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Abstract. A key problem domain inside Robotic Process Automation is the auto-
matic discovery of workflow process schemes. Considering current process mining
technologies, graph-based approaches dominate the industry. On the other hand,
the conventional methods suffer from low time efficiency and varying accuracy.
Machine learning-based methods can provide better efficiency, but they have signif-
icant limitations considering schema flexibility. The paper presents a novel neural
network-based schema induction model for the discovery of event patterns contain-
ing parallel and optional sequences of different actors. This model can process more
complex event graphs and situations than the conventional methods. The performed
analysis and test results show the unique power of this approach in process schema
mining.

Keywords: Event graph mining, neural network classifier, process mining, sequence
prediction

1 INTRODUCTION

Robotic process automation (RPA) is one of the key emerging technologies to au-
tomate routine business processes using software tools. RPA systems are used for
increasing efficiency and consistency [1] by replacing human resources with software
robots. Based on the investment cost-profit relationship, RPA is usually applied
to processes that are frequent enough to discover statistical rules but infrequent or
irregular for traditional process automation [2]. One of the key components of RPA
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systems is the discovery of possible frequent event sequence scenarios which can
also be used in many different problem domains of data mining like computational
linguistics or biology [3].

The application of frequent pattern mining algorithms on event logs generates
event sequence patterns that are characteristic of the investigated business processes.
Traditional pattern mining algorithms, however, suffer greatly from longer running
times and low accuracy when applied on large datasets [4]. Regarding the analysis
of large or irregular event logs, the application of neural network tools is the leading
approach. For the prediction of sequences, the family of recurrent neural networks
dominates over other neural network architectures. Based on recent research ex-
periments, the long short-term memory (LSTM) and gated recurrent unit (GRU)
recurrent networks provide the best accuracy on sequences [5]. Current works usu-
ally focus on the application of special attention modules in the network which can
be used to enhance long-term dependencies in the training sequences.

Considering the current event sequence mining algorithms, the output of the
methods is a single sequence, containing the items with the highest probability at
each prediction step. To uncover more possible alternative sequences in the event
graph, the baseline model is extended with a beam-search method. The beam
search algorithm selects several good items as the next event instead of the selection
of a single best event. The studies in recent years show that beam search techniques
usually provide much better accuracy [6]. The beam search method is used in [7]
to generate a probability tree that describes the network of alternative events based
on a given input (see Figure 1).

Figure 1. Sample probability event tree [7]

The generated probability event tree can provide more information than con-
ventional event sequences, but real event graphs may have much more complex
structures. In many application areas, the event graph pattern schema may contain
loops or parallel sequences of different actors. Based on our literature analysis, no
neural network-based sequence mining algorithm exists that can cover these complex
schema structures.

The main goal of this paper is to present a novel neural network model for the
discovery of event patterns containing parallel sequences of different actors. This
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model can process more complex event graphs and situations than the methods based
on event tree structures. This can be the case when considering a collaboration sce-
nario, where different processes run parallel and these processes are synchronized
to start or to finish the specific activities. All the current workflow modeling lan-
guages apply different synchronization events including fork, join, or parallel split
when a single thread of execution is split into two or more branches. Thus, we
argue that efficient event pattern mining algorithms should be able to discover not
only sequences and OR-based hierarchies, but more complex structures like parallel
sequences. As the performed test results show, the proposed network architecture
with the proposed training and prediction methods can cover parallelism in the
investigated event graph.

The paper starts with an overview of the related concepts and results in process
modeling and process mining in Section 2. Section 3 presents the description and
methodology of the proposed neural network model for mining parallel sequences.
The technical details of the neural network architecture and that of the training
and prediction processes are presented in Section 4. The description of the test
framework, including the generation of training data, together with the test results
can be found in Section 5. Finally, Section 6 summarizes the key features and the
benefits of the proposed method.

2 OVERVIEW OF PROCESS MINING METHODS

2.1 Process Modeling

Organizations have processes that define the way they operate. These workflows are
composed of a series of tasks which employees perform regularly to achieve specific
goals. Formalizing these processes is the key factor of efficiency and replicability.

As a first approach, conceptual process models are used to visually represent
the actions that capture, manipulate, store, and distribute data within business
processes. These have in common that processes are described in terms of activities
and the ordering of activities is modeled by causal dependencies. It is represented
with a graph built up of nodes and directed edges between the nodes indicating the
chronological order of the process flow. In addition, a process model may also de-
scribe temporal properties, or specify the creation and use of data to model decisions
and prescribe the way that resources interact with the process [8].

The Workflow Patterns Initiative [9, 10] conducted a systematic analysis of the
constructs used by the existing process modeling notations and workflow languages.
As a result, a large collection of patterns was identified. These patterns cover all
workflow perspectives, for example, there are control-flow patterns, data patterns,
or resource patterns. Our investigations focus on the control-flow perspective [11],
where 43 patterns were identified and classified into 8 classes. The basic control
flow patterns are similar to those proposed by the Workflow Management Coali-
tion [12]:
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• In sequential routing, a task in a process is enabled after the completion of
a preceding task in the same process.

