. If all strategies
fail, the local search procedure ends with no further improvement.

In this implementation, a scaling procedure is also applied, which additionally
moves points towards solutions obtained by local search. It is considered only with
some factor λ ∈ (0, 1) to prevent falling into a local optimum and becoming trapped
there. An EM point pk is moved by the following formula:

pk ← λ · p′k + (1− λ) · pk, (8)

where p′k has ones on places of established facilities and zeros otherwise (same as in
decision variables y and z), of the kth EM point in the current iteration when the
local search procedure finished its work.

Choosing an appropriate value of the scale factor λ is significant for governing
the search process. In the extremal case, when λ is close to 1, the search process
will likely fall into a local optimum and become trapped. Another extremal case,
when λ is equal to 0, obviously represents no-scaling situation. Experiments showed
that λ = 0.1 is a good compromise which yields satisfactory results.

4.3 Attraction-Repulsion Mechanism

As it can be seen from the literature, the strength of the EM algorithm lies in the
idea of directing the sample points towards local optima utilizing an attraction-
repulsion mechanism. Therefore, after applying the local search procedure to each
solution in the current population, the solutions must be moved towards promising
regions in order to get closer to the optimal solution.

In this process, each sample point is considered as a charged particle. The charge
of each sample point is calculated by the following formula:

qk = exp

(
−n Objbest −Objk∑Np

l=1Objbest −Objl

)
. (9)



Solving the Two-Level Hierarchical Covering Location Problem 1481

The amount of charge is related to the value of the objective function Objk of the
point pk after the local search has finished its work. This determines the magnitude
of attraction or repulsion of the point over the sample population.

According to the superposition principle of electromagnetic theory, the force
exerted on a point by another point is inversely proportional to the distance between
the points and directly proportional to the product of their charges. Mathematically,
the power of attraction or repulsion of charges is calculated as follows:

Fk =
m∑

l=1,l ̸=k

F l
k,

where

F l
k =


(

qkql
||pk−pl||2

)
· (pl − pk), f(pk) < f(pl),(

qkql
||pk−pl||2

)
· (pk − pl), f(pk) ≥ f(pl),

(10)

where ∥pk − pl∥ is the Euclidean distance between EM points pk and pl.
As mentioned before, the Move() procedure of the electromagnetism approach

is used to shift current solutions towards the best ones. All EM points are moved
except for the current best solution. Detailed explanations about the movement are
given in Algorithm 2.

Algorithm 2: Move pseudo code

Function Move() ;
foreach EM point pk in the solution set do

if pk ̸= pbest then
1 β ← Random[0, 1];
2 Fk ← Fk/∥Fk∥ ;
3 for i = 1 to 2m do
4 if Fki > 0 then

pki ← pki + β · Fki · (1− pki)
end

5 else
pki ← pki + β · Fki · pki

end

end

end

6 end

As shown in Algorithm 2, the movement of each EM point is in the direction
of the total force exerted on it by a random step length β, which is generated
from a uniform distribution between [0, 1]. As described in [15], candidate solutions
have a non-zero probability of moving towards unvisited solutions in this direction



1482 M. Milivojević Danas, M. Bogdanović

when a random step length is selected. Additionally, normalizing the total force
exerted on each candidate solution ensures that infeasible solutions cannot be pro-
duced.

5 EXPERIMENTAL RESULTS

All computations were executed on a single processor of a Quad Core 2.5GHz PC
with 4GB RAM. The EM implementation was coded in C language. All EM
runs were made with the following empirically determined parameters: Np = 10,
itermax = 1000 and λ = 0.1. These values cause most charges to exhibit convergent
behavior with a few individuals diverging, thereby providing a good balance between
local and global search. In this case, all these values were chosen experimentally for
convenience because they provide good results.

For the first experimental testing in this implementation, the instances described
in [8] with up to 100 nodes, and G&R 150 instance with 150 nodes from [6], are
used. For the first group, an experimental setup of R1 = 10, T1 = 12 and R2 = 22
is used, while for the last instance, an experimental setup of R1 = 40, T1 = 55 and
R2 = 60, is used, the same as in the corresponding papers.

The finishing criterion for EM is the maximal number of iterations Niter = 200,
while λ has a value of 0.1 in this experiment. Because EM is not a deterministic
algorithm, all experiments were executed 20 times.

