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Abstract. Cloud Computing has immersed researchers in accessing the resources
on-demand for deploying various applications by offering infinite services. But, as
the demand for cloud resources is dynamic, it significantly affects the load on the
system. Thus, this research emphasizes deploying a dynamic and autonomic load
prediction framework. This paper proposes an Ensemble Time-Series Approach
for Load Prediction (ETSA-LP), which integrates various time-series analysis tech-
niques for predicting CPU and memory utilization. To evaluate the efficiency of the
proposed approach, a series of experiments on Google and PlanetLab traces have
been conducted in a real Cloud environment. The results were compared accord-
ing to different performance metrics and models, the accuracy determined and the
minimal error rate selected as the best among others. The proposed ensemble ap-
proach gives the best performance over the existing models showing the remarkable
accuracy improvement and reducing the error rate and execution time.

Keywords: Cloud computing, load prediction, time-series forecasting, ensemble
approach, dynamic resource prediction

1 INTRODUCTION

Cloud Computing refers to a computing network model that supports single and mul-
tiple programs or applications to be executed on an inter-connected set of servers
rather than on a native machine. For vast data centers of Cloud Computing, it is
required for physical and virtual interrelated networks to communicate with faster
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Giga-bit speed. But, this initial requirement gives rise to the problem of predict-
ing the resource availability in the system for upcoming processes in advance. As
the present computer systems and their workloads are dynamic, it becomes chal-
lenging to make such autonomous predictions. Cloud Computing platforms must
be able to propose and acquire resources quickly to certify high scalability, flexi-
bility, and effective cost [1]. This will also help sustain the prerequisites of various
Cloud-based applications by dynamic load prediction for appropriate resource uti-
lization.

Based on a Cloud system’s estimated future load and performance, users can
make desired decisions to prevent the system from traffic flow caused by peak load.
There should be an accurate simulation of the correlation between historical and
future values for precise and intelligent load prediction in Cloud Computing sys-
tems. Proper knowledge of backend workloads is also necessary [2]. Diverse models
have been proposed till now for load prediction based on the history of jobs exe-
cuted or interrelated resources. In addition, many models’ time-varying resources
and non-adaptive features affect the performance of cloud data centers [3]. Hence,
newly refined algorithms such as time-series analysis techniques to predict load from
multiple hosts proactively. The reasons why autonomic load prediction in Cloud is
recommended are:

• The first reason is that most recent applications in the Cloud (e.g., e-health,
smart homes, smart cities, etc.) have varying loads because of their resource
consumption, power usage and configuration details that change from time to
time. This results in complex and unpredictable behavior of resources and has
a major effect on a load of a Cloud System.

• Due to the ever-increasing demand for resource usage and intrusion between the
applications accommodated on physical machines, it becomes crucial to design
and implement autonomic resource usage prediction in terms of load [1].

• When allocating several requests to a single VM, it may result in the over-
provisioning of resources. Due to the reason that number of requested resources
becomes more than the number of available resources, the performance features
of an application assigned to the VM will degrade. Hence, a prediction model
must be able to notify about the under-provisioning or over-provisioning situa-
tion of resources prior to the resource manager [4].

• As there are high inconsistencies in cloud performance metrics, the existing
load prediction models usually fail to offer appropriate accuracy. Therefore,
an intelligent ensembling technique combining prediction results from different
models can proficiently schedule cloud resources in this scenario.

The key focus of the proposed research work is to accomplish an autonomic ensemble
load prediction technique by exploring and comparing the prediction outcomes of
time-series approaches. The five time-series approaches are used as base predictors
for the ensemble, namely, Auto-Regressive Integrated Moving Averages (ARIMA),
Artificial Neural Networks (ANN), Support Vector Machines (SVM), Long Short-
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Term Memory (LSTM) and Exponential Smoothing (ES). These models have been
verified to carry out a prediction-based ensemble model for identifying over-loaded as
well as under-loaded hosts. The models with determined accuracy and most minor
error have been selected as the best among others and by deploying on Google and
PlanetLab traces on the Google Cloud platform.

1.1 Motivations and Contributions

• As the data size increases daily in Cloud, there is a need to focus on predicting
and managing the load on the system. For precise and intelligent load prediction,
there should be an accurate simulation of the correlation between historical and
future values [2]. In this paper, the problem of load prediction using CPU
and memory utilization is analyzed so that Cloud systems could handle under-
provisioning or over-provisioning situations of resources intelligently.

• There are several load prediction techniques used by numerous authors, such
as queuing theory, reinforcement learning, etc. Still, all these static techniques
cannot extrapolate patterns and encapsulate the time-based components. Hence,
there is a requisite to deploy time-series analysis techniques for efficient and
autonomic load prediction [5]. Modeling a framework for load prediction using
five time-series analysis techniques (ARIMA, ANN, SVM, LSTM and ES) and
estimating the CPU and memory usage more precisely has been done in this
paper.