• Branch and merge (XOR, or exclusive choice with simple merge) corresponds to
deciding on which path to choose from several branches. In conditional routing,
when the incoming branch is enabled, the thread of control is immediately passed
to exactly one of the outgoing branches. When merging the flow routes, the
activated incoming branch should be completed before the thread of control is
passed forward.

• Fork and join (AND, or parallel split with synchronization) is applied when
a single thread of execution is split into two or more branches which are triggered
concurrently, and synchronized at some future time.

• Split and join (OR, or multi-choice with synchronizing merge) corresponds to
activating one or more paths among the outgoing control flows. When merging
the flow routes, all the activated incoming branches should be completed before
the thread of control is passed forward.

The models mentioned above have special notations for the elements that affect
the control flow. These elements interconnect activities in the conceptual process
model graph, but there is no sign of them in the event log, which is the storage
format of the events which happened in the information system [8]. For this reason,
a special representation is needed for process mining algorithms.

One approach is using Causal Nets [13]. In these graphs, nodes are defined by
a three-element tuple. The first element is the activity represented by the node, the
second element is a list of this node’s possible input bindings and the third element
is a list of the node’s possible output bindings.

Another approach is the use of Process Trees [14], which were designed to solve
the deadlock and livelock problems of graph-based process notations. Process Trees
represent block-structured models with a hierarchical process notation, where the
(inner) nodes are operators, such as sequence and choice, and the leaves are activi-
ties. The leaf nodes in a process tree correspond to event nodes, while the non-leaf
nodes are operator nodes describing the execution order of the events. The model
provides the following operator nodes:

• event sequence (→),

• parallel execution (AND) (∧),
• non-exclusive choice (OR) (∨),
• exclusive choice (XOR) (×), and

• event loop (⃝).

A sample process tree is presented in Figure 2. One limitation of the process tree
model is that not every event graph can be converted into an equivalent tree struc-
ture.
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a) Sample event graph b) Sample process tree

Figure 2. Schema representation formats [15]

2.2 Process Mining

In the information systems, activities that have been executed sequentially, are
stored in log files. An event log is basically a structured table where each record
corresponds to an event, which refers to an activity and is related to a particular case
of a process. The columns include all the data that can be automatically captured
during the execution of an activity. The most important attribute of an activity
is its timestamp, as this is the basis for ordering the events. The standard format
for storing event logs is XES (eXtensible Event Stream) [16]. In XES logs, events
are grouped under process instances, called traces. In multi-actor and distributed
systems, however, various objects interact in a process and one event may involve
a mixture of objects, which means that the event cannot be classified into a single
process instance. To tackle this problem, an object-centric event log format (OCEL)
was proposed [17].

Event logs can be used to extract knowledge about real processes. In [8], three
types of process mining tasks are studied:

1. process discovery, which produces a process model from an event log without
using any apriori information;

2. conformance checking, where a process model is compared with an event log;
and

3. process enhancement, where the comparison results in changing the original
model.

Finding frequent patterns in event sequences is also of interest in many domains.
For example, Laxman et al. developed an algorithm for sequence prediction over
long categorical event streams [18]. Karoly and Abonyi [19] and Weiss [20] propose
methods to extract temporal patterns in industrial alarm management systems.
Analyzing study paths for the prediction of student dropout [21] and identifying
efficient learning patterns in e-learning environments [22, 23] are key concepts in
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educational data mining. In these examples, frequent patterns are selected based
on their utility. In [24], the authors argue that also the cost perspective should be
taken into account when mining event sequences.

The drawbacks of the traditional frequent pattern mining solutions come to the
surface when dealing with massive datasets [25]. The algorithms have problems
with running time and accuracy [4], and their output data is difficult to interpret
and handle [26]. To efficiently mine frequent patterns, a tree-based representation is
proved to be more compact and practically more usable [27]. For this purpose, Lin
et al. proposed the FUSP-tree structure [28], which gave rise to numerous variations
of incremental tree-based pattern mining algorithms [29, 30, 31, 32].

The incremental approaches in sequential pattern mining derive patterns recur-
sively. Chen [33] introduces a directed acyclic graph representation, which allows for
pattern growth along both ends of the detected patterns, thereby producing fewer
levels of recursion and faster pattern growth. Patel and Patel [34] combines a graph-
based approach with clustering of patterns to avoid the recursive reconstruction of
intermediate trees. Singh et al. [35] use a graph-based approach to extract frequent
sequential web access patterns, while Dong et al. [36] present a new weighted graph
structure and a method to find variable-length sequential patterns.

Finding the structure in a sequence data can also be considered a grammatical
inference problem and hence can be modeled by finite state automata. In [37], the
navigation patterns of web users are captured, where a navigation session is mod-
eled as a hypertext probabilistic grammar, which is a restricted form of probabilistic
regular grammar. Hingston [38] also uses finite state automaton for sequence min-
ing, but in this case, the resulting grammar is stochastic. Jacquemont et al. [39]
use a generalized representation of the original sequences in the form of probabilistic
automata, and make efforts in controlling the number of false discoveries by integrat-
ing statistical constraints. A highly investigated domain recently is the automated
inference of formal specifications of software systems, and many researchers have
proposed various FSA-based approaches [40, 41, 42].