Table 1 summarizes the results of EM on these instances. In the first column,
the names of the instances are given. The next three columns contain the values of
n, p and q, respectively. The fifth and sixth columns contain the optimal solution
values and the values of the solutions obtained by EM. In the next two columns,
the running time t of the first occurrence of the best EM solution and the total run-
ning time ttot needed to satisfy finishing criterium are given. The next two columns
contain the relative error err and the standard deviation σ in all 20 runs. The
last column contains the average overall number of local search steps through all
200 iterations.

As can be seen in Table 1, EM was able to reach optimal solutions for almost
all instances, except for the last two cases. The G&R 150 instance seems to be
particularly challenging, as EM did not reach the optimal solutions in these two
cases and required many more local search iterations. Additionally, the running
time for EM on the G&R 150 instance was much larger compared to the previous
instances.

A direct comparison of EM results with GA implementation from [8] is presented
in Table 2. The first five columns contain instance names, n, p, q, and optimal
solution of the given instance, presented in the same way as in Table 1. The next
three columns contain information (best solution Sol, time t and total running time
ttot) of the GA algorithm from [8] executed on the same computer as the EM method.
The last three columns contain the respective information about EM (Sol, t and
ttot).
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Inst. n p q Opt Sol t (s) ttot (s) err (%) σ (%) LSiter

ex1 20 3 3 355 opt 0.002 0.135 0.000 0.000 4 847
6 5 497 opt 0.002 0.177 0.000 0.000 4 737
7 5 508 opt 0.005 0.177 0.217 0.651 4 582

ex2 20 3 3 441 opt 0.001 0.135 0.000 0.000 4 565
6 3 493 opt 0.004 0.163 0.000 0.000 4 618
3 4 508 opt 0.002 0.157 0.000 0.000 4 983

ex3 50 4 4 880 opt 0.010 1.291 0.000 0.000 5 592
9 14 1 106 opt 0.009 1.901 0.000 0.000 4 000

ex4 100 5 6 2 297 opt 2.813 8.524 0.157 0.255 6 636
9 12 2 567 opt 0.054 9.987 0.000 0.000 4 576

G&R150 150 12 10 8 198 opt 42.570 146.087 0.676 0.276 18 464
14 10 8 260 opt 37.231 160.009 1.400 0.346 16 839
16 10 8 272 opt 50.136 175.778 1.385 0.496 18 575
14 12 9 149 opt 53.572 175.315 0.383 0.361 19 407
16 12 9 252 opt 50.233 190.759 1.390 0.479 18 240
18 12 9 261 opt 62.699 205.807 1.347 0.550 19 678
18 16 10 587 opt 80.009 236.601 0.505 0.154 21 712
20 16 10 587 10 567 93.874 253.651 0.316 0.166 23 061
22 16 10 587 10 571 106.986 270.767 0.318 0.167 24 185

Table 1. EM results on instances from [8]

Inst. n p q Opt GA EM
Sol t (s) ttot (s) Sol t (s) ttot (s)

ex1 20 3 3 355 opt 0.003 0.277 opt 0.002 0.135
6 5 497 opt 0.046 0.364 opt 0.002 0.177
7 5 508 opt 0.060 0.376 opt 0.005 0.177

ex2 20 3 3 441 opt 0.007 0.289 opt 0.001 0.135
6 3 493 opt 0.089 0.452 opt 0.004 0.163
3 4 508 opt 0.005 0.301 opt 0.002 0.157

ex3 50 4 4 880 opt 0.199 1.283 opt 0.010 1.291
9 14 1 106 opt 0.042 35.037 opt 0.009 1.901

ex4 100 5 6 2 297 opt 1.862 6.492 opt 2.813 8.524
9 12 2 567 opt 0.546 291.033 opt 0.054 9.987

Table 2. Comparison of results on instances from [8]

As shown in Table 2, both GA and EM were able to reach all optimal solutions,
and the running time on all instances was relatively small. Although EM performed
slightly faster than GA in most cases, definitive conclusions about superiority cannot
be drawn from the presented data in Table 2.

