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Abstract. Blind Face Super-Resolution (BFSR) has recently gained widespread
attention, which aims to super-resolve Low-Resolution (LR) face images with com-
plex unknown degradation to High-Resolution (HR) face images. However, existing
BFSR methods suffer from two major limitations. First, most of them are trained
on synthetic degradation data pairs with pre-defined degradation models, which
leads to poor performance due to the degradation mismatch between other un-
known complex degradations in real-world scenarios. Second, some methods rely
on hand-crafted face priors as constraints, such as facial landmarks and parsing
maps, which require additional callouts and laborious hyperparameter tuning for
real cases. To tackle these issues, we propose a simple and effective self-supervised
cooperative learning framework via a conditional diffusion contraction method for
BFSR, dubbed DifBFSR, which establishes the posterior distribution of HR im-
ages from degraded LR images with unknown degradation via a powerful diffu-
sion model without expensive supervised training or additional constraint design.
Specifically, we first transform the degraded LR face image to an intermediate HR
face prediction with degradation-invariant by a simple Super-Resolution module
(SRM), which only relies on self-supervised optimization. To enhance the face pre-
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diction, we propose a Contraction Filter Module (CFM) to gradually contract the
restoration error by adaptive dynamic filtering, which efficiently leverages rich na-
ture face prior encapsulated in the pre-trained diffusion model through conditional
posterior sampling. Finally, by combining the SRM, CFM, and diffusion model
in a self-supervised cooperative learning framework, DifBFSR can robustly handle
unknown complex degradations, which favorably avoids the cumbersome training
and parameter tuning. Extensive qualitative and quantitative experiments on com-
plex degraded synthetic and real-world datasets show that our method outperforms
state-of-the-art BFSR methods.

Keywords: Blind face super-resolution, diffusion model, face restoration, image
generation
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1 INTRODUCTION

Blind Face Super-Resolution (BFSR) has great potential for practical applications in
various fields including surveillance, biometrics, and entertainment [1, 2, 3], which
aims to restore high-resolution (HR) face images from their low-resolution (LR)
counterparts suffering from arbitrary unknown degradation, such as noise, blurring,
compression artifacts, and their hybrid forms.

The arbitrary and unknown nature of these degradations renders the problem
highly ill-posed, posing a significant challenge for researchers.

To address this challenge, deep learning-based approaches for BFSR have made
progress [4, 5, 6], whose main idea is to collect a large number of synthetic LR/HR
image pairs by assuming a pre-defined degradation model and employ parameterized
deep neural networks to learn the mapping between LR and HR images.

And various constraints are designed to improve the recovery quality, such as L1,
L2 pixel-level loss, and adversarial loss, ensuring the restoration quality is conducive
to predicting realistic and reasonable results.

However, most existing methods fail to generalize to other complex degradation
cases and are sensitive to the real unknown degradations, which leads to poor per-
formance where artifacts are often observed in the output. The primary cause of this
unadaptability is the mismatch between the synthetic degradation of the training
data and the more complex actual degradation in real-world scenarios. This requires
collecting real pairs of training data, including each degradation type to retrain the
model from scratch to cover all degradation cases in the wild, which is expensive
and infeasible in practice.

To mitigate the effect of this mismatch, some existing methods introduce and
exploit various hand-crafted face-specific priors as constraints to achieve significant
improvements in the quality of facial restoration. Such as facial landmarks [7],
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parsing maps [8], and heatmaps [9] are pivotal to constraining the recovery of
accurate facial shapes. Furthermore, high-quality face images as reference pri-
ors [10, 11] are also introduced to help improve the recovered face details. Neverthe-
less, these methods require additional callouts or laborious designing while consid-
ering so many constraints that make the training unnecessarily complicated [12, 13].
When facing unknown face cases, it is usually necessary to make laborious hy-
perparameter adjustments to balance these constraints, which is not suitable for
practical applications in real-world scenarios. Recent approaches investigate the
use of generative priors, such as the Generative Adversarial Network (GAN) pri-
ors [14, 15], to help generate realistic details and textures. By incorporating gen-
erative priors into the restoration process, these methods can reduce the need for
hand-crafted priors and achieve high-quality restoration results even for unknown
faces.
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Figure 1. HR results from LR input with severe unknown degradations. Comparative
results of recent state-of-the-art methods and our method on a severely degraded face and
a real old photo face, which characterize the robust ability of our method to recover from
unknown degradation. As a result, regardless of the different degradation types, DifBFSR
achieves high-quality restoration results with fewer artifacts and more realistic results than
previous techniques [16, 15, 14, 17].