Deep learning-based techniques are specifically designed for processing massive
datasets, and recurrent neural networks (RNNs) were the first to be widely used
in sequential data mining. However, traditional RNNs consisting of sigma or tanh
cells are not suitable for learning the relevant information of input data when the
input gap is large. By introducing gate functions into the cell structure, long short-
term memory (LSTM) networks can handle the problem of long-term dependen-
cies [43, 44]. Jamshed et al. [45] created a combination of convolutional neural
network (CNN) and long short-term memory (LSTM) to infer customer behavior
and purchasing patterns in terms of time. CNN is used to reveal the frequent item-
sets, and LSTM is used to identify the time interval among these itemsets. LSTM
also proved to outperform other prediction models in price prediction [46]. The
sequence-to-sequence learning problem was first addressed by Sutskever et al. [47]
when using LSTM to improve machine translation.

The seq2seq method has had several applications since then. Karatzoglou et
al. [48] use it to predict future human movement patterns to improve mobile location-
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based services. Rebane and Karlsson [49] compare the method to traditional mod-
els in cryptocurrency prediction. Baumel et al. [50] apply the method to query-
focused summarization. Wu et al. [51] integrate IoT data logs and analyze them
with a seq2seq-based method to support the management of IoT systems.

Abonyi et al. [7] expanded the seq2seq algorithm so that its output is a prob-
ability tree, that describes the predicted alternative courses of events, instead of
a single, most probable sequence. As trees do not allow for modeling complicated
structures, like parallelism and conditional forking, our NN-based approach aims to
produce event graphs that contain complex control flow elements as well.

3 MINING OF EVENT GRAPHS WITH PARALLEL SEQUENCES

In the process tree modeling approach, parallel execution (AND node) relates to the
case when the ordering of the component events is arbitrary, there is no adjacency
dependency among the elements. For example, the event sequences

(a, b, c) (b, c, a) (a, c, b) (b, a, c) (c, a, b) (c, b, a)

can be mapped to this schema:
∧(a, b, c).

In our investigation, we use a slightly different approach. Parallelism denotes
parallel workflows of different actors and resources, and the split and join control
nodes denote an artifact-level dependency among the different branches. For ex-
ample, we consider a workflow to produce a mobile phone. In this process, the
production of the different components can be executed in a parallel way. A syn-
chronization join node denotes the case when the next assembly step requires the
availability of all components produced in the preceding steps. These control nodes
can be automatically discovered if the event log contains an artifact attribute, too.
The artifact attribute identifies the target, i.e. the object of the given action. Using
this parameter we can discover the artifact level dependency between the different
actions of the event log.

Another consideration supporting our decision to focus on this kind of paral-
lelism instead of the conventional approach is that our goal is to discover valid
execution paths for the automation of the workflow process. In this sense, having
a set of equivalent paths, only one valid path is enough to find, it is not necessary
to discover all valid execution paths.

Table 1 shows a sample event log related to this approach. Based on the event
log, we can discover one join-split synchronization node, where the incoming se-
quence relates to actor U1, while the outgoing sequences are executed by U2 and
U4.

In this paper, the investigation focuses on discovering and predicting complex
event-graph structures, including among others parallelism and conditional forking,
using neural network tools. The method provides a unique, novel approach, as it
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Trace Actor Action Time Input Output

1 U1 A1 01.45 O1 O2

1 U1 A3 02.10 O2 O2

1 U2 A5 02.15 O2 O4, O5

1 U3 A8 02.18 – O3

1 U3 A15 02.18 O3 O3

1 U4 A15 02.31 O2 O8

1 U4 A15 02.45 O8 O8

Table 1. Sample event log with artifact identification

is suitable for managing also complex schema structures, unlike the conventional
approaches.

3.1 Discovery of the Synchronization Nodes

In the investigated model, the events of the event logs are identified by the following
parameters:

• trace id;

• action (event type);

• event time;

• actor, resource;

• input artifacts;

• output artifacts.

Besides the actor events, the extended input event graph for the training process
contains also synchronization control nodes which describe the adjacency relation-
ship among the event sequences. We assume that every control node has an input
set of event sequences and an output set of event sequences. Similarly to Petri-nets,
the join control node is triggered only when all of the input sequences are finished.
If the transition is triggered, all output sequences will start the execution.

In the preprocessing phase of the proposed method, the engine determines the
related synchronization nodes first. Node mining is based on the following consid-
erations:

• Event nodes are processed in temporal order, and the current event is denoted
by ei.

• We take the set of output artifacts of ei and store them in outi.

• We determine the set of adjacent events Ej = {ej} where the input artifacts
correspond to some elements of outi, and there is no other intermediate event
processing these artifacts.
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• If the actors of the matching ei and ej pair are different actors, a synchronization
node es is needed between them.

• We add actor of ei (ai) to the input-actors of es and the output actor set of es
is extended with aj.

• If we find an actor not present in the actor set of es and being active at es with
an artifact-level dependency with an event in the output-actor list of es, then it
will be included in the input-actor set of es. A similar method can be used to
extend the output-actor list of es.