In order to obtain these answers, as well as a comparison with the results of
the Lagrangean surrogate heuristic (LSH) from [6], Table 3 is presented. Note that
experimental results of LSH, tested on a less powerful computer, are assumed as
in [6], tested on less powerful computer Pentium II with 300 MHz processor. The
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data in Table 3 is presented in a similar way as in Table 2, with additional 3 columns
for the results of LSH. Additionally, instance name and dimension are omitted to
obtain a compact presentation.

p q Opt LSH GA EM
Sol t (s) Sol t (s) ttot (s) Sol t (s) ttot (s)

12 10 8 198 8 134 5.05 8 095 175.856 995.1 opt 42.570 146.0
14 10 8 260 8 071 4.67 8 095 230.109 1 114.3 opt 37.231 160.0
16 10 8 272 8 233 7.25 8 090 229.186 1 172.8 opt 50.136 175.7
14 12 9 149 9 057 3.68 9 087 24.833 915.7 opt 53.572 175.3
16 12 9 252 9 087 5.88 9 114 84.453 1 096.6 opt 50.233 190.7
18 12 9 261 9 087 7.58 9 113 29.871 1 107.4 opt 62.699 205.8
18 16 10 587 10 434 6.26 10 501 298.131 1 481.1 opt 80.009 236.6
20 16 10 587 10 459 5.65 10 571 212.101 1 463.4 10 567 93.874 253.6
22 16 10 587 10 340 4.39 10 495 121.593 1 416.0 10 571 106.986 270.7

Table 3. Comparison of results on G&R 150 instance from [6]

Inst. n p q Sol t (s) ttot (s) err (%) σ (%) LSiter

ex5 200 3 3 2 645 0.231 18.880 0.000 0.000 15 223
5 5 3 914 13.766 35.906 0.010 0.020 16 355
7 8 4 910 24.415 61.288 0.574 0.436 17 819
10 10 5 097 6.796 74.790 0.000 0.000 17 565

ex6 300 3 3 3 634 0.357 41.386 0.000 0.000 15 286
5 5 5 422 10.118 82.257 0.015 0.044 16 529
7 8 6 888 55.011 138.984 0.468 0.195 17 929
10 10 7 466 76.337 196.165 0.467 0.198 18 868

ex7 400 3 3 4 503 3.121 77.304 0.000 0.000 15 418
5 5 6 875 51.956 154.271 0.150 0.310 16 591
7 8 8 955 123.841 261.616 0.997 0.425 17 974
10 10 9 834 176.424 369.172 0.566 0.294 18 917

ex8 500 3 3 5 494 0.871 123.707 0.000 0.000 15 462
5 5 8 392 90.384 250.935 0.066 0.133 16 672
7 8 10 997 176.875 416.600 0.687 0.351 17 882
10 10 12 173 224.168 585.856 0.886 0.265 18 823

Table 4. EM results on larger instances with R1 = 10, T1 = 12 and R2 = 22

As can be seen from Table 3, the EM method produces significantly better
results than the GA approach, both in terms of solution quality and running times.
The EM method also produces better solutions compared to the LSH approach, but
with much longer running times.

For tables, n is the dimension of the problem and the complexity of the problem
depends on increasing the order of n. In such a representation, it is clearly visible
what the dimension of the instance is. (In Table 3, there is only one instance, so it
is clear which dimension it is about.)
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Inst. n p q Sol t (s) ttot (s) err (%) σ (%) LSiter

ex5 200 3 3 3 743 2.726 20.203 0.000 0.000 15 331
5 5 4 875 14.721 34.861 0.287 0.285 16 053
7 8 5 097 0.233 41.830 0.000 0.000 15 129
10 10 5 097 0.222 41.049 0.000 0.000 14 042

ex6 300 3 3 5 342 0.886 45.016 0.000 0.000 15 523
5 5 6 988 32.493 77.255 0.275 0.193 16 192
7 8 7 550 9.278 101.961 0.000 0.000 15 820
10 10 7 550 0.544 97.690 0.000 0.000 14 450

ex7 400 3 3 6 861 1.258 81.085 0.000 0.000 15 409
5 5 9 197 53.632 142.409 0.723 0.385 16 151
7 8 10 153 88.383 207.337 0.252 0.132 16 397
10 10 10 153 1.065 205.403 0.000 0.000 15 084

ex8 500 3 3 8 238 22.821 129.900 0.000 0.000 15 471
5 5 11 278 120.490 234.111 0.578 0.444 16 348
7 8 12 593 180.375 342.549 0.293 0.140 16 663
10 10 12 654 1.823 333.728 0.000 0.000 15 236

Table 5. EM results on larger instances with R1 = 15, T1 = 20 and R2 = 30

In order to observe the behavior of the EM method on large-scale instances that
are out of reach for exact methods, instances of dimensions n = 200, 300, 400 and
500 were generated using the instance generator from [8]. Since optimal solutions
for these instances are not known, except for the two smallest cases, the results of
the EM method are compared to the GA method from [8]. Two experimental setups
are used:

1. Table 4 contains computational results based on the values R1 = 10, T1 = 12
and R2 = 22, which are the same values used in [8];

2. Setup values R1 = 15, T1 = 20 and R2 = 30 are used in the second experiment,
and the results are presented in Table 5.