• Though much research has been done on load prediction and time-series models,
an inclusive methodology must be used to combine different prediction models.
More profoundly, one prediction model would effectively predict some trends, but
the same would be imprecise in other trends due to its dynamic performance.
This challenges the ensemble models to consider such techniques, which results
in the best accuracy and productivity metrics [6]. Therefore, this research work
proposes an Ensemble Time-Series Approach for Load Prediction (ETSA-LP)
model using five base prediction models.

• Based on the objective of load prediction in Cloud applications, multiple QoS
metrics needs to be explored and validated to increase the system’s performance.
The essential QoS parameters, such as response time, CPU usage, memory usage,
prediction accuracy, etc., need to be analyzed, which can directly or indirectly
affect an application’s performance [7]. Execution of experiments has been per-
formed to assess the performance of the recommended ETSA-LP algorithm with
the traces of Google and PlanetLab datasets regarding the accuracy and error
benchmarks.

1.2 Paper Organization

The rest of the paper is organized as follows: Section 2 represents related work.
Section 3 briefly introduces preliminaries and evaluation metrics for validating the
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proposed approach. Section 4 describes the proposed load prediction framework
ETSA-LP and the algorithm used for ensembling. The dataset description, followed
by experimental results and analysis, is discussed in Section 5. Finally, Section 6
highlights future work and conclusion.

2 RELATED WORK

As we discussed above, recent growth in autonomic resource management has led
to increased concern in the proactive load prediction. Numerous techniques have
been recommended for load prediction using several innovative methods, metrics and
applications. In this section, a survey of the work related to ensembling approaches
for predicting load has been conducted.

Although many prior research works were performed using time-series forecast-
ing for load prediction, the foremost challenge of choosing a suitable and accurate
predictive model still needs to be investigated. One of the solutions to choosing
a wise model is to assess the existing predictions from previous forecasting mod-
els with current models. For instance, some authors proposed specific recurrent
machine-learning methods such as Long Short-Term Memory (LSTM) [5, 8]. Also,
LSTM models can give better results as compared to ARIMA, which are frequently
reliant on the self-made features demanding expert knowledge in the respective
field [9, 10, 11]. On the other hand, many non-linear models (e.g. ANN) were sug-
gested in the literature to overcome the challenge of linear statistical time-series
models [12, 13].

Cao et al. [2] proposed a novel dynamic ensemble model which consisted of two
layers – prediction optimization and an ensemble layer. The proposed approach im-
proved prediction accuracy by 4.81% and MREs have been enhanced by 7.37%. Be-
louch and Hadaj [14] compared bagging, boosting and stacking ensemble techniques
to increase the performance of intrusion detection systems. The base prediction
models used were decision tree (J48), Näıve Bayes (NB), Multi-Layer Perception
(MLP) and REPTree.

Chen and Wang [9] proposed a resource demand prediction method named
EEMD-ARIMA (Ensemble Empirical Model Decomposition-ARIMA) to accurately
predict the number of VMs and CPU cores used. Rahmanian et al. [15] proposed
an ensemble method based on Learning Automata (LA), combining the prediction
values of all base models according to their weights and performance. Similarly,
Ghobaei-Arani et al. [16] developed an algorithm using LA theory, correlation co-
efficient and ensemble method for better VM placement, less energy consumption
and SLA violations.

Kaur et al. [4] proposed an intelligent Regressive Ensemble Approach for Pre-
diction (REAP) using feature selection with Genetic Algorithm (GA) to predict
resource usage. Compared with existing models, the proposed approach improved
accuracy by 2% and reduced execution time by 16.2%. Nguyen et al. [10] devel-
oped an ensemble model for workload time-series prediction named as ESNemble
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(Echo State Network) which is based on Neural Networks (NN). Mauldin et al. [17]
performed an ensemble of deep learning techniques RNN (recurrent NN) along with
stacking and AdaBoost for IoT applications. Toumi et al. [18] proposed an RTSLPS
(Real Time Server Load Prediction System) technique based on incoming task clas-
sification and VM interference detection which used ensemble drift detectors.

Shaw et al. [12] proposed PIEA (Predictive Interference and Energy Aware)
ensemble approach to improve energy efficiency and performance for dynamic VM
placement consolidation. Kumar et al. [6] presented an ensemble workload forecast-
ing method using ELM (Extreme Learning Machine) and also proposed a new metric
RelMAE (Relative MAE) which resulted in 99.20% improvement. Tuli et al. [19]
proposed a novel framework HealthFog for automatic heart disease detection and
analysis. The ensemble deep learning NN and PCA have been used for data feature
extraction and reduction, resulting in improved prediction accuracy and Quality of
Service (QoS).