• The previous two steps are repeated until we get a closure of the input-output
artifact relationship at es.

Having the input event log, the preprocessing module discovers the related join-
split synchronization nodes. A synchronization node is given with the following
attributes:

• trace id;

• event type;

• event time;

• input actors;

• output actors.

Example 1. We assume that an event vector contains the event ID, the action ID,
the actor ID, and the time point when the event starts. Let us take the following
event log:

EventT(1,1,’A’,1)

EventT(2,2,’A’,3)

EventT(3,3,’A’,5)

EventT(4,4,’B’,10)

EventT(5,5,’C’,11)

EventT(6,6,’B’,15)

EventT(7,7,’C’,18)

EventT(8,8,’D’,21)

EventT(9,9,’D’,31)

The related action repository contains the following entries:

ActionT(’1’,{},{’o1’})

ActionT(’2’,{’o1’},{’o1’})

ActionT(’3’,{’o1’},{’o2’})

ActionT(’4’,{’o2’},{’o3’})

ActionT(’5’,{’o2’},{’o4’})

ActionT(’6’,{’o3’},{’o5’})

ActionT(’7’,{’o4’},{’o6’})
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ActionT(’8’,{’o5’,’o6’},{’o7’})

ActionT(’9’,{’o7’},{’o8’})

In the description, the first argument is the action ID, the second is the set of
incoming artifacts, and the third parameter denotes the set of outgoing artifacts.

The output of the algorithm for synchronization node discovery generates two
nodes:

{3} {4, 5} : 5 10

{6, 7} {8} : 18 21

The first synchronization node is linked to input event 3 and output events 4
and 5. The time window is the interval between 5 and 10. At the second synchro-
nization node, there are two incoming events (6,7) and one outgoing event (8). The
corresponding time window (18,21). The corresponding event graph is presented in
Figure 3.

Figure 3. Generated event graph for Example 1

Definition 1 (Event graph structure). An event graph is defined as

σ = (Nσ,→σ),

where

• n ∈ W × A is an event where A(n) denotes the actor of the event and T (n)
denotes the timestamp of the event;

• c ∈ C is a control event, and every c has a timestamp denoted by T (c);

• Eσ = (e1e2 . . . ek : ei ∈ W ×A, ∀i, j : A(ni) = A(nj)): the event sequence nodes;

• C(c): the control event nodes;

• Nσ = Eσ ∪ Cσ: the nodes in the graph instance;

• →E⊆ Eσ × Cσ: the edges from actor events to control events;

• →C⊆ Cσ × Eσ: the edges from control events to actor events;

• →σ=→E ∪ →C : the edges in the graph;

• x →E y ⇒ y →C x: there is no cycle in the graph.

The control nodes in the graph instances are:
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• c∗: synchronization (parallel) node, where all the input sequences should be
finished to start all output sequences in parallel;

• cS: start event;

• cE: end event.

The graph schema is generated with the aggregation of graph instances contain-
ing similar nodes. The only difference between these graph instances is the set of the
applied control nodes. In the case of the graph schema we use a branching control
node as well:

• c+: synchronization (optional) node, where all the input sequences should be
finished to start one of the output sequences.

Regarding the event graphs, we assume some important integrity rules.

Definition 2 (Event graph consistency). The graph is consistent if there are no
such parallel event sequences that belong to the same actor.

This property means that an actor can work only at a single event sequence at the
same time, i.e. actors can not work parallel on more sequences.

To cope with the complexity of event graphs, the method uses a two-level ap-
proach. At the top level, we focus only on the main structure of the graph using
only the control node components. The event sequence nodes are replaced here with
a single node denoting only the actor of the actions.

Definition 3 (The reduced graph model). The graph model π-graph is a reduction
of the σ graph eliminating the details of the actor level sequences, i.e.

π = (Nπ,→π)

is given by

• Nπ = ER ∪ Cσ,

• Eπ = {e} where A(e) ∈ A,

• →E⊆ Eπ × Cσ,

• →C⊆ Cσ × Eπ,

• →π=→E ∪ →C .

In the model, we assign two sets for each synchronization node: a set of input
sequence actors and a set of output sequence actors. These sets are denoted by
in(c) ⊆ A and out(c) ⊆ A, respectively.

Working with consistent graphs, for every control event c and for every actor a,
the input (as well as the output) sequence list contains a maximum of one occurrence
of the sequences related to a.

To manage the complexity of the graph, we approximate it with a sequence,
which is the sequence of the control nodes (s). In this sequence, the positions of the
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nodes correspond to their time-based ordering. Thus, the first event in the sequence
is the event executed first, while the last event is the event executed at the end.

Example 2. Let us take the following σ graph given in Figure 4.

Figure 4. Schema graph for Example 2

The conversion into π graph results in the graph shown in Figure 5.

Figure 5. Generated π graph for Example 2

We introduce a mapping between the graph and the sequence form in the fol-
lowing way.

Definition 4 (Conversion algorithms).

• Algorithm Seq(π): Having an event graph, every control event c has a times-
tamp. Based on that timestamp value, we can order the c elements. If two
control events have the same timestamp then their order is arbitrary.