Note that for higher values of p and q (p > 10, q > 10) both setups give similar
results, since all (or almost all) demand areas are covered, so these cases are not
reported in Tables 4 and 5. The data in Tables 4 and 5 are presented in the same
way as in Table 1, except that in almost all cases optimal solutions are not known, so
that column is omitted. Only two optimal solutions are known (with setup R1 = 10,
T1 = 12 and R2 = 22):

1. ex5 with p = 3, q = 3 with optimal solution value 2 645 obtained with CPLEX
solver 10.1 after 4 minutes;

2. ex6 with p = 3, q = 3 with optimal solution value 3 634 obtained with CPLEX
solver 10.1 after 55 minutes;

3. ex7 with p = 3, q = 3 with optimal solution value 4 503 obtained with CPLEX
solver 10.1 after 8 hours and 17 minutes.
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Inst. n p q GA EM
Sol t (s) ttot (s) Sol t (s) ttot (s)

ex5 200 3 3 2 645 4.074 183.9 2 645 0.231 18.9
5 5 3 914 14.336 730.1 3 914 13.766 35.9
7 8 4 898 27.898 1 449.8 4 910 24.415 61.3

10 10 5 097 71.92 1 004.6 5 097 6.796 74.8
ex6 300 3 3 3 634 19.87 320.7 3 634 0.357 41.4

5 5 5 422 45.011 804.4 5 422 10.118 82.3
7 8 6 760 79.966 1 507.8 6 888 55.011 139.0

10 10 7 410 75.814 989.9 7 466 76.337 196.2
ex7 400 3 3 4 503 43.31 61.4 4 503 3.121 77.3

5 5 6 820 146.928 994.7 6 875 51.956 154.3
7 8 8 743 166.075 825.8 8 955 123.841 261.6

10 10 9 669 242.499 971.4 9 834 176.424 369.1
ex8 500 3 3 5 494 122.971 482.6 5 494 0.871 123.7

5 5 8 314 253.786 918.1 8 392 90.384 250.9
7 8 10 859 505.779 2 059.9 10 997 176.875 416.6

10 10 12 053 401.739 732.6 12 173 224.168 585.9

Table 6. Comparison of results on larger instances with R1 = 10, T1 = 12 and R2 = 22

For all other instances, as well as for all instances with setup R1 = 15, T1 = 20
and R2 = 30, CPLEX cannot finish its work after one day of running time.

Direct comparison of the EM results with the GA implementation from [8] is
given in Tables 6 and 7, presented in the same way as Table 2, except that in almost
all cases, the column for optimal solutions is omitted since they are not known. In
cases where one method obtains a strictly better result than the others, the result
is noted in italic boldface.

Direct comparison with GA on large instances also shows the superiority of the
present EM approach in both solutions – quality and running times, in most cases.

From Tables 1, 2, 3, 4 and 5 it can be seen that EM provides solutions of
a certain quality. In Table 4, maximal total running time ttot = 585.856 seconds
which is approximately 10 minutes (achievable time). It is shown that EM, for large
values n, is capable of attaining solutions of good quality and EM is competitive
compared with GA. Data for ex4, from Table 2, shows that when the value of p
and q increases, the execution time increases significantly, i.e. for p = 5 and q = 6,
ttot = 6.492 seconds with GA, while ttot = 8.524 seconds with EM. Too, for p = 9
and q = 12, ttot = 261.033 seconds with GA, while ttot = 9.987 seconds with EM.