Some authors also proposed workload and resource estimation techniques other
than time-series analysis such as reinforcement learning (RL), queuing theory, thres-
hold-based, etc. In the case of threshold-based approaches, the setting of the thresh-
old value is a time-consuming process and the effectiveness of the rules under burst
workloads still need to be determined. Conversely, the main drawback of queu-
ing theory models is that they must be re-analyzed each time if there are changes
in an application or the workload [7]. Most of the RL approaches refer to hav-
ing ample state space means the number of states frequently increases with the
number of state variables, resulting in scalability problems [20]. Besides all these
approaches, time-series analysis techniques have been widely used to provide the
best results and optimal performance in dynamic load prediction for the Cloud en-
vironment.

Table 1 represents the existing works on ensemble load prediction techniques
underlining their quality metrics and outcomes. Table 2 highlights these current
works by comparing the type of technique, predicted resource (CPU or memory),
dataset (single or multiple) and performance metrics with the proposed approach.

Though much research has been done on load prediction and ensembled time-
series models, it still needs to be solved. Most of the proposed ensemble algorithms
were implemented using the combination of linear and non-linear prediction mod-
els [15]. An inclusive methodology to combine different types of prediction models is
still needed. More profoundly, one prediction model would be effective in predicting
some trends but the same would be imprecise in other trends, due to its dynamic
performance. Hence, most state-of-the-art ensemble approaches are productive in
a particular constituent model [27].

In this paper, an initiative has been taken to propose a more precise ensem-
ble prediction model ETSA-LP that integrates the prediction values of its primary
models by giving weight to each prediction. Specifically, this research compares
statistical, neural, and ensemble machine-learning models and proposes an ensem-
ble framework that combines the best forecasts of base models. The working of
the proposed ETSA-LP technique for predicting CPU and memory load on differ-
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Ref. TS EB CPU MEM SD MD ACC RMS ET

[14] ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓

[9] ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗

[11] ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗

[15] ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗

[4] ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓

[16] ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗

[10] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓

[17] ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗

[18] ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓

[8] ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗

[5] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗

[21] ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗

[12] ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗

[6] ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

[19] ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗

[22] ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗

[23] ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗

[24] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗

[25] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓

[26] ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

PA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TS : Time-Series techniques; EB : Ensembling; CPU : CPU load, MEM : Memory load, SD : Single
Dataset; MD : Multiple Datasets; ACC : Accuracy; RMS : Root Mean Square Error; ET : Execution Time;

PA: Proposed Approach

Table 2. Summary of the existing related work

ent datasets has been explored. Furthermore, the experimental results have been
presented, including comparing the proposed ensemble model predictions with the
existing models.

3 PRELIMINARIES

3.1 Load Prediction in Cloud

With the advancement of private and public cloud data centers, leasing virtual
machines to host applications is quite common. Usually, Cloud tenants do not
choose to pay for the resources they attain but are not consumed when the load is
light. This concern would be feasible only if the upcoming load can be predicted
earlier before validating Quality of Service (QoS) parameters [28]. Furthermore,
there can be a probability of performance degradation in case of heavy load [29].

Generally, Amazon EC2 service providers recommend resources on a VM basis
and allow VMs to be added, released, or migrated according to the load divergence.
So, it is enormously endorsed for cloud service providers to offer finer-grained auto-
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nomic facilities that dynamically attain resources according to an application request
and permit cost based on the VM size [30]. Also, there should be an accurate simula-
tion of the correlation between historical and future values for precise and intelligent
load prediction in Cloud Computing systems. Moreover, proper knowledge of back-
end workloads is necessary. Therefore, predicting over-utilized and under-utilized
hosts requires more sophisticated algorithms such as time-series analysis techniques
to predict the load proactively.

3.2 Time-Series Analysis

A time-series method organizes data points to be measured at constant time in-
tervals. This technique can be applied to regulate self-repetitive input workload
patterns or foresee forthcoming values [7]. For instance, every performance pa-
rameter such as average CPU load will be calculated at fixed intervals. Therefore,
time-series analysis is the most prominent resource usage and workload prediction
approach in Cloud Computing.