• Algorithm Grp(sπ): Having a sπ event sequence, we can construct the event
graph using the following steps. We take every c event as a node of the output
graph. We construct an edge from c1 to c2 if

∃a ∈ A : a ∈ out(c1), a ∈ in(c2),

¬∃c3 : a ∈ in(c3) or a ∈ out(c3).

As shown in the next example, not every sequence is valid for generating a cor-
responding graph.

Example 3. Taking the sequence:

e0(g), e1(a), e2(b), e3(a), e4(b), e5(a), e6(a), e7(g),

where the artifact-level relationships among the actions are the following:
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• in(e0) = {t1}, out(e0) = {t2, t3, t4},
• in(e1) = {t2}, out(e1) = {t5},
• in(e2) = {t3}, out(e2) = {t6},
• in(e3) = {t4}, out(e3) = {t7},
• in(e4) = {t6}, out(e4) = {t8},
• in(e5) = {t5}, out(e5) = {t9},
• in(e6) = {t7}, out(e2) = {t10},
• in(e7) = {t8, t9, t10}, out(e2) = {t11}.

The corresponding graph (Figure 6) contains two parallel sequences assigned to
the same actor (a), which means that the graph is inconsistent.

Figure 6. Generated event schema graph for Example 3

To control the validity of the sequences for a given event graph, we use the
following validation model. We introduce a set X containing the actors being active
at the current time point. Initially, X is empty. Taking the next event from the sπ
event sequence, we perform the following operations (where c denotes the current
event):

X ′ = (X \ in(c)) ∪ out(c).

Theorem 1. For every sπ sequence, where the following properties are met for
every c event:

in(c) ⊆ X,

(out(c) \ in(c)) ∩X = ⊘.

Grp(sπ) yields a consistent event graph. In the formula, X denotes the set of active
actors at the given time point.

Proof. We use mathematical induction to show the validity of Theorem 1. Initially,
sπ contains a single control event cS, while in(cS) and X are both empty sets, thus
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the conditions

in(c) ⊆ X,

(out(c) \ in(c)) ∩X = ⊘

are met, and the generated section which contains the sequences in out(cS) is con-
sistent. Assuming that the statement is valid for the first i− 1 control events, let us
take the next ith control event ci. If we assume that the graph becomes inconsistent,
it means that there exists an actor a which runs parallel event sequences after ci. In
this case

a ∈ out(ci),

a ∈ X,

a ̸∈ in(ci).

But these are in contradiction with the conditions

in(c) ⊆ X,

(out(c) \ in(c)) ∩X = ⊘.

Consequently, the graph must stay in a consistent state. 2

Theorem 2. For every consistent π event graph:

Grp(Seq(π)) = π.

Proof. Considering the control event nodes, it is trivial that the π, Seq(π) and
Grp(Seq(π)) graphs contain the same set of control events. Let us assume that
there is an edge related to a in the π graph, where the source event is c1 and the
output event is c2. In this case, in Seq(π):

a ∈ out(c1), a ∈ in(c2), c1 → c2.

As the graph is consistent, no other sequence of a is active in the time period
between c1 and c2. Thus, no such c3 exists, where

c1 → c2 → c3,

a ∈ in(c3) or a ∈ out(c3).

This means that a ∈ X for the time period (c1, c2) is in the Seq(π) sequence.
As a consequence, Grp(Seq(π)) will also contain an edge between c1 and c2 related
to a.
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If there is no edge between c1 and c2 related to a in the π graph, then the
following cases may happen:

a ̸∈ out(c1) or a ̸∈ in(c2),

or
∃c3 : c1 → c3 → c2 where a ∈ out(c2) or a ∈ in(c3).

In the first case, Grp(Seq(π)) does not contain an edge between c1 and c2 related
to a. Considering the second option, c3 is in Seq(π) between c1 and c2, thus the
sequence starting from c1 cannot be linked to c2. Similarly, the sequence ending at
c2 cannot be linked to c1.

Thus, Grp(Seq(π)) is equivalent with π. 2

Regarding the prediction of the π graph, we decompose it into the prediction
of sequences, and the graph is constructed from the component sequences. The
proposed graph prediction algorithm consists of the following steps:

1. Prediction of the main level sπ sequence.

2. Construction of the Grp(sπ)) graph.

3. Prediction of the actor level event sequences for every edge in the Grp(sπ))
graph.

4. Construction of the detailed σ graph.

We can easily verify that the resulting event graph will be consistent.
The prediction of sequences is a standard problem in machine learning and the

most widely used prediction method is the neural network approach. The dominat-
ing tool applied to this problem is the LSTM/GRU neural network family.

In our proposal, we focus on a slightly different approach. We use a novel
compound neural network, containing more MLP units for the sequence prediction
task. The main motivations in the selection of MLP are the following:

• MLP is the core element in many prediction toolsets.

• We can construct a flexible, well-parameterizable network system using MLP
building blocks.