The data LSH and GA from Table 3 did not reached any optimal solution, while
EM reached optimal solutions in all cases except two (p = 20 and q = 16, p = 22 and
q = 16). Data for ex8 where is p = 10 and q = 10, from Table 6, shows that solution
value obtained with GA is 12 053, while solution value obtained with EM is 12 173.
It can be seen that EM provides better solution and that the execution time is less.
Data for ex8 where is p = 10 and q = 10, from Table 7, shows that ttot = 43 448.2
seconds with GA, while ttot = 333.7 seconds with EM, but the solution values 12 654
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Inst. n p q GA EM
Sol t (s) ttot (s) Sol t (s) ttot (s)

ex5 200 3 3 3 743 10.194 29.4 3 743 2.726 20.2
5 5 4 838 17.517 39.4 4 875 14.721 34.7
7 8 5 097 42.529 1 735.3 5 097 0.233 41.8

10 10 5 097 2.954 2 695.3 5 097 0.222 41.0

ex6 300 3 3 5 342 29.489 75.1 5 342 0.886 45.0
5 5 6 944 31.285 84.3 6 988 32.493 77.3
7 8 7 550 235.737 903.4 7 550 9.278 102.0

10 10 7 550 20.337 9 564.3 7 550 0.544 97.7

ex7 400 3 3 6 861 62.856 172.9 6 861 1.258 81.1
5 5 9 066 149.052 275.8 9 197 53.632 142.4
7 8 10 116 185.899 326.9 10 153 88.383 207.3

10 10 10 153 125.889 28 581.6 10 153 1.065 205.4

ex8 500 3 3 8 210 151.824 338.3 8 238 22.821 129.9
5 5 11 125 237.922 454.1 11 278 120.490 234.1
7 8 12 516 534.011 741.6 12 593 180.375 342.5

10 10 12 654 129.595 43 448.2 12 654 1.823 333.7

Table 7. Comparison of results on larger instances with R1 = 15, T1 = 20 and R2 = 30

are the same. GA found a solution for t = 129.595 seconds, while EM found the
solution for 1.823 seconds. Too, data for ex8 where is p = 7 and q = 8, shows that
ttot = 741.6 seconds with GA, while ttot = 342.5 seconds with EM, but GA found
a solution for t = 534.011 seconds, while EM found the solution for 180.375 seconds
and EM obtained a better solution than GA.

6 CONCLUSIONS

This paper presents a robust and effective metaheuristic called electromagnetism-
like method for solving the two-level hierarchical covering location problem. The
proposed approach utilizes an efficient objective function, local search procedure,
attraction-repulsion mechanisms, and scaling techniques resulting in excellent ex-
perimental results. This approach and a completely new method for solving the
discussed problem were both applied for the first time. The electromagnetism-like
metaheuristic (EM) used to solve the two-level hierarchical covering location prob-
lem (TLHCLP) in the paper has several novel aspects.

One aspects is adaptation of EM metaheuristic: The paper adapts the EM meta-
heuristic, originally designed for continuous optimization problems, to the discrete
combinatorial problem of TLHCLP. This adaptation involves designing new compo-
nents for the EM algorithm, such as a discrete representation of solutions, a discrete
attraction-repulsion function, and discrete update rules. Next aspect is integration
of two-level hierarchical structure: The TLHCLP is a complex optimization prob-
lem with a two-level hierarchical structure, where facilities at the upper level serve
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customers at the lower level. The paper proposes a novel representation of solu-
tions that captures this hierarchical structure and allows for efficient search of the
solution space. And, one more novel aspect is performance evaluation: The paper
evaluates the performance of the proposed EM metaheuristic on a set of benchmark
instances of the TLHCLP and compares it with other state-of-the-art metaheuris-
tics. The results show that the EM algorithm outperforms other metaheuristics in
terms of solution quality and computational efficiency. Overall, the paper presents a
novel and effective approach for solving the challenging problem of TLHCLP using
an adapted version of the EM metaheuristic.

Direct comparison with a genetic algorithm from the literature indicates the su-
periority of the EM approach in terms of solution quality, with significantly smaller
running times. Based on the presented results, the EM method is deemed as a valu-
able metaheuristic for solving the proposed problem.

For future work, it would be interesting to apply the EM to similar problems and
explore hybridization with other metaheuristics or exact methods. Additionally, it
could be beneficial to investigate the performance of the EM approach on real-world
instances and compare it with the existing solutions. Moreover, exploring the po-
tential of incorporating parallel computing techniques or adaptive parameters could
further enhance the efficiency and effectiveness of the proposed method. Overall,
the presented electromagnetism-like method provides a promising avenue for solv-
ing complex hierarchical covering location problems, with potential applications in
various domains, including transportation, logistics, and facility location.
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