Efficient forecasting works with clean, time-stamped data and can identify gen-
uine trends and patterns in historical data [31]. But, this contrasts while working on
static data. Also, the choice of algorithms in time-series techniques differs entirely
from those in static. Most static machine learning algorithms like linear regression
do not have this capability as they generalize the training space for any new predic-
tion. In this context, machine learning-based models (such as SVM, LSTM, ANN,
ES) are attaining inclusive attention in forecasting load nowadays because of their
introspection aspect for multiple applications [32]. So, the primary focus of this
paper is to evaluate different statistical, neural, and ensemble techniques in their
ability to predict resource load. This paper uses the following five models as base
predictors:

• Auto-Regressive Integrated Moving Averages (ARIMA): This model defines the
prospect value of a variable that is supposed to be a linear function of the last
few observations and some random errors. This statistical model is popular and
could be a good baseline for comparing other models because of its simplicity [5].
However, one challenge in the ARIMA model is its pre-assumption of linearity in
the underlying time series, which may need to be improved in various practical
scenarios that contain non-linear time-series data.

• Artificial Neural Networks (ANN): ANN technique can solve many problems in
classification and long-term forecasting compared to linear statistical models.
This model belongs to the data-driven approach, where training depends on the
available data with little prior rationalization regarding relationships between
variables. ANNs are self-adaptive as they do not make assumptions about the
underlying time series’ statistical distributions and can naturally perform non-
linear modeling [28].

• Support Vector Machines (SVM): This model can categorize linear data accu-
rately and is also used for complex decision boundaries because of its lower
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complexity. This classic method is generally used in classification, regression,
etc. to solve complex real-world problems with data having multiple input fea-
tures.

• Long Short-Term Memory (LSTM): A type of neural network with the capability
to memorize the past values in the network is known as the LSTM model. LSTM
is a supervised deep learning method widely used in time series nowadays [26].

• Exponential Smoothing (ES): Exponential smoothing is an alternative linear
model dependent on fundamental historical observation values to make predic-
tions. It weighs so that recent observations are much heavier than old observa-
tions.

3.3 Ensembling Approach

Though much research has been done on load prediction and time-series models,
there is a need for an inclusive methodology to combine different types of predic-
tion models. More profoundly, one prediction model would effectively predict some
trends, but the same would be imprecise in other trends due to its dynamic per-
formance. In conventional ensembling techniques, the most often occurred, or the
average prediction from multiple models is chosen as the concluding prediction out-
come from the ensemble [12]

This research proposes a dynamic Ensemble Time-Series Approach for Load
Prediction (ETSA-LP) that combines the best prediction results from compound
models (ARIMA, ANN, SVM, LSTM and ES) to predict CPU and memory uti-
lization. A dynamic exponential weighting algorithm has been proposed, in which
a distinct model’s best prediction outcome selected from diverse models has been
dynamically weighted. A brief discussion of this proposed algorithm is given in the
upcoming sections.

3.4 Evaluation Metrics

The QoS attributes/metrics, such as response time, CPU load, throughput, accu-
racy, cost, etc., are usually part of an SLA and are frequently changing. These
parameters must be monitored according to user requirements to impose the agree-
ment. Numerous researchers have used different load prediction techniques in Cloud
to effectively implement their systems with specific metrics [7]. As there may be
many user requests in multiple service queues, existing load prediction systems need
more evaluation metrics for dynamic user interactions with the system. Therefore,
QoS parameters like CPU usage, memory usage, error rate, response time, and
so forth they can be added to test the system’s performance. In this paper, the
base predictors ARIMA, ANN, SVM, ES and LSTM have been compared with the
proposed ETSA-LP to assess the best performance using the following metrics.
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3.4.1 RMSE: Root Mean Square Error

For experimental evaluation, RMSE is calculated to measure the error in percentage.
RMSE is defined in Equation (1) where Xt is the actual output, xt is the predicted
output and n specifies the total number of observations in the dataset. The lower
value of RMSE validates to be a more precise prediction technique.

RMSE =

√
1

n

n∑
t=1

(xt −Xt)
2. (1)

3.4.2 R (Coefficient of Correlation) and r2 (Coefficient of Determination)

R is a measure of the goodness-of-fit, which its value falls within the range [0, 1] and
is generally applied to the linear regression models [6]. r2 is a statistical measure to
denote how close the data is fitted on the regression line. It is also defined as the
coefficient of determination or the coefficient of multiple determination for multiple
regression. It is the percentage of the response variable variation that a linear model
represents. Specifically, the higher the r2, the better the model fits the data. The
value of r2 is always between 0 and 100%:

• 0% means that the model describes none of the variability of the response data
around its mean.

• 100% means that the model describes all the variability of the response data
around its mean.

3.4.3 Accuracy

Accuracy is the degree to which the outcomes of an actual calculation or mea-
surement are grouped around the accurate value. The mathematical notation to
compute accuracy is given in Equation (2):

Accuracy =
tp + tn

tp + fp + tn + fn
∗ 100. (2)

Here, tp, tn, fp and fn denote the number of true positives, true negatives, false
positives and false negatives, respectively.