However, due to the instability of the adversarial loss and the lack of diversity
in GAN, it may lead to limited inversion performance and restricted performance,
resulting in unnatural artifacts and lower fidelity in Figure 1. In summary, the
urgent issue in the BFSR task is how to effectively incorporate sufficient facial
priors while avoiding unnecessary complexity to achieve accurate and high-quality
face restoration.

To overcome these limitations, inspired by the impressive successes of the diffu-
sion model [18] in image reconstruction [19, 20, 21], we propose a self-supervised co-
operative learning framework via a novel conditional diffusion contraction approach
to explore its potentials for BFSR, which establishes the posterior distribution of HR
face images from degraded LR face images with unknown degradation via a powerful
diffusion model.
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Different from existing methods, our method does not need expensive degra-
dation supervised training from scratch or additional complex constraint design
but sufficiently leverages the prior knowledge contained in the pre-trained diffusion
model to mitigate bias in face restoration.

Specifically, we first transform the degraded LR face image to an intermediate
HR face prediction with degradation-invariant by a simple Super-Resolution Module
(SRM), which only relies on self-supervised optimization learning without additional
training.

To enhance the face prediction and remove degradations, we propose a Contrac-
tion Filter Module (CFM) to gradually contract the restoration error by adaptive
dynamic filtering, which leverages rich nature face prior information encapsulated
in a pre-trained diffusion model through conditional posterior sampling.

Finally, by combining the SRM, CFM, and diffusion model in the self-supervised
cooperative learning framework, DifBFSR can robustly handle unknown complex
degradations in the iterative diffusion inverse process.

In conclusion, DifBFSR leverages the rich image priors and strong generative
capability of a pre-trained diffusion model to deal with unknown and complex degra-
dations in face images, which not only sufficiently leverages the powerful generation
capability of the diffusion model, but also favorably avoids the cumbersome degra-
dation training and parameter tuning.

Extensive qualitative and quantitative experiments in various settings show that
our method outperforms state-of-the-art BFSR methods on complex degraded syn-
thetic and real-world datasets. Moreover, DifBFSR also generalizes well for natural
images or synthesized images with arbitrary degradations from various scenes out
of the distribution of the FFHQ [22] training set.

In summary, the contributions of this work are as follows:

1. We propose a novel self-supervised cooperative learning framework for BFSR,
which establishes the posterior distribution of HR face images as a Markov
chain starting from LR face images and optimize them via conditional diffusion
contraction strategy, which allows us to guarantee the fidelity and realness of
the restoration.

2. We leverage face image prior encapsulated in a pre-trained diffusion model to
robustly cope with complex and unknown degradations without expensive syn-
thetic degradation supervised training or additional hand-crafted face constraint
design.

3. Extensive qualitative and quantitative experiments on heavily degraded syn-
thesis and real-world face datasets demonstrate that our DifBFSR outperforms
state-of-the-art BFSR methods.
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2 RELATED WORK

2.1 Blind Face Super Resolution

Blind face super-resolution aims to restore high-resolution face images from low-
resolution face images suffering from unknown degradations, such as blurring, noise,
compression, etc.

In the past few years, with the development of deep learning, the restoration
quality of face images has significantly improved. Most existing algorithms [23, 24]
directly learn a mapping from the low-resolution images to high-resolution images
with a pixel loss constraint.

DFDNet [8] learns a deep dictionary network by the L2 loss to guide the de-
graded restoration process, and adaptively fuses dictionary features into the input
to adopt a multi-scale dictionary in a progressive manner to achieve coarse-to-fine
face restoration.

VQFR [5] further introduces vector quantization technology to extract high-
quality low-level feature libraries from high-quality faces, which can help restore
realistic facial details.

CodeFormer [25] proposes a Transformer-based network to model the global
composition and context of face information, which acquires rich expressiveness and
enhances the adaptability to different degradations.

Despite remarkable results in terms of PSNR, training with only pixel con-
straints often leads to perceptually unconvincing output with severe over-smoothing
artifacts.

To alleviate this problem, some existing methods also exploit face-specific pri-
ors to further constrain the restored solution, e.g., face landmarks [7, 26], facial
components [8, 27], and generative priors [28, 14].

Besides, nature image priors in generative adversarial networks like pre-trained
StyleGAN [22, 29] are used to produce more realistic textures and details. Recent
BFSR methods also introduce the adversarial loss [30] and the perceptual loss [31]
to achieve more realistic results.

PULSE [16] guarantees the authenticity of the output by guiding the exploration
of the latent space of the generative model in a self-supervised manner. GPEN [14]
embeds GAN as a priori decoder into a U-net network, and uses its deep and shallow
features to control the global facial structure, local facial details and background of
the reconstructed image.

Unlike the popular GAN inversion optimization, GLEAN [15] only requires one
forward pass to generate upscaled images and utilizes multi-resolution skip connec-
tions to improve image fidelity and texture fidelity.

GFPGAN [28] utilizes rich and diverse prior knowledge encapsulated in pre-
trained face GAN to simultaneously restore facial details and enhance color based
on spatial feature transformation.

RestoreFormer [32, 17] utilize a fully-spatial attention to model face contextual
information and introduce the interplay with the prior. However, due to the no-
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torious instability of the adversarial training loss, unnatural artifacts can still be
observed in the output.

As discussed above, most of the existing BFSR methods rely on the ideal face
prior or specific degradation space and are not flexible enough to deal with volatile
real degradation and application requirements.

To avoid cumbersome training and parameter tuning, our approach leverages the
rich image priors from a pre-trained generative diffusion model to handle unknown
complex degradation without complicated adversarial losses.
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Figure 2. The overview of the proposed DifBFSR. a) The pre-training of DifBFSR is the
forward process of the denoising diffusion probability model (DDPM), we take random
face images x0 in FFHQ [22] dataset as input and output the random noise xT to learn
the natural face detail texture information as prior. b) The inference of DifBFSR is
the reverse process of the DDPM, we utilize the Contraction Filter Module (CFM) to
leverage the texture prior encapsulated in the pre-trained DDPM to enhance the coarse
face prediction ŷt extracted from the Super-Resolution Module (SRM). It is worth noting
that, our networks have not been trained on any degraded datasets and only utilize a single
degraded image for self-supervised restoration during the inference stage.

2.2 Denoising Diffusion Probability Model

Inspired by non-equilibrium statistical physics, Sohl-Dickstein et al. [18] propose
Denoising Diffusion Probability Model (DDPM) as a new generation method, which
has achieved faster performance than Generative Adversarial Networks (GAN) in
unconditional image generation.

Diffusion models have recently attracted significant interest in the community
of low-level vision tasks due to their strong performance of generative models.

Attributed to its sound and perfect theoretical support, the diffusion model has
achieved an impressive success in the image generation and reconstruction, such as
super-resolution [21], inpainting [33], and colorization [34].
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SR3 [21] modifies DDPM to be conditioned on low-resolution images through
channel-wise concatenation, which first utilizes it for super-resolution. SRDiff [35]
provides diverse and realistic predictions by converting Gaussian noise into LR-
conditioned Markov chains and introduces residual predictions to speed up conver-
gence.

ILVR [20] generates high-quality images and controls the generation by iterative
latent variable refinement via a conditioning sampling method. DDRM [19] first
proposes to solve the linear restoration inverse problem through SVD decomposition
based on a pre-trained diffusion model.

DDNM [36] solves various linear restoration tasks well by the range-null space de-
composition. LDM [37] performs super-resolution in a similar concatenation manner
but in a low-dimensional latent space. However, these methods fix the degradation
as a single fixed degradation, which is not suitable for other complex degradation
cases.

3 PROPOSED METHOD

In this study, we aim to exploit a pre-trained Denoising Diffusion Probability Model
(DDPM) as an effective prior for blind face super-resolution.

The proposed DifBFSR is shown in Figure 2, which combines a common U-Net
DDPM [38], a simple Super-Resolution Module (SRM), and a novel Contraction
Filter Module (CFM) in a unified self-supervised cooperative learning framework.

Given an input LR face image y with unknown degradation, we first transform
its fidelity to a lost intermediate face prediction ŷt with degradation-invariant by
the SRM to refine the generative process.

Then, to enhance the face prediction ŷt, CFM leverages it and a diffusion sam-
pling image xt gradually contracts the restoration error by adaptive dynamic filtering
and fuses them to obtain the refined HR face images x̂t with rich nature face detail
information.

As a result, we approximate this posterior distribution through conditional pos-
terior sampling from the distribution p(xt−1|xt, x̂t), where xt−1 is a diffused version
of the desirable HR image x̂t, followed with a reverse Markov chain that estimates
the final output x0 with higher resolution and high-quality details.

Our framework first infers an intermediate HR face image from the LR image
that maintains coarse structural information, providing a suitable initial distribu-
tion and image resolution for subsequent diffusion sampling, and then uses the pre-
trained face diffusion model to enrich face details to infer the ideal HR face image.

There are several advantages to our approach:

1. We pre-train the diffusion model on natural faces, which can handle real un-
known degradations without designing and synthesizing complex degradation
data pairs for additional training.

2. We take an advantage of the pre-trained diffusion model through self-supervised
collaborative learning without complex hand-crafted face priors.
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3. We adopt the diffusion conditional posterior sampling based on the transition
prediction, which is more accurate and efficient than the Markov chain directly
from y to x0.

In the following, we detail the proposed self-supervised cooperative learning
approach and conditional diffusion contraction strategy.

3.1 Self-Supervised Cooperative Learning

To guarantee that the image fidelity is maintained and the perceptual quality of the
image is improved, we design the image Super-Resolution Module (SRM) and the
Contraction Filter Module (CFM) to solve these problems.

In particular, we design a unified framework to alternately optimize these two
modules via self-supervised cooperative learning, which first improve the resolution
of the input y and obtaining ŷt through SRM, and the CFM maps degradation-
invariant ŷt and natural face xt to high-quality face image x̂t and iteratively generate
the final high-resolution high-quality x0 face through DDPM.

Our target is to maximize the likelihood

pϕ,η(x̂t|y) =
∫
pη(x̂t|xt, ŷt)pϕ(ŷt|y)dx̂t

= Ex̂0∼pϕ(ŷt)|y) [pη(x̂t|xt, ŷt)] , (1)

where pϕ(·) corresponds to the first stage SRM, and pη(·) corresponds to the sec-
ond stage CFM, where ϕ and η represent the learned parameters, respectively.
x̂t denotes the estimated x0 at step t. Instead of directly learning the mapping
from y to x0, we prospose the conditional diffusion contraction approach. ϕ,η are
the expected model parameters obtained by self-supervised learning without any
hyper-parameters tuning.

The optimization objective is reformulated into a minimization problem as fol-
lows

ϕ, η = argmin
ϕ,η

Ls(ϕ, η|y). (2)

The total optimization objective Ls is formulated by

Ls =
1

2
∥ψl(y)− [ψl(D(S (y;ϕ)); η)]∥22, (3)

where ψl denotes low-pass filter implemented by the CFM to obtain low-frequency
information of a face image. G(·) and D(·) represent SRM and CFM modules,
respectively, where the model parameters ψ,η are updated as follows

W̃ϕ = Wϕ − α
∂

∂Wϕ

Ls,

W̃η = Wη − β
∂

∂Wη

Ls,

(4)
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where W̃· denotes the updated parameters, α and β are the learning rates.
We alternately update these modules to transition degradation distribution by

alternating back-propagation via the Adam algorithm.
The stepwise transforms the degenerate distribution to approach the unknown

degradation of LR, which achieve the conditional diffusion contraction via iterative
updates.

Super-Resolution Module. Our Super-Resolution Module (SRM) adopts a sim-
ple ResNet upsampling structure [39] that takes degraded LR face images as
input and generates HR face predictions as output.

The main goal of SRM is to improve the image resolution to provide a suitable
initialization distribution for the subsequent diffusion step.

In addition to improving the resolution, our SRM also aims to be degradation-
invariant.

This means that it can generate an HR face prediction that is robust to arbitrary
degradation, such as noise, blurriness, or compression artifacts.

To achieve this, our SRM relies on self-supervised optimization learning, which
allows it to adapt to different types of degradation without an additional train-
ing.

This optimization process is performed without any additional training data or
supervision, making it more efficient and flexible than other techniques that rely
on supervised learning.

Overall, through adaptive iterative updates, our SRM provides a suitable ini-
tialization distribution and transforms degraded LR face images into desired HR
resolution predictions, which are both robust to unknown complex degradation
and avoid sampling directly from the Gaussian noise to effectively speed up the
diffusion restoration step.

3.2 Conditional Diffusion Contraction

Simulating every possible degradation in the real world is obviously difficult and
expensive.

To remove the reliance on synthetic degradation, we leverage the well-performing
DDPM to remove the degradation from the input by the conditional diffusion con-
traction strategy in the iterative reverse restoration process, which consists of the
contraction filter module and the conditional diffusion sampling.

Contraction Filter Module. To generate clean and natural face images while
maintaining semantic information, we propose the Contraction Filter Module
(CFM) to gradually contract the restoration error by adaptive dynamic filter-
ing, which provides detailed guidance for the restoration process and robustly
removes degradation.
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The restoration process defined above involves an intermediate time step t that
makes the distance between ŷt and xt very close, especially in the low-frequency
part.

Among them, the high-frequency of the diffusion result xt and the degenerate-
invariant intermediate ŷt contain high-quality details and blurred details due to
degradation, respectively.

To adaptively fuse high- and low-frequency information to utilize the rich face
details, we design an adaptive dynamic filtering strategy.

After each transition from xt+1 to xt, we replace the low-frequency part of xt
with that of ŷt because they are close in distribution, which is formulated as

x̂t = ψl(ŷt) + (I − ψl)(xt), (5)

where ψl(·) denotes a low-pass filter implemented by downsampling and upsam-
pling operations in CFM.

We remain the low-frequency part of ŷt to ensure that the result x̂t shares basic
semantics with ŷt, and remove the high-frequency part of ŷt because it contains
little useful information due to the degradation-invariance, which guarantees the
fidelity of the output image.

We remain the high-frequency part of xt to leaverage high-frequency natural
texture information in the diffusion model, ensuring the perceptual quality of
the output.

Through iterative refinement of the network, the degradation error is progres-
sively contracted, and the balanced fusion of low-frequency information of HR
prediction images ŷt and high-frequency information of natural face images xt
is dynamically realized.

Attributed to this diffusion contraction mechanism, the model has a greater error
tolerance for degradation, thus we can handle complex and severe degradation
by simply training on natural images, avoiding complex constraints designing.

Conditional Diffusion Sampling. With the output of CFM, to further enhance
the image fidelity, we propose a conditional diffusion posterior sampling via
degradation contraction by leveraging rich and diverse natural face priors en-
capsulated in a pre-trained DDPM [40].

As shown in Figure 2, DDPM consists of a forward process and a reverse process.

The forward process is a Markov chain that gradually corrupts the nature data
by repeatedly adding Gaussian noise, which is equivalent to a degradation pro-
cess with the following formulation

q(xt|xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (6)

where βt is a pre-defined noise variance. t denotes the timestep.



Blind Face Super-Resolution via Conditional Diffusion Contraction 379

We leverage this process to pre-train the DDPM model to learn rich natural face
information.

The reverse process can iteratively sample real images xt with rich realistic
textures from random Gaussian noises xT , which is equivalent to a restoration
process.

Benefiting from generative priors in the pre-trained DDPM, denoising within
the DDPM manifold naturally normalizes the realism and fidelity of sampled
images.

Therefore, to extract the natural face distribution from the DDPM ϵθs(xt, t), we
perform reverse diffusion from xT by the following formulation

xt =
1√
ᾱt

(
xt+1 − ϵθs(xt, t)

√
1− ᾱt

)
, (7)

where ᾱt is diffusion hyper-parameter, xt denote the estimated x0 at time step
t ∈ [0, T ], which are equivalent to the original DDPM sampling [38]. xt obeys
the real face distribution with rich detail texture information.

Following the previous work [19, 36], we reparameterize the mean as

µt(xt, x̂t) =

√
ᾱt−1βt
1− ᾱt

xt +

√
αt(1− ᾱt−1)

1− ᾱt

x̂t, (8)

where the mean µt(·) is the target we want to estimate by the DDPM. βt, 1−αt

are hyper-parameters in the reverse diffusion process, that satisfy the condition
βt = 1− αt.

To maximize the preservation of face details and overall image quality, we model
the desired high-frequency texture information during the reverse diffusion pro-
cess via conditional posterior sampling.

We aim to learn a conditional probability from xt to xt−1, which is defined as
the following Gaussian distribution

pθ(xt−1|xt, x̂t) = N (xt−1;µθ(xt, x̂t),Σθ(xt, t)) , (9)

where θ is the learnable parameter. Σθ(·) represents the same standard deviation
as the original DDPM.

With such a learned probability distribution, we can approximate the data dis-
tribution q(x0) via the following marginal distribution

pθ(x0) =

∫
p(xT)

T∏
t=1

pθ(xt−1|xt)dx1:T, (10)

where p(xT) = N (xT;0, I) denote the standard normal distribution.
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We implement simple conditional sampling from the diffusion model to achieve
blind degradation restoration.

Therefore, we adopt the conditional diffusion contraction strategy, where the
model parameters of SRM and CFM are randomly initialized and optimized in
the inverse process.

By combining the SRM, CFM, and DDPM in the self-supervised cooperative
learning framework, DifBFSR can robustly handle unknown complex degrada-
tions in the iterative diffusion inverse process, which benefited from the natural
face image texture prior in the diffusion model.

LR PULSE GPEN PSFRGAN GLEAN Ours GTRestoreFormer

Figure 3. Comparative results of the state-of-the-art methods and the proposed method
on three complex synthetic examples in the CelebA-Test dataset
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Figure 4. Comparative results of recent state-of-the-art methods and the proposed
method on three real degraded face examples in CelebChild-Test dataset
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Figure 5. Comparative results of recent state-of-the-art methods and the proposed
method on three real old photo examples in Webphoto-Test dataset

4 EXPERIMENTS

Following existing BFSR methods, we conduct extensive experiments to verify the ef-
fectiveness of DifBFSR on both one synthetic and two real-world datasets at scale×4.
To evaluate different methods comprehensively, we adopt seven quantitative metrics
including: three reference evaluation metrics PSNR, SSIM [41] and LPIPS [31], four
no-reference evaluation metrics NIQE [42], PI [43], NRQM [44], and FID [45].

Specifically, PSNR and SSIM are commonly used to evaluate image fidelity.
LPIPS is a learned perceptual similarity metric calculated by the VGG [46] network.

NIQE, PI, and NRQM can assess the naturalness and perception quality of face
images without reference images.

As for FID, it is the KL divergence between the feature distributions of the
restored images and the ground truth nature images to quantitatively evaluate the
overall quality of the restored image.

4.1 Compared Methods

We compare DifBFSR with recent state-of-the-art BFSR methods: PULSE [16],
GPEN [14], PSFRGAN [6], and GLEAN [15].

Note that similar to these GAN-Based methods, our method only relies on a pre-
trained network trained by FFHQ [22] dataset.

As for these methods, we adopt their official codes and pre-trained models for
testing.
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4.2 Implementation Details

To justly verify the ideas in this paper, we consider a simple and plain network
structure without complex design.

For the super-resolution module, we follow the architecture in SRResNet [47]
with five convolution layers of skip convolution and a upsampling layer.

To achieve adaptive dynamic filtering, the architecture of the contraction filter
module consists of two iterations of convolutional layer and nonlinear LeakyRelu [48]
layer.

DDPM with a common U-Net architecture obtained from [40] that are depen-
dently trained on FFHQ [22] dataset, which contains 70 000 high-quality face image.

The learning rates for α and β are set as 2e-3 and 5e-3, respectively.
The number of iterations for the framework is 100 steps.

Metrics Input
PULSE
[16]

GPEN
[14]

PSFRGAN
[6]

GLEAN
[15]

RestoreFormer
[17]

Ours

PSNR ↑ 24.05 19.07 24.36 24.02 25.14 24.78 25.27
SSIM ↑ 0.6167 0.6216 0.6771 0.6723 0.6951 0.6841 0.7349
LPIPS ↓ 0.2854 0.2736 0.2467 0.2362 0.2361 0.2429 0.2276

NIQE ↓ 13.39 3.83 5.97 5.38 5.14 5.94 5.81
PI ↓ 10.04 2.89 5.46 4.73 4.74 5.54 5.49
NRQM ↑ 3.21 8.31 4.89 5.69 5.62 4.91 5.11

FID ↓ 252.55 107.15 102.92 108.10 98.01 98.33 77.46

Table 1. Comparison of different methods on the synthetic CelebA-Test dataset. The
optimal and suboptimal results are highlighted in red and blue.

4.3 Experiments on the Synthesis Dataset

Following previous works [24, 3], we evaluate DifBFSR on one synthetic dataset,
denoted as CelebA-Test, contains 100 HR images from CelebA-HQ [49], and the
corresponding LR images are synthesized by the following formulation.

Mathematically, a LR image y is degraded from a HR image x by the designed
degradation Dk,s,n,j as

y = Dk,s,n,j(x) = [(x⊗ k)↓s + n]j, (11)

where ⊗ represents the convolution operation, k denotes the Gaussian blur ker-
nel, ↓s is the downscale operation, n is an additive noise and j denotes the JPEG
compression.

To quantitatively evaluate the BFSR methods, k is randomly selected from
8 isotropic Gaussian kernels with a range of width [1.8, 3.2], ↓s is bicubic downsam-
pling with 4 scale and the noise is selected from white Gaussian with a range of
noise level [0, 30].
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The JPEG compression is selected from a range of compression quality factor
[50, 100], which is a nonlinear operator due to the discrete cosine transform [50].

In particular, we set a total of 8 degradation cases from hard to easy to simulate
a variety of complex degradations in real-world scenarios.

During testing, we take the average of the restoration results in all degeneration
cases as the final result.

Quantitative experiment. The quantitative evaluation results of different SR
methods on the synthesis datasets are shown in Table 1, and several conclu-
sions can be drawn.

Note that PSNR and SSIM are used to measure fidelity, and higher values mean
that the restored image is more similar to ground truth in detailed texture.

Firstly, as expected, PULSE and PSFRGAN have the highest perceptual quality
metrics (i.e., NIQE, PI, and NRQM), and although it performs well visually, it
does not perform well in fidelity due to the instability of GAN and the inaccuracy
of latent space search.

Then, GPEN and GLEAN achieve promising results, as they are trained on
similar degradation, but do not perform as well as DifBFSR in the case of
unseen degradation.

The proposed DifBFSR achieves the best overall PSNR results and yields the
best overall SSIM results, which benefits from a strong diffusion generation prior
and an efficient trade-off of perception and fidelity.

We summarize the comparative results that the proposed DifBFSR achieves the
best performance across all reference metrics, indicating its effectiveness and
superiority in the task of BFSR.

Qualitative experiment. For easy visualization, three typical examples of CelebA
dataset are shown in Figure 3.

In the first slightly degraded example, most methods except PULSE are able to
recover realistic images. PULSE cannot guarantee fidelity because its optimiza-
tion cannot find the correct latent code in GAN by inversion.

The second and third examples exhibit more severe degradation, most of the
comparison methods produce noticeable artifacts.

It can be seen that GPEN produces blurry artifacts, GLEAN fails to remove the
noise and recover sharp edges, and PSFRGAN fails to remove the compression
artifacts.

In comparison, our DifBFSR produces better visual results than the other meth-
ods and makes a better compromise between artifact removal and detail preser-
vation.

Experiments on synthetic datasets demonstrate that DifBFSR can perform ro-
bustly on images corrupted by challenging diverse degradations and achieves
satisfactory results.
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Metrics PULSE GPEN PSFRGAN GLEAN RestoreFormer Ours

NIQE ↓ 4.18 6.16 5.66 4.74 9.16 4.36
PI ↓ 3.42