4 NEURAL NETWORK ARCHITECTURE
AND THE PREDICTION PROCESS

4.1 Architecture for Event Graph Prediction

In the presented graph model, the event graph is decomposed into several event
sequences. Based on this decomposition, graph prediction is performed by a multi-
neural network architecture where each sequence type is processed by a separate
neural network. Thus, in the case of event graph induction, the architecture contains
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1+ |A| neural networks. There is a single network for the main level sπ sequence and
there are separate neural networks for each actor type. As mentioned previously,
an actor corresponds to a role or position in the business model. This means that
during the training process, the event graph should be decomposed into sequences
of different types. Each sequence type will be processed by a dedicated neural
network Λi.

In the prediction of the sequences, the initial input is a prefix sequence that con-
tains the event steps preceding the sequence section to be predicted. In conventional
cases, this prefix sequence consists of elementary events. In our case, this approach
is not suitable, as due to the merging process several prefix sequences can be found
for a given sequence section in the graph.

To solve this problem, we use an extended prefix sequence model, where the
components are sets instead of single event values:

({e11, e12, . . . }, {e21, e22, . . . } . . . {em1, em2, . . . }).

The predicting neural network will merge these elements into a single description
vector to use as an initial state for the prediction process.

Example 4. Having the following σ graph (Figure 7) and considering the event e7,
the prefix sequence has the following form in event level:

({e5}, {e1, e2, e3}, {e4, e5, e6}).

Figure 7. Event graph for Example 4

Assuming that there are 10 different action types (e0–e9), the binary (one-hot
encoded) prefix part is equal to the following vector:

000001000001110000000000111000.

4.2 Neural Network for Sequence Prediction

Considering the neural network for sequence prediction, we have tested five variants,
two baseline models, and three novel variants. The two baseline models are the
widely used LSTM and MLP models. The proposed novel modifications relate to
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the extension of the prefix sequence length without the extension of the input size
of the classification network. The proposed method applies a preparation step to
reduce the input vector. We developed two methods for size reduction:

• simple union-based reduction,

• neural network-based reduction.

In the case of union-based reduction, every segment of the result feature vector
is the union-based compression of a (usually longer) input feature sequence. Thus,
having an input sequence

seci = sg i,1, . . . , sg i,m,

where sqj denotes a segment, a fixed-size sequence of atomic events. The output
feature sequence is

seco = sgo,1, . . . , sgo,n,

where |seci| > |seco|, contains segments created as the union of some input segments:

sgo = ∪lsg i,l.

We assume that the integration domain for different output segments are disjoint
segment groups. The compression process is characterized by a mapping vector

(l1, l2, . . . , lm) with
∑

li = |seci|,

where li denotes the length of an input sequence domain in the input feature vector.
The second compression variant applies a separate neural network module in-

stead of a single union operator. In this case

sgo,i = Λi{sg i,l}.

The system applies separate neural networks for every segment in the resulting
feature vector. In our version, the last nmost relevant elements of the prefix (nearest
to the event to be predicted) will be delegated into the main input vector without
any reduction. For the other elements, which denote earlier events that are further
away from the event to be predicted, longer sections are taken and aggregated into
a single abstract event.

The aggregation is executed with a standard MLP neural network which is
a component of the main network. This means, that the optimizations of the ag-
gregation networks are performed as part of the optimization of the whole network.
The architecture of the proposed engine is presented in Figure 8.

Considering the efficiency of the proposed models, we performed a comparison
test on benchmark sequences. The investigated network models are:

• MLP: baseline MLP,

• LSTM: baseline LSTM,
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Figure 8. NN-based architecture for input sequence reduction

• BE-MLP: MLP with union-based reduction,

• BE-LSTM: LSTM with union-based reduction,

• HN-MLP: MLP with NN-based reduction.

We have used the following benchmark datasets from XES process mining com-
petitions [52]:

• pdc 2016 1.xes (Process Discovery Contest 2016),

• pdc 2016 9.xes (Process Discovery Contest 2016),

• pdc 2017 5.xes (Process Discovery Contest 2017),

• pdc 2019 2.xes (Process Discovery Contest 2019)

and a uniform random generation file (load random.xes).
The results of the comparison tests are presented in Table 2. The main conclu-

sion is that the BE MLP network type is a good choice for our architecture as

• it provides one of the best accuracy, and

• it has the lowest execution cost.

4.3 Neural Network for Sequence Graph Processing

The prediction of the event graph requires an ensemble of sequence prediction mod-
ules as the different agents cooperating in the event graph may have very different
processing models. Thus we use different neural network units to model the different
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Dataset LSTM MLP NH-MLP BE-MLP BE-LSTM

pdc 2016 1.xes 63.5 63.4 63.4 63.9 64.1

pdc 2016 9.xes 82.0 82.5 81.2 81.8 82.6

pdc 2017 5.xes 62.4 62.8 63.7 64.8 64.2

pdc 2019 2.xes 64.6 65.2 63.9 66.3 65.6

load random 58.2 57.5 56.6 58.7 58.0

Table 2. Accuracy comparison of sequence prediction NNs

agents. Besides the actor-level models, a main-level model – the level of synchro-
nization events – is also included in the framework. The proposed architecture is
presented in Figure 9.

Figure 9. Architecture of the proposed MLP network system

In the architecture, the main inputs are the agent-level event logs and the action
catalog which describes the artifact-level dependency among the actions. Based on
these data, the system performs first the mining of synchronization events generating
a catalog of synchronization events that includes, among others, the input and
output actor lists. The engine will construct an event log for the synchronization
events, and a sequence model for the synchronization events is built up using a neural
network unit (Neural Network M). In the next phase, the engine separates the event
log by the agents, and it generates the agent-level sequence model using the proposed
neural network model with feature vector compression.
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Considering the data representation formats, the external input is given by a list
of lists, as every item in the prefix sequence is given by a set of events. The input
prefix format uses one-hot encoding. Thus, for every position we have a fixed-size
vector where the length is equal to the number of different event types. In a single
section, the value at a given position for event e is 1, if e is in the list for the given
position in the prefix sequence.

The outputs of the aggregation MLP modules are also one-hot encoded vectors.
These vectors are concatenated into a single vector. Thus, the output of the main
prediction MLP module is a one-hot encoded vector where every event type has
a marker position calculated by the aggregation networks.

4.4 Prediction Process

After having the neural network models for both the main level and the actor level,
we can use this compound architecture to predict event graphs. The overview of
the prediction process is presented in Figure 10. The prediction is based on the
following algorithm for the main level.

Figure 10. Architecture of the NN-based prediction process

Algorithm 1 (Prediction process). First, we take an empty prefix sequence and
predict the elements of the main sequence. In every iteration:

• the prefix is extended with the event predicted in the previous step,
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• the engine predicts the next event based on the new prefix.

If the end symbol is the winner, or the length of the sequence exceeds a given limit,
the prediction process terminates.

As shown earlier, the engine performs a conditional prediction, as the winner
event at the main level should meet the following conditions to generate a consistent
graph:

in(c) ⊆ X,

(out(c) \ in(c)) ∩X = ⊘.

Thus, the engine selects the event which meets the consistency condition and its
fitness value is maximal.

Another special characteristic of the proposed method is that, unlike the con-
ventional approaches, the engine generates more candidates as output, not only the
best one. In the standard approach, the engine selects the category with the highest
rank in the output vector. In our approach, a quality threshold is used to determine
the top candidates. Only those candidate events are selected where the fitness value
(generated by the neural network as output) meets the condition

φ ≥ µ φmax.

Here, φmax is the fitness value of the best category and µ is the threshold value.
If there is more than one winner event for the main sequence, the engine will add
a c+ synchronization event to the sequence.

In the case of actor-level sequences, the algorithm differs from the previous one
in the following aspects:

• the initial prefix sequence is usually not empty, it is equal to the aggregation of
the preceding sequences;

• there is no need for explicit c+ node since every branching means an optional
branch here (parallel branches may not occur at this level).

5 EVALUATION TESTS

For the evaluation of the efficiency of the proposed architecture, we have used open
benchmark datasets, as well as synthetic random sequences generated by our se-
quence generator module.

5.1 Test Data Generation

To generate synthetic datasets with parallelism, we developed a framework to con-
struct a workflow schema that can be used to generate matching event sequences.
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Both modules were developed in the Python programming environment. The schema
model language consists of the following parameters and node types:

• A = [a1, . . . , an]: set of actors;

• E = [e1, . . . , en]: set of user event types;

• C = [cS, cE, cOR, cAND]: set of control event types, namely the start event, the
stop event, the OR and AND branching events;

• T = [t1, . . . , tn]: execution time parameters of user events;

• P = [p1, . . . , pm]: branching probabilities at OR-branching nodes.

The framework supports some additional features to validate the consistency of
the model and to perform some corrections to guarantee the validity of the model.
Automatic adjustment of the probability values is one of these model cleaning meth-
ods. The system also generates a graphical view of the schema to support manual
verification.

5.1.1 Test Case A

In the following example, a sample schema is presented. The key parameters of the
schema are set to the following values:

• A: a, b, c,

• E: e1, e2, e3, e4, e5, e7, e8, e9, e10,

• T: e1 : [2, 3], e2 : [1, 4], e3 : [2, 3], e4 : [4, 5], e5 : [1, 2], e7 : [1, 2], e8 : [3, 5],
e9 : [1, 2], e10 : [1, 2].

The execution time values are given with an interval where we used a uniform
distribution. The connections of the event nodes are presented in Figure 11.

The test generator module generates a list of events for each of the given actors.
In the following output sample, the symbols a, b, c denote the actors, and elements
starting with e denote the user-defined events, while symbols starting with C mark
the control events.

a:C0,e1,e2,e4,e2,e1,C3

b:C3,e5,e4,C4

c:C3,e9,e8,C4

a:C4,e7,e10,C-1

!

These kinds of lists are the primary input for the schema discovery engine.

5.1.2 Test Case B

In the second sample, a larger and more complex schema graph is constructed. In
the model, three actors are defined: a, b and c. The list of available events, which
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Figure 11. Sample workflow schema A

are given by their IDs and the related execution time interval, is as follows:

e1, (1, 2) e2, (3, 5) e3, (1, 4) e4, (2, 3) e5, (4, 5)

e6, (1, 3) e7, (2, 4) e9, (1, 4) e10, (3, 4) e11, (2, 4)

The graph structure of the schema is presented in Figure 12. For the training
phase, 1 000 cases were generated for schema B.

Figure 12. Sample workflow schema B

5.2 Test Results for Case A

The dataset for sample schema A contains the event sequences of 500 experiments.
Based on this dataset, the engine can construct training sub-sequences. The frame-
work generates 4 neural network units with similar structures (see Figure 13). In
the training phase, the following validation accuracy values were achieved for the
different neural network units:
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• Main: 0.7980,

• Actor ’a’: 0.9564,

• Actor ’b’: 1.0000,

• Actor ’c’: 1.0000.

Figure 13. Structure of a neural network module

Regarding the schema generation from the training set, the engine first generates
the sequence of the control events. During the generation of the candidate sequences,
a weight threshold µ = 0.90 was applied. The engine generates two sequences: (1)
and (1, 2, 3, 4). From these two variants, the second one corresponds to a real
sequence. Considering the agent-level sequences for the second control sequence, we
get the following results:

C0 {’a’: [’e1’, ’e2’, ’e4’, ’e2’, ’e1’, ’C-1’],

’b’: [], ’c’: []}

C3 {’a’: [], ’b’: [’e5’, ’e4’, ’C-1’],

’c’: [’e9’, ’e8’, ’C-1’]}

C4 {’a’: [’e7’, ’e10’, ’C-1’], ’b’: [], ’c’: []}
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The list contains the sequences starting at the different control events. For
example, at control events C0 and C4 only one sequence starts which is executed
by actor a. In the list, symbol C−1 denotes the end control event.

As the results show, the engine could discover and re-generate the source schema
correctly, because the output is equivalent to the input in Figure 11.

5.3 Test Results for Case B

In the first processing phase, the engine determined the occurrences of synchroniza-
tion events. The module processed the traces in the log and generated a list of
synchronization events for every trace. The output list contains two types of event
sequences:

[(1, ’e2’)] [(2,v ’e4’), (3, ’e3’)] : 5.5 8.0

[(4, ’e9’), (6, ’e4’)] [(7, ’e10’)] : 15.0 18.5

and

[(1, ’e2’)] [(2, ’e6’), (3, ’e3’)] : 5.5 7.5

[(4, ’e7’), (6, ’e4’)] [(7, ’e10’)] : 15.0 18.5

The last two numbers denote the calculated time window of the current synchro-
nization event. Based on the generated synchronization event sequences, as input
training set, the constructed neural network model M will predict the following
synchronization sequence:

[’EMPTY’, ’C2’, ’C3’, ’EOS’]

In the next phase, the engine predicts the agent-level sequences in the following
form:

a : [’e1’, ’e2’, ’EOS’]

b : [’e3’, ’e5’, ’e4’, ’EOS’]

c : [’e4’, ’e9’, ’EOS’]

a : [’e10’, ’e11’, ’EOS’]

After performing more trace generation experiments, the action list of agent c
may vary. Another typical output is the action chain containing actions ’e6’ and
’e7’:

c : [’e6’, ’e7’, ’e6’, ’e7’, ’e6’, ’e7’, ’e6’, ’e7’,

’e6’, ’e7’, ’e6’, ’e7’, ’e6’, ’e7’, ’EOS’]

If we consider also the weight ratio between the best one and the second one,
we can see that most of the steps are unambiguous, except at the start of the event
sequence for c. The higher the ratio, the stronger the unambiguity. The next list
shows these ratio values at the different steps:
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y e4 , weight ratio: 1.464207

y e9 , weight ratio: 234.37918

y EOS , weight ratio: 237.77512

Considering the resulting graph for a single selection case (only the best candi-
date is selected as the next event), we can see that it contains a parallel execution
section, where both agents b and c are active (Figure 14).

Figure 14. Generated schema graph for single selection

If we use a multi-selection prediction approach where we allow alternative routes,
we get the result graph presented in Figure 15.

Figure 15. Generated schema graph for multi-selection

We can see that the method builds up the same schema graph we have used to
generate the event logs. Thus, the proposed method is suitable for discovering also
parallel and optional sequences in the schema graph, unlike the previous engines.

To demonstrate the differences between the proposed and the standard models,
we give also the output of the baseline alpha miner method implemented in the
PM4PY package (Figure 16). As the alpha miner uses a very different approach and



Event Graph Prediction with NN 207

uses only a smaller set of information, it can not present the same complexity as the
proposed method.

Figure 16. Output of alpha miner method

6 CONCLUSION

The paper presents a novel neural network model for the discovery of event patterns
containing parallel and optional sequences of different actors. The proposed model
can process more complex event graphs and situations than the conventional meth-
ods. Our new approach introduces synchronization nodes into the event sequences in
such a way that these synchronization events can be discovered automatically. The
schema mining engine performs two-level processing. First, it performs sequence
discovery at the synchronization level, then on the level of actors. We have devel-
oped a technique for the compression of the prefix sequences which improves the
accuracy of the standard sequence prediction methods. The efficiency of our neural
network-based method is demonstrated with some benchmark tests and examples.
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