3.4.4 Total Execution Time

Total execution time is the overall time a process occupies to finish execution. The
formula to calculate total execution time is indicated in Equation (3):

TotalTime = te − ts. (3)

Here, te denotes the finish time for executing data and ts is the initial time when
execution starts actually.
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4 PROPOSED ENSEMBLE APPROACH: ETSA-LP

The main components of the proposed ETSA-LP framework are depicted in Figure 1.
This consists of a load balancer, load predictor module, resource manager module,
data storage module, and Cloud infrastructure in the system. Cloud tenants use
different resources or virtual machines to deploy various applications and services
on Cloud and these resource utilizations are monitored and profiled by the resource
manager. It will also gather efficient metrics to check resources’ past and present
state. The required metrics (CPU and memory usage) and logs are transferred to
the workload database and the historical information. Also, the historical workload
information is used to train the prediction model. Load predictor allocates suitable
time-series forecasting techniques for the prediction of workload. Moreover, it is
responsible for combining the forecasts of base models and applying an ensemble
algorithm to find optimal results. The resource manager also dynamically manages
the resource allocation according to user request changes. It estimates the number
of resources according to the status of the resource monitor. It also dynamically
manages the resource allocation according to user request changes and publishes
load-balancing instructions to the load predictor. This load-balancing module con-
trols load among various VMs deployed on the Cloud environment.

The methodology used for the proposed load prediction framework is depicted
in Figure 2. The first step is to gather logs of different resources Cloud users use as
a dataset. Then this dataset was checked and analyzed to determine whether any
pre-processing or cleaning was required. The next step is to apply time-series fore-
casting techniques on the given dataset to compare the accuracy of different models.
The time-series forecasting techniques used in this proposed work are ARIMA, NN,
SVM, LSTM and ES. The predictions from these base models have been ensem-
bled for efficient and dynamic load prediction using the proposed ETSA-LP. Also,
a mathematical formulation is derived for CPU and memory utilization based on
different parameters. Further, the effectiveness of the proposed approach is vali-
dated by testing on Google Cloud and the results have been compared with existing
models. The list of notations used in this approach is presented in Table 3.

4.1 ETSA-LP: Exponential Weighted Algorithm

The working of the exponentially weighted algorithm used for the ensemble in the
proposed ETSA-LP is presented in Algorithm 1. The algorithm starts with a given
set of N predictions from diverse models on the training data and assigns equal
weight to them (line 1). In the second step, the weight of each model is assumed
as 1/n, which verifies that the sum of all model weights is equal to 1 at each step
(line 2). Then, for each training sample (e.g. 75 training samples in the case of
Google traces), the squared error between each model’s prediction and actual data
is calculated i.e. RMSE is calculated for different model predictions (line 3). After
each training sample, each model’s weights are revised using the squared error for
other model predictions, where x is assumed as a variable-rate parameter (line 4).
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Figure 1. Proposed ensemble load prediction framework: ETSA-LP

Figure 2. Methodology for the proposed ETSA-LP approach

Finally, the weights of each model’s predictions are normalized by dividing them by
the total sum of the weights across all models (line 5). The normalization of weights
is performed to bring all weights between 0 and 1. This process repeats until all
training samples are covered. The different values for x are defined to obtain the
optimal weight corresponding to each model, for instance, 0.0 to 1.0. These weights
are then selected to obtain the minimum value for RMSE and maximum value
for R2.

As discussed above, the different values for the variable-rate parameter x are
defined to obtain the optimal weight corresponding to each model. Therefore, 11 dif-
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Component Description

n Set of predictions
1n Weight assigned to each model
T Training samples
M Model used
W Weight of each model (updated)
S Sum of models weights
x Variable-rate parameter
P Prediction outcomes of each model
R RMSE values
N No. of nodes
JN No. of jobs
VN No. of VMs
Ci Clock cycles per instruction
IC Instruction count
CR Clock rate
Vn No. of VMs running on N th node
totalCUN Total CPU utilization
avgCUN Average CPU utilization
totalMUN Total memory utilization
avgMUN Average memory utilization

Table 3. Notations used in the article

ferent values of x parameter are tried in this ensemble algorithm. For instance, with
x = 0.3, the ensemble results were obtained with corresponding weights: ARIMA
(0.313), SVM (0.332), ANN (0.329), LSTM (0.300) and ES (0.335). Similarly, when
the value of x is taken as 0.8, the ensemble results were obtained with these weights:
ARIMA (0.011), SVM (0.231), ANN (0.534), LSTM (0.768) and ES (0.422). The

Algorithm 1 ETSA-LP: Exponential Weighted Algorithm

Require: Mi, T, P
T
Mi

1. For each model M,

W 1
Mi
← 1

n
,Mi = 1 . . . nModels

2. Sum of all models be equal to 1

S =
∑n

i=1(W
1
Mi

== 1)

3. For i=1 to N, Calculate RMSE of models

R(P T
Mi

Yt) = (P T
Mi
− Yt)

2

4. Update weights by adding RMSE

W R
Mi

+ 1← W R
Mi
∗ xR(P T

Mi
Yt)

5. Normalize the weight of each model

W R
Mi

+ 1←
W R

Mi
+1∑n

i=1 W
1

Mi
+1
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overall results and comparison of the proposed ETSA-LP approach based on this
ensemble algorithm are discussed in the upcoming sections.

4.2 Dynamic Resource Prediction Algorithm Using CPU
and Memory Utilization

The exponential weighted algorithm for ensemble gives the ideal combination of
machine learning models and improves the prediction accuracy. This ensemble model
is employed on the Google Traces and PlanetLab datasets for prediction. The final
output of Algorithm 1 is used as an input parameter in Algorithm 2, which is further
used for dynamically predicting CPU and memory utilization. The first step is to
initialize the value of the number of jobs and the number of VMs as 1. Then, for
each Kth job running on the N th node on M th VM, CPU and memory utilization
are calculated as shown in step 2. Further, the total CPU utilization is predicted
by the formula given below:

totalCUN =
Ci ∗ IC
CR

. (4)

In Equation (4), Ci refers to the clock cycles per instruction, IC is the instruction
count and CR denotes the clock rate. By taking this total CPU utilization into
account, the average CPU utilization is calculated as follows:

avgCUN =

∑VN

M=1

∑JN
K=1CUx

totalCUN

∗ 100. (5)

In Equation (5), avgCUN is calculated at any given time for N th node, consid-
ering VN as the number of VMs running on the N th node and JN as the number
of jobs assigned to VN VMs. CUx is the CPU utilization of K jobs running on M
VMs on the N th node. Similarly, the average memory utilization is calculated by
the formula:

avgMUN =

∑VN

M=1

∑JN
K=1MUx

totalMUN

∗ 100. (6)

At any given time, for the N th node, the average memory utilization avgMUN

can be given as shown in Equation (6), where VN is the number of VMs running
on the N th node and JN is the number of jobs assigned to VN VMs. MUx is the
memory utilization of K jobs running on M VMs on the N th node and totalMUN

is the total memory utilization for the N th node.

5 EXPERIMENTS AND EVALUATIONS

5.1 Dataset Description

Due to great variabilities in Cloud Computing workloads, it is nearly 20 times noisier
than Grid Computing workloads. Therefore, for effective validation of our proposed
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Algorithm 2 Dynamic Resource Prediction Algorithm (CPU and Memory)

Require: N , M , J , K, Ci, IC, CR

1. Intialize M = 1, J = 1

2. For each Kth job running on N th node on M th VM,
Calculate CPU and Memory utilization

CUx,MUx;x = NMK

3. For each N th node on M th VM,
Calculate total CPU utilization

totalCUN = Ci∗IC
CR

4. Calculate Average CPU utilization

avgCUN =
∑VN

M=1

∑JN
K=1 CUx

totalCUN
∗ 100

5. Calculate Average memory utilization

avgMUN =
∑VN

M=1

∑JN
K=1 MUx

totalMUN
∗ 100

6. Return avgCUN , avgMUN

approach ETSA-LP, two real cloud workload traces from Google and PlanetLab
have been used as baseline benchmarks. Google traces includes the data of 29 days
collected from Google’s cluster cell. This workload is tested every 5 minutes and
contains 75 samples inclusive of 9 218 jobs and 176 580 tasks [33]. In the experiments,
the resource usage proportion comprises the traces of CPU and memory demands of
VM instances hosted on the cluster, as shown in Table 4. All these measurements
are regulated between 0 and 1 by the relative maximum values for which the machine
has been furnished.

On the other hand, PlanetLab data traces cover the mean CPU utilization of
more than 1 000 VMs, as shown in Table 5. These VMs are sampled over a 5-minute
interval on 10 different days from 03/03/2011 to 20/04/2011. During the simula-
tions, each VM is randomly assigned a workload trace from one of the VMs from the
corresponding time. The workload makes initiating VMs with a real configuration
possible, while CPU utilization of initiated VMs according to the PlanetLab dataset
changes over time, similar to real VMs [34].

5.2 Experimental Setup

For proper validation and experimentation, it is always recommended to use real
workflow traces. Google offers a Cloud Platform (GCP) suite of Cloud Comput-
ing services deployed on the same infrastructure used by Google Search, Gmail and
YouTube. Besides the management tools, GCP offers integrated and innovative
services such as computing, data storage and analytics and machine learning. In
this research work, four heterogeneous VMs are created for parallel execution and
validating the performance of ETSA-LP in a cloud environment, as shown in Ta-
ble 6. All four VMs have diverse configurations to work in a distributed manner
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Attribute Name Datatype

start time integer
end time integer
job ID integer
task index integer
machine ID integer
CPU rate float
canonical memory usage float
assigned memory usage float
unmapped page cache float
total page cache float

Attribute Name Datatype

max memory usage float
disk IO time float
local diskspace usage float
maximum CPU rate float
maximum disk IO time float
cycles per instruction float
memory access per instruction float
sample portion float
aggregation type boolean
sampled CPU usage float

Table 4. Google Cluster: Workload information (CPU and memory traces)

for executing applications. As observed practically and depicted in Figure 3, the
average load changes at different time intervals based on the accomplished pro-
cess.

The experimental evaluation of the proposed ETSA-LP prediction approach is
highlighted in this section. As we discussed earlier, thorough testing has been done

Date No. of VMs Mean [%] SD [%]

03/03/2011 1 052 12.31 17.09
06/03/2011 898 11.44 12.83
09/03/2011 1 061 10.70 15.57
22/03/2011 1 516 9.26 12.78
25/03/2011 1 078 10.56 14.14
03/04/2011 1 463 12.39 16.55
09/04/2011 1 358 11.12 15.09
11/04/2011 1 233 11.56 15.07
12/04/2011 1 054 11.54 15.15
20/04/2011 1 033 10.43 15.21

Table 5. PlanetLab: Workload information
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to assess the efficiency of the proposed approach on Google cluster and PlanetLab
traces.

VMs VM Name Load Type Avg Load [%] SD [%]

VM1 Gcpvm1 Low 38.31 3.32
VM2 Gcpvm2 Low 35.45 12.78
VM3 Gcpvm3 High 78.71 6.90
VM4 Gcpvm4 High 72.56 14.55

Table 6. Selected VMs and their average load

a) VM1 b) VM2

c) VM3 d) VM4

Figure 3. Actual and predicted load of different VMs

5.3 Evaluation of Base Models and ETSA-LP

Firstly, the performance of five machine learning base models, statistical ARIMA,
ANN, SVM, LSTM and ES is dignified and then with their resulting best predic-
tions, the ensemble model is evaluated. Figure 4 depicts the comparative results
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of the five base models tested on the Google cluster for CPU utilization. Similarly,
Figure 5 represents the results of base models and the proposed model tested on
the Google cluster for memory utilization. On the other hand, the experimentation
results conducted using PlanetLab traces for CPU utilization are highlighted in Fig-
ure 6. Likewise, memory utilization metrics tested on PlanetLab traces are shown
in Figure 7.

As per the experiments, it has been observed that an individual model offers
a different performance concerning any evaluation metrics due to its dependency
on the tested dataset type. If there is a change in the dataset, the values of the
performance metrics also vary. For instance, when applied to the Google traces
dataset, SVM beats the other four time-series-based models in accuracy (91.34%).
But, it performs less with accuracy (78.70%) for the PlanetLab dataset. Therefore,
these base time-series models are combined based on the proposed ensemble algo-
rithm discussed in Section 4.1 to boost the performance. The proposed ensemble
model ETSA-LP gives the best accuracy (97.45%) among all other base models
with a total execution time 0.39 ms for the Google traces dataset. Similarly, in the
PlanetLab dataset, ETSA-LP gives superior accuracy (95.78%) among the existing
models with a total execution time 0.40 ms. The overall accuracy is improved by
approximately 3% and execution time is reduced by 12.2%. Also, the RMSE value
for ES is maximum (2.82%) whereas ETSA-LP has a minimum error value (0.39%).
Hence, it is substantiated that the proposed ETSA-LP ensemble approach performs
better than the existing individual time-series-based models.

Figure 4. Performance metrics of different models on Google traces (CPU)

5.4 Average CPU and Memory Utilization

Figure 8 a) illustrates a VM’s predicted CPU and memory usage during training
models on the Google traces and Figure 8 b) corresponds to the utilization deployed
on the PlanetLab dataset. In this proposed work, an effort has been made to as-
sess all possible effects of load prediction with low or high CPU and memory usage
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Figure 5. Performance metrics of different models on Google traces (Memory)

Figure 6. Performance metrics of different models on PlanetLab (CPU)

Figure 7. Performance metrics of different models on PlanetLab (Memory)
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utilization factors that can directly or indirectly affect the performance of the recom-
mended ensemble approach For instance, in the case of Google traces, the predicted
CPU usage of VM1 (31%) is lower than its memory usage (39%). Similarly, the
predicted CPU usage of VM1 (42%) is higher than its memory usage (37%) in the
PlanetLab dataset. The results also vary as the time intervals change, as shown in
Figure 9. With the difference of five minutes interval, the CPU and memory usage
goes high or low according to the number of user requests. The results suggest that
with prior knowledge of resources to be utilized for an application, the issue of an
under-provisioned host/VM can be resolved and resource-task mapping can be done
efficiently.

a) Google traces b) PlanetLab

Figure 8. Predicted CPU and Memory usage

Figure 9. Average CPU and Memory utilization of VMs at different time intervals

5.5 RMSE and Accuracy

Figure 10 compares the mean error RMSE of different VMs at different time in-
tervals. Similarly, the accuracy comparison of other models with the proposed is
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demonstrated in Figure 11. The proposed ensemble model ETSA-LP gives the best
and higher accuracy among all other base models for all four VMs. The overall
accuracy is improved and execution time is also reduced. Also, the RMSE value
for ETSA-LP has a minimum error value in comparison with other base models for
all VMs. The results recommend that if the load can be effectively expected with
former awareness of resource utilization, the over-utilization or under-utilization of
resources can be either ceased or handled commendably.

a) VM1 b) VM2

c) VM3 d) VM4

Figure 10. RMSE comparison of different VMs at different time intervals

5.6 Comparison with Existing Approaches

The comparison of the proposed approach ETSA-LP with the existing approaches,
namely, LA (Learning Automata), ELM (Extreme Learning Machine) and SVR
(Support Vector Regression) is shown in Figure 12, in terms of RMSE and accuracy.
For instance, in Figure 12 a), ELM has the highest error rate, whereas the proposed
ETSA-LP gives a minimum error value compared to existing approaches. Moreover,
ETSA-LP outperforms existing models with the highest accuracy for all the VMs,
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a) VM1 b) VM2

c) VM3 d) VM4

Figure 11. Accuracy comparison of different VMs at different time intervals

as depicted in Figure 12 b). As can be seen, the proposed ensemble approach has
less error rate and the best accuracy on all four VMs as compared to the existing
ensemble approaches.

6 CONCLUSION AND FUTURE WORK

The primary objective of this research was to compare the performance of existing
statistical models with a novel ensemble model for forecasting load using time-series
analysis techniques. Another objective of this paper was to systematically evaluate
the CPU and memory utilization with dynamic load prediction as a part of the
ensemble model. Overall, the ensemble model ETSA-LP is expected to perform
better compared to the existing models for the following reasons:

• First, the best performance in terms of error was found from the ETSA-LP due to
the reason that the ARIMA and other models are perhaps not able to capture
the non-linearities present in the time-series data. However, another reason
could be that the ANN possesses several weights and parameters, whereas the



88 S. Verma, A. Bala

a) RMSE b) Accuracy

Figure 12. Comparison of existing and proposed approach

ARIMA model includes only three parameters. Therefore, the novel ensemble
model ETSA-LP performed better as it gave more weight to the accurate model
predictions than the less accurate ones and dynamically adjusted its weights.

• Another likely reason behind achieving a substantial boost in performance thro-
ugh proposed ETSA-LP model is the design of its training procedures. After
getting the best model configurations from individual models, we trained all
unique models several times to obtain the best value of their objective function.
The ensemble model dynamically adjusted its weights for calibrating the models
using a proposed exponential-weighted algorithm.

Although the proposed ensemble approach performs relatively better than other
statistical and neural approaches and is reproducible, this research work has a few
implications for future research and data analytics which are as follows:

• It may be expensive to train neural networks and ensemble models. Therefore,
it may require model retraining at regular intervals, primarily when more recent
data are generated over time.

• Most of the existing load prediction schemes ignore network resources and band-
width, leaving an opportunity to improve the adequate bandwidth of networks
on clusters running parallel applications [35]. For this reason, the proposed load
prediction technique could also be deployed to enhance performance and uti-
lization in cluster environments regarding network, CPU, disk and memory I/O
resources.

• In addition to weighted ensembles, bagging or bootstrap aggregating also exists,
which makes decisions based on the aggregated results of the sampled decision
trees [5]. Still, another possibility for future research is to extend univariate
time-series forecasting to multi-variate time-series forecasting.

• Recently, a new data-driven paradigm, and termed digital twin (DT) has emerg-
ed receiving increasing attention in Cloud. The DT aims to perform continuous
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monitoring and proactive maintenance through continuous data from physical
to virtual entities [36]. Therefore, the proposed approach can be simulated
using the real-time DT, increasing reliability, and maintenance and extending
its service life.

• At last, but not least, this effective load prediction strategy can be deployed
in autonomic scaling. Auto-Scaling is a technique that automatically scales up
and down the resources according to the predicted load [7]. Also, it will ensure
lower operational costs in case of resource management resolutions in Cloud
Computing environments.
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