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Abstract. The detection of carbon deposit degree is of great significance to the
maintenance of automobile engine. Due to issues with poor feature aggregation,
inter-class similarity, and intra-class variance in carbon deposit data with a small
number of samples, model-based discriminative approaches cannot be widely im-
plemented in the market. In order to overcome this technical barrier, the article
examines the impact of DCNNs (Deep Convolutional Neural Networks) level on the
recognition effect of the degree of carbon deposit, introduces a dropout structure and
data enhancement strategy to lower the risk of overfitting brought on by the small
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dataset, and suggests a recognition method based on the kernel of dual-dimensional
multiscale-multifrequency information features to enhance the differentiation char-
acteristic. After experimental testing, the accuracy of this method is 86.9%, the
F1-score is 87.2%, and the inference speed is 190 FPS, which can meet the practical
requirements and provide basic support for the large-scale promotion of the model
discrimination.

Keywords: Determination of carbon deposit degree, small datasets, fine-grained
images, feature enhancement, deep learning

1 INTRODUCTION

Carbon deposit in automobile engines are oxides produced by incomplete combustion
of fuels and lubricants under high temperature and high-pressure conditions, mainly
distributed in several parts of the engine interior. Severe engine carbon deposit will
affect the intake efficiency of the intake valve, the degree of atomization of the oil
nozzle, and the ignition efficiency of the sparking plug, resulting in a decrease in
engine power, incomplete gasoline combustion, and misfiring of the engine. It may
even result in engine scrap if the carbon deposit is not cleaned for a long time. The
degree of carbon accumulation plays an important role in the cleaning of the engine,
therefore it is crucial to research a method for detecting the degree of carbon deposit
in automobile engines.

Physical quantity-based and vision-based detection can be applied to assess the
degree of carbon deposit in an automobile engine. Direct and indirect measurements
are the two primary types of physical quantity-based detection. Direct measurement
utilizes a sensor device to collect physical data, such as the thickness of the carbon
layer [1] and optical signals on the carbon surface [2], to quantify the degree of
carbon deposit. Indirect measurements combine physical quantities such as igni-
tion failure rate [3], oil passage temperature [4], and intake manifold differential
pressure [5] with corresponding thresholds to discriminate the degree of carbon de-
posit. Physical information discrimination can be interfered with in advance to
prevent the occurrence of faults. However, the detection method based on physi-
cal quantities necessitates gathering driving state data and multiple measurements
to ascertain the state of carbon deposit, which is difficult to promote in practical
applications. Vision-based detection uses the image collected by the endoscope to
discriminate the degree of carbon deposit, including manual and model discrimina-
tion. Yan et al. [6] artificially distinguish the degree of carbon deposit by imaging
display, which is more intuitive and convenient than the physical detection method.
Manual discrimination, however, is ineffective and is significantly influenced by the
environmental factors. Xiao et al. [7] use the model discrimination method to dif-
ferentiate the degree of carbon deposit. The process begins with the extraction of
image features using machine learning, followed by a similarity comparison with the
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pre-discriminative model trained after a large number of samples, finally, the dis-
criminative result of the degree of carbon deposit was obtained. The model-based
discrimination method uses a large amount of data to form a quantitative crite-
rion, which is more scientific and credible than manual discrimination. Traditional
machine learning techniques, however, require the combination of several feature
extraction algorithms and various features in order to categorize the data, therefore
their discriminative impact is subpar for the multifarious feature representations of
carbon deposit images. Some sample images of carbon deposit in the combustion
chamber of an automobile engine captured by an endoscope are shown in Figure 1.
The boundary of determining the level of carbon deposit in the image has a wide
range of fuzzy distribution, and is subject to interference from oil stains and bright
spots. Highly similar subordinate classes result in small inter-class variance, while
large intra-class variance due to interfering factors such as light, angle, and depth
of field, posing a great challenge to the detection of the degree of carbon deposit.

Figure 1. Sample images of carbon deposit. Categorized into three degrees: mild, mod-
erate, and severe.

The deep learning-based method automatically learns high-dimensional abstrac-
tions from images through neural networks, which reduces the composition of feature
engineering compared to traditional machine learning methods and performs well in
the similar task of discriminating the degree of carbon deposit in automobile engines.
Yao et al. [8] achieved excellent accuracy in classifying a small and unbalanced skin
lesion dataset based on RegNetY network combined with regularization operations,
a modified data enhancement strategy, a multi-weighted loss function, and an end-
to-end learning strategy, and its discriminative results comparable to or even better
than those of a dermatologist’s diagnosis. Fan et al. [9] designed a deep residual
network to obtain the dust concentration in the area of PV panels to address the
problem of determining the degree of dust accumulation in PV panels. This method
can effectively obtain the non-uniform two-dimensional surface feature point set,
which provides theoretical support for the intelligent operation and maintenance of
PV systems. Therefore, using deep learning to the job of discriminating between
carbon degrees is advantageous to provide high-quality, highly discriminative fea-
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tures, and thereby resolving the issue of challenging carbon degree discrimination
and poor discrimination accuracy.

Since 2012, deep neural networks have expanded quickly because of improve-
ments in computer power and the creation of enormous datasets. Researchers
have developed and trained several traditional convolutional neural networks us-
ing the big dataset ImageNet, including VGGNet [10], GoogLeNet [11], ResNet [12],
DenseNet [13], EfficientNet [14], and so on. The challenge of differentiating the
degree of carbon deposit can be solved partly by selecting an appropriate backbone
network for small datasets of carbon deposit images. In general, networks with more
parameters and a complex structure can extract deeper features, but some few-shot
tasks [8, 15, 16] demonstrate that modest networks outperform complex networks.
We validate this argument through experimental comparisons in the carbon deposit
dataset and select the best model suitable for discriminating the degree of carbon
deposit in automobile engines. However, the model with strong universality is not
targeted in the face of complex and variable carbon deposit images. By analyz-
ing the distinguishing characteristics of the carbon deposit images in Figure 1, the
cylinder wall surface scratches attached to the carbon deposit are highly distin-
guishable. Therefore, we enhanced the expression of features from both spatial and
channel dimensions. The spatial dimension fuses the image’s multi-scale informa-
tion to consider the carbon deposit image’s wide range of features and fine-grained
characteristics. The channel dimension dynamically selects the feature map through
the channel attention mechanism. It adaptively weights the features according to
the importance of the input features, compensating for the problem of missing geo-
metric features in the spatial dimension. Fewer carbon deposit data samples make
the model prone to overfitting in the learning stage, which leads to poor generaliza-
tion performance of the model. In order to increase data diversity and strengthen
the generalization capabilities of the model, this work uses a variety of offline data
enhancement techniques, including flipping and cropping and so on, as well as on-
line data enhancement techniques, CutMix [17]. Literature [8] demonstrates that
dropout is also a successful strategy for dealing with overfitting. To increase the
model’s robustness, randomly dropout high-dimensional features before the fully
connected layer. What is more, the model’s inference speed is just as crucial for
the extension of the model discrimination approach as the model’s generalization
capabilities. As a result, the model design used in this research keeps its lightweight
properties.

This paper uses the image of an automobile engine’s combustion chamber as
the research object. An improved DCNN-based model is proposed to automatically
identify the degree of carbon deposit and the recommendations for the subsequent
removal of engine carbon deposit are offered. The key contributions of this paper
are as follows:

1. Deep learning-based strategy is used to determine the degree of carbon deposit
in an automotive engine. We designed a model for carbon deposit detection and
achieved excellent results.
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2. Deep convolutional neural networks with various structures and their different
variants are compared in this paper. The results demonstrate that the shallow
network outperforms the deep network in the task of carbon deposit determina-
tion, however, the inference speed of the model is not entirely associated with
its computational and parameter counts.

3. A lightweight Multi-Scale and Frequency Feature Extraction (MS&FFE) mod-
ule is proposed to enhance the feature expression of carbon deposit images in
this paper. The MS&FFE module is designed for images with a wide range of
features and fine-grained characteristics to increase inter-class differences and
decrease intra-class disparities.

2 METHODOLOGY

The technique design flowchart for this study is presented in Figure 2. The data is
preprocessed first, and then the structure correction and parameter adjustment of
DCNN are carried out according to the characteristics of carbon deposition. The
test data apply to the adjusted model for degree discrimination, and finally, the con-
fusion matrix generates to evaluate the model performance from multiple evaluation
indexes.

Figure 2. Flowchart of the method design. The upper part is the training, and the lower
is the testing.

2.1 Dataset Introduction and Preprocessing

This paper mainly focuses on the degree of carbon deposit in the combustion cham-
ber of an automobile engine, and a cooperative enterprise provides the carbon de-
posit data sets used. Table 1 introduces the category characterization of the carbon
deposit dataset and the corresponding maintenance strategy.

Professionals label the dataset used for model training to ensure the reliability
of the samples. Still, the uneven distribution of categories in the original dataset
leads to bias in the model’s training process, i.e., the prediction accuracy of the
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Label Class
Training

Set
Test
Set

Characteristic
Description

Maintenance
Strategy

0 Mild 8 800 900 Cylinder wall
surfaces are
lightly cov-
ered with
carbon de-
posit and
have minor
scratches.

Simple cleaning-based main-
tenance. The cleaning strat-
egy mainly consists of caring
for the external surfaces of
the parts and cleaning steps
on the inside and outside
of each assembly and part,
which is used to prevent cor-
rosion of the pieces, reduce
wear and tear of the elements
and reduce fuel consumption.

1 Moderate 8 800 900 Cylinder wall
surfaces are
covered in an
increased area
with carbon
deposit and
had visible
scratches.

Regular upkeep emphasizes
cleaning and repair. Mainly
include changing oil and filter
components, replacing lubri-
cants with the proper qual-
ity grade, and keeping the
crankcase well-ventilated.

2 Severe 8 800 110 The cylinder
wall surfaces
adhesion layer
is thick with
carbon de-
posit, and
scratches
cover a wide
area with
almost no
metal luster
exposure.

Overhaul strategy based on
clean repairs. The over-
haul strategy includes replac-
ing aged and worn parts and
disassembling and cleaning
steps.

Table 1. Data set description. It includes the size of the data volume of the category
training set and test set, the category characterization, and the corresponding maintenance
strategy.

class types with a large amount of data is biased high. The prediction accu-
racy of the categories with a small amount of data is a little low. Random un-
dersampling is performed on the original dataset to ensure a balanced number of
classes. The data from the divided training set enlarge using a data enhancement
approach to increase the model’s generalization performance and robustness be-
cause too little raw data volume will result in the overfitting of the model. Ta-
ble 2 lists the image transformations involved in this paper. a-f are the funda-
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mental geometric transformations, which increase the number of images, the dis-
tribution of these images is consistent with the original images. To a certain ex-
tent, the geometric distortion of the images caused by Angle, perspective relation-
ship, shooting and other reasons is eliminated. In contrast, g-r are the methods
of processing pixels directly. The changes are more prominent than the geomet-
ric transformation. The geometrically modified extended image becomes increas-
ingly complex through pixel processing, which increases the model’s capacity for
generalization. Overly intricate changes, however, might render the picture ab-
stract and significantly alter its distribution. As a result, in this study, we use
pixel processing modifications to pick no more than five images at a time at ran-
dom.

Number
Operation
Name

Description
Operation
Probability
or Range

a Flip Perform horizontal/vertical flipping of with random
probability.

0.5/0.2

b Crop Crop the image by a random portion of its
height/width.

(0, 0.1)

c Scale Randomly scales the height/width of the image to dif-
ferent degrees.

(0.8, 1.2)

d Translate Percent Randomly make translations of different pro-
portions to the x- and y-axes of the image.

(−0.2, 0.2)

e Rotate Rotate the image by a random angle. (−45, 45)
f Shear Clip the image to a random degree. (−16, 16)
g Superpixels Take N random superpixel values for the image and

replace the original image with a random probability.
(20, 200),
(0, 1.0)

h Blur Blur the image randomly using different kernel size
blurring operations (Gaussian blur, mean blur, and
median blur selected randomly).

(0, 3.0), (2, 7),
(3, 11)

i Sharpen The image sharpens using a random degree of sharp-
ening, with an arbitrary range of sharpening.

(0.75, 1.5),
(0, 1.0)

j Emboss The image enhances using a randomized degree of re-
lief, a randomized range of enhancement of the image.

(0, 2.0),
(0, 1.0)

k Edge Detect Mark image edges in a black and white image to super-
impose on the original image with random probability.

(0, 0.7)

l Additive Gaus-
sian Noise

Adds Gaussian noise to the image, randomly sampled
by channel and pixel.

(0, 0.05 ∗ 255)

m Dropout Randomly removes some pixels, i.e., sets some pixels
to black.

(0.01, 0.1)

n Invert Inverts the channels of each image with a set proba-
bility.

0.05

o Dithering Performs operations on the pixel values of each image
channel with a probability of 0.5, including randomly
adding pixel values, changing the brightness of the im-
age, changing the contrast.

(−10, 10),
(0.5, 1.5),
(0.5, 2.0)

p Grayscale Convert the image to grayscale, superimposed on the
original image with random probability.

(0, 1.0)

q Elastic Trans-
formation

Randomly shifting image pixels under a distortion
field with a fixed intensity of 0.25.

(0.5, 3.5)

r Piecewise Affine Distort images with random intensity. (0.01, 0.05)

Table 2. List of all image transformations applied in the data enhancement strategy

In order to test the generalization and practicality of the model, the test set
is supplemented with the remaining samples after random undersampling. The
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test set is sampled independently and identically from the true distribution of the
samples, ensuring that the test set is mutually exclusive with the training set and
has not been used in the training set. The flow of data processing is shown in
Figure 2 and the distribution of data volume after data processing is given in Ta-
ble 1.

2.2 DCNN Models

Multiple network structures and models with different capacity sizes were compar-
atively analyzed, as shown in Table 3. Among these, VGG [10] extracts feature
through stacked convolutional layers, which have a more straightforward structure
and uses a smaller convolutional kernel to reduce the model complexity. ResNet [12]
uses residual structure to address the issue of network deterioration, improving ac-
curacy while significantly reducing computation. DenseNet [13] takes shortcut con-
nectivity to the extreme and enhances feature reuse to improve model performance
metrics. EfficientNet [14] uses neural architecture search principles to design the
underlying network architecture, and extracts features by mobile inverted bottle-
neck convolutional blocks to make the model lighter and more efficient. Convolu-
tional kernels of various sizes are employed by the Inception structure introduced
in GoogLeNet [11] to extract multi-scale features and augment feature information.
The pre-trained weights of the model on the large dataset ImageNet is loaded to
DCNNs by the transfer learning method. The number of output classes of the mod-
ified model matched the discriminant categories of carbon deposition degree. The
performance of several DCNN models is contrasted to determine which model is
best appropriate for carbon degree discrimination in automobile engines. And make
model selection recommendations for similar projects using the carbon deposit de-
gree discriminating challenge. ResNet-18 will be used for the remaining work in this
paper because the experimental results in Table 5 demonstrate that it achieves the
highest accuracy in the carbon deposit test set and has the excellent inference speed
performance, both of which meet the design requirements of the carbon deposit
degree discriminative model.

As shown in Figure 3, the training accuracy of the models is ideal in the compar-
ative experiments. However, there is a wide discrepancy in the test set. The model
is overfitting due to excessive redundant parameters, which reduces its capacity to
generalize to the test set. In order to avoid overfitting, a three-layer structure is
created in this research and placed in front of ResNet-18’s fully connected layer, as
illustrated in Figure 4. In this paper, two lightweight convolution layers are added in
front of a single dropout layer. Specifically, where Depthwise Separable Convolution
is used to reduce the number of parameters in the feature transfer process, Group
Convolution maps the input features to a higher dimensional feature space. The
feature distribution disperses by boosting the feature dimensions to discard more
redundant information. The setting of the Dropout parameter p will be discussed
in the experimental section.
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Model Flops [B] Params [M] Model Flops [B] Params [M]

VGG-11 7.6 132.9 DenseNet-161 7.8 28.9
VGG-13 11.3 133.0 EfficientNet-B0 0.39 5.3
VGG-16 15.5 138.3 EfficientNet-B1 0.7 7.8
VGG-19 19.6 143.7 EfficientNet-B2 1.0 9.2
ResNet-18 1.8 11.7 EfficientNet-B3 1.8 12
ResNet-34 3.6 21.8 EfficientNet-B4 4.2 19
ResNet-50 3.8 25.6 EfficientNet-B5 9.9 30
ResNet-101 7.6 44.6 EfficientNet-B6 19 43
ResNet-152 11.3 60.2 EfficientNet-B7 37 66
DenseNet-121 2.9 8.0 GoogLeNet 1.6 6.2
DenseNet-169 3.4 14.2 Inception-v3 5.0 22.3
DenseNet-201 4.3 20.0 Inception-v4 6.2 41.3

Table 3. Compare the list of models, containing five structures

2.3 Feature Enhancement Module

The MS&FFE module is used to solve the poor aggregation of carbon image features
and the fine-grained characteristics of minor inter-class differences and significant
intra-class differences, as shown in Figure 5.

The spatial dimension enhances the control of features with different distribu-
tion ranges by fusing the multi-scale characteristics of the image, which effectively
improves the correlation of the location between the parts. Multi-scale feature ex-
traction can be accomplished by parallelizing several Dilation Convolutions with
varied dilation rates since a Dilation Convolution may produce a broader receptive
field and handle the wide range of feature distributions in the carbon deposit picture.
However, Dilation Convolution-based models are huge and ineffective [18, 19, 20, 21],
which results in ineffective model prediction. Therefore, inspired by the feature
extraction module in ESPNetv2 [22], we firstly map the input features from the
high-dimensional space to the low-dimensional space by Group Convolution, and
secondly, we use Depthwise Separable Dilated Convolution (DSDC) instead of the
Dilated Convolution with high computational overhead in this paper. Multi-scale
feature fusion is realized by Hierarchical Feature Fusion (HFF), and it concatenates
in the channel dimension to recover the feature dimension space. The role of HFF
is to solve the gridding effect of dilation convolution. The node output function Xn

of HFF defines as Equation (1).

Xn(x) = N (Dn(x), Rn(x)) (1)

x is the output of the group convolution in front of the DSDC, n is the sequence
number of parallel DSDC, N is the aggregation node, Dn(x) is the output of the n

th
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Figure 3. Numerical comparison plot of training accuracy and test accuracy, there is a
large error gap

Figure 4. Modified ResNet-18 architecture

DSDC, and Rn(x) is defined as in Equation (2).

Rn(x) =

{
0, n = 1,

Dn−1(x) +Rn−1(x), otherwise.
(2)

The feature output of the spatial dimension is denoted as:

Fspatial(x) = concat (X1, X2, X3, X4) . (3)

The channel dimension utilizes the channel attention mechanism to focus on
important information and compensate for the loss of feature structure due to the
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Figure 5. MS&FFE module incorporates multi-scale features of spatial and multi-
frequency features of channels

spatial feature extraction module. In this paper, the Global Average Pooling (GAP)
in SENet [23] is extended to multiple frequencies to realize the weighting of feature
channels [24]. Firstly, the weights at different frequencies are obtained by doing
Discrete Cosine Transform (DCT) on the input feature mapping. Then m frequency
components with the highest performance are selected. Then the input features are
divided into m equal parts, and the corresponding DCT weights are assigned to
each feature quantity to do Hadamard Product to obtain the frequency features.
The frequency characteristics can be expressed as Equation (4).

F i = 2DDCT ui,vi
(
Y i

)
=

H−1∑
h=0

W−1∑
w=0

Y i
:,h,wB

h,w
ui,vi

(4)

Y i is the characteristic component, i ∈ {0, 1, . . . ,m− 1}, ui, vi are the indices of the
2D frequency components corresponding to Y i, H,W are the height and width of
the input features, h ∈ {0, 1, . . . , H − 1}, w ∈ {0, 1, . . . ,W − 1}. The function Bh,w

ui,vi

of 2D DCT is:

Bh,w
ui,vi

= cos

(
πui

H

(
h+

1

2

))
cos

(
πvi
W

(
w +

1

2

))
. (5)
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The multi-frequency features are concatenated into 1-dimensional vectors by fully
connected, and the 1-dimensional vectors are transformed to the input feature size
by scale transformation, as in Equation (6).

Fchannel = scale
(
FC

(
F 0, F 1, . . . , Fm−1

))
. (6)

Then the output of the feature enhancement module is:

Foutput = Fspatial + Fchannel. (7)

The structural design of the feature enhancement module is inspired by the
residual structure, which solves the network degradation problem by amplifying the
minor differences through the identity function. Our primary purpose is to high-
light the essential features to reduce the redundant parts, so the channel feature
extraction module is used as a shortcut to connect the fusion features to the spatial
feature extraction module, as shown by the red line in Figure 5, so that the net-
work can maximize the acquisition of the feature differences when passing through
the MS&FFE module. The module’s design allows feature resampling at different
spatial levels of the CNN network, enriching the kernel and selectively emphasiz-
ing crucial information without changing the size of the feature map while ensuring
a lightweight network.

2.4 Model Structure

Table 4 displays the precise structure of the network of the degree discrimination
model for carbon deposit. ResNet-18 consists of one convolutional layer, four con-
volutional blocks, and one fully connected layer. Two double-layer convolutional
structures make up each convolutional block. ResNet-18 outperforms other DCNN
models in terms of performance, but it lacks the specificity needed to differentiate be-
tween different degrees of carbon deposit. Therefore, in this paper, the MS&FFE
feature enhancement module and the three-layer structure to reduce the risk of
overfitting are designed for carbon deposit degree discrimination’s characteristics
and application requirements. The MS&FFE modules are embedded at the end
of each block, and the arrangement of the three-layer structure is shown in Fig-
ure 4. The structure list contains information on the network design characteristics,
such as the size of the convolution kernel, the stride, and the number of chan-
nels.

3 EXPERIMENTS

3.1 Experimental Parameter Settings

The experiments in this paper are conducted under the PyCharm integrated compi-
lation environment. The GPU is NVIDIA GeForce GTX 1080 Ti∗3, the experiments
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Layer Name Output Size Structure

Conv 112× 112 7× 7, stride 2, 64

Block1 56× 56

3× 3 max pool,
stride 2, 64[

3× 3, 64
3× 3, 64

]
× 2

[MS &FFE , 64]× 1

Block2 28× 28

[
3× 3, 128
3× 3, 128

]
× 2

[MS &FFE , 128]× 1

Block3 14× 14

[
3× 3, 256
3× 3, 256

]
× 2

[MS &FFE , 256]× 1

Block4 7× 7

[
3× 3, 512
3× 3, 512

]
× 2

[MS &FFE , 512]× 1

DConv 7× 7 3× 3, stride 1, 512

GConv 7× 7 1× 1, stride 1, 1 024

1× 1

Average pool
Dropout
Fully connected
Softmax

Table 4. Description of the detailed network structure of the carbon deposit degree dis-
crimination model

use parallel training, the training batch size is 32, the number of training epochs
is 100, the optimizer uses the SGD optimizer, the initial learning rate is 0.001, the
learning rate is adjusted using the cosine decay strategy to decay to 0.0001, and the
loss function uses the cross-entropy loss function. Due to the dataset’s small original
data volume, which is insufficient to support the complex neuron population of deep
neural networks, training data expand for a large number of new instances, but this
increases the similarity between the expanded data and the original figure’s charac-
teristics, which increases the risk of overfitting. In order to make the training data
more complicated and improve the model’s capacity for learning, the CutMix [17]
operation is introduced to the training in this study. This operation crops and mixes
any two images, x ∈ RW×H×C represents the input image and y is the image label,
and incorporates any two input images (xA, yA), (xB, yB) to generate a new training
sample (x̃, ỹ). The mixing operation is defined as in Equations (8) and (9):

x̃ = M ⊙ xA + (1−M)⊙ xB, (8)

ỹ = λyA ⊕ (1− λ)yB, (9)

where M ∈ {0, 1}W×H is a binary mask used to extract and fill the image, ⊕ denotes
the combination of two labels, λ conforms to the beta distribution λ ∼ Beta(α, β),
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and in the experiments α, β is set to 1, i.e., λ obeys a uniform distribution of (0, 1).
The mixing probability of each processed batch is set to 0.1.

3.2 Evaluation Metrics

The experiments use Accuracy, F1-score, and Inference Speed as evaluation metrics.
Among them, F1-score utilizes the precision rate and recall rate to evaluate the
model’s classification performance comprehensively. Inference Speed is a measure
of the prediction speed of the model, and the unit of FPS indicates the number
of pictures that can be predicted per second. The computational expression of the
evaluation index is as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
, (10)

F1-score =
2 · Precision · Recall
Precision + Recall

, (11)

where,

Precision =
TP

TP + FP
, (12)

Recall =
TP

TP + FN
. (13)

The F1-score is generated by adding a weighting factor to each category since
the number of test sets is not balanced, and the weighting factor is based on the
percentage of data volume allocation. The score for each metric is then derived
using the following equation:

S =
Nc0

Ntotal

S0 +
Nc1

Ntotal

S1 +
Nc2

Ntotal

S2, (14)

where Nci(i = 0, 1, 2) is the number of categories, Ntotal is the total number of test
sets, and Si (i = 0, 1, 2) is the corresponding category F1-score.

3.3 Experimental Results and Analysis

3.3.1 Performance of Different DCNN Models

DCNNs with different structures and capacities are compared and analyzed in the
carbon deposit dataset, and evaluate the performance of the models from the three
indexes of Accuracy, F1-score, and FPS in combination with the practical require-
ments. The experimental results are shown in Table 5 and Figure 6 compares the
accuracy of different models by combining the amount of computation and the num-
ber of parameters.
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a) Flops vs. accuracy

b) Params vs. accuracy

Figure 6. Accuracy of models with different structures and capacity sizes on the carbon
deposit dataset
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Model
Accuracy

[%]
F1-

score [%]
FPS Model

Accuracy
[%]

F1-
score [%]

FPS

VGG-11 83.2 83.6 254 DenseNet-161 78.7 76.9 56
VGG-13 83.6 84.1 249 EfficientNet-B0 83.2 83.5 117
VGG-16 84.1 84.4 233 EfficientNet-B1 82.9 83.1 93
VGG-19 83.9 84.1 229 EfficientNet-B2 81.6 82.2 90
ResNet-18 84.6 84.8 234 EfficientNet-B3 80.7 81.6 70
ResNet-34 83.1 83.5 164 EfficientNet-B4 81.4 81.7 61
ResNet-50 82.8 83.2 131 EfficientNet-B5 78.4 78.6 52
ResNet-101 82.6 83.3 78 EfficientNet-B6 76.3 76.6 45
ResNet-152 82.9 83.1 64 EfficientNet-B7 76.1 76.2 37
DenseNet-121 75.5 76.3 72 GoogLeNet 79.4 79.3 157
DenseNet-169 76.5 77.2 56 Inception-v3 82.2 82.7 101
DenseNet-201 75.3 75.9 43 Inception-v4 81.4 82 54

Table 5. The experimental results of DCNNs were compared in terms of three evaluation
metrics

According to the experimental findings, ResNet-18 has the most excellent Accu-
racy and F1-score in the carbon deposit dataset, with scores of 84.6% and 84.8%,
respectively. However, the classification accuracy declines with the addition of more
network layers. The classification accuracy of EfficientNet exhibits a similar pattern
of declining accuracy with increasing model complexity. The remaining networks’
accuracy trends are growing and subsequently falling. This result suggests that
models with a larger and more complex number of parameters in the same structure
have poor classification results for our task, which has a small amount of data and
few category discriminative flags. In contrast, simple or moderately complex models
have better classification performance. In Table 5, which compares the classification
performance of various structural models, VGG and ResNet perform noticeably bet-
ter than DenseNet in terms of classification accuracy and inference speed, indicating
that deeper and more sophisticated models do not serve better when it comes to the
task of discriminating the degree of carbon deposit. Models with shorter layers and
simpler structures, on the other hand, are more suited for the task of differentiating
the level of carbon deposit.

When comparing the inference speed of DCNNs, the experimental results in
Table 5 demonstrate that the inference speed of similar structures essentially changes
proportionally to the model complexity, i.e., the model’s inference speed gradually
declines with an increase in the model computation and the number of parameters.
However, this conclusion is not applicable to models with different structures, e.g.,
VGG-11 has 24 times more parameters than EfficientNet-B0, but the inference speed
is two times faster than EfficientNet-B0. This result suggests that the inference speed
of a model is not entirely related to the computational volume and the number of
parameters of the model but is also closely related to the composition of the model
building blocks.
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3.3.2 Discussion of Dropout Parameter p

We analyze the parameter p’s value for the dropout layer in Table 6. We set the
dropout ratio of 0.1-0.8 to train the model accordingly. The experimental findings
demonstrate that the model test accuracy increases to a peak and progressively de-
creases. The model test accuracy rises to a maximum of 85.0% when the dropout
ratio is set to 0.2, an improvement of 0.4% over the accuracy before it was imple-
mented.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Accuracy [%] 84.8% 85.0% 84.3% 83.5% 83.1% 82.9% 82.4% 81.4%

Table 6. Discuss the MS&FFE of the value of the dropout layer parameter p on the
accuracy

3.3.3 Channel Attention Mechanisms in the MS&FFE Module

In this section, we discuss the impact of different channel attention mechanisms
on the MS&FFE module and consider the problem of channel representation from
a frequency domain perspective, comparing SENet [23], which uses GAP to obtain
feature information from the zero frequency, and CBAM [25] and SRM [26], which
add global maximum pooling and global standard deviation pooling to SENet. The
experimental comparison results are shown in Table 7. No operations are added
to prevent overfitting in the experiment, and only feature resampling modules are
added after each block. The results indicate that adding a multi-frequency channel
attention mechanism helps improve accuracy most while having the fastest inference
speed.

Module Accuracy [%] F1-score [%] FPS

Multi-Scale and SENet 84.8% 85.3% 198
Multi-Scale and CBAM 85.3% 85.5% 183
Multi-Scale and SRM 85.0% 85.2% 178
MS&FFE 85.7% 85.7% 201

Table 7. Performance effects of different channel attention mechanisms on MS&FFE
module

3.3.4 Ablation Experiments

We conducted the corresponding ablation experiments, as indicated in Table 8, to
verify the efficacy of the approach and module design employed in this research. All
models use the augmented dataset with offline data. Model A is a separate addition
to the online data enhancement CutMix. After cutting and mixing, the samples are
more complex, thus improving the generalization ability of the model. Its accuracy
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and F1-score compared to ResNet-18 have a slight increase. Model B is a single-
layer dropout structure, and model C is a three-layer dropout structure designed in
this paper. The experimental results show that dropout can reduce the impact of
overfitting and effectively improve the classification accuracy, and at the same time,
verifies the effectiveness of this paper’s method of upgrading the features dimen-
sion and then dropping them. The D and E models provide feature enhancement
from a single dimension, the former via dilation convolution-extraction of multi-
scale spatial features and the latter by acquiring channel information features at
various frequencies. According to the experimental findings, adding either the spa-
tial feature improvement module or the channel attention module alone enhances
model performance, therefore, combining the two feature modules further boosts
model accuracy. The final method in this paper achieves an accuracy of 86.9% and
an F1-score of 87.2% in the task of discriminating the degree of carbon deposit in
an automobile engine, which is an improvement of 2.3% and 2.4%, respectively,
compared to the original model ResNet-18.

In the model inference speed results, the inference speed is unchanged because
the network structure of model A has not been changed. In contrast, model B speeds
up inference by eliminating certain unnecessary parameters. The inference speed of
the other models is lowered to varying degrees because they are based on the original
model structure supplement. The ultimate inference speed of this article is 190 FPS,
which is slower than ResNet-18 but still quicker than the inference speed of most of
the models in Table 5. The DCNN model developed in this study can successfully
perform the carbon deposit degree discriminating task in terms of accuracy and
speed of inference.

Model CutMix
Dropout Feature Enhancement Module Accuracy

[%]
F1-score

[%]
FPS

one
layer

three
layers

Multi-
Scale
module

Multi-
Frequency
module

MS&FFE
module

A ✓ 84.8% 85.1% 234
B ✓ ✓ 85.2% 85.2% 245
C ✓ ✓ 85.5% 85.6% 228
D ✓ ✓ ✓ 86.0% 86.5% 218
E ✓ ✓ ✓ 85.8% 86.0% 221
Proposed
Method

✓ ✓ ✓ 86.9% 87.2% 190

Table 8. Results of the ablation experiments

4 CONCLUSION

This study addresses the difficulties of complicated operation and low reliability
of conventional carbon deposit degree detecting systems. The DCNN model suit-
able for the discrimination task of carbon deposition degree is explored by compar-
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ing models with various structures and different capacity sizes. The experimental
findings demonstrate that the shallow network performs better in the task of this
research. Aiming at the issue of overfitting easily caused by the small data vol-
ume of the carbon deposit dataset, various data enhancement methods and dropout
structures are used to reduce the risk of overfitting. The dropout structure raises
the dimension of image features and discards some of them, effectively improving
the model’s classification accuracy. The MS&FFE feature resampling module is
designed to enrich the transition features for the problems of poor aggregation of
discriminative features and low inter-class separability in the carbon deposit image.
The MS&FFE module acquires the spatial multi-scale features and the channel
multi-frequency features, which effectively increases the inter-class differences, re-
duces the intra-class differences and improves the separability of the carbon deposit
image among the classes. In order to match the real test effect, a large number of
unprocessed images are used to test the performance of the model. The experimen-
tal findings indicate that the paper’s structure has a faster inference speed while
maintaining recognition accuracy, making it more suitable for use in real-world en-
gineering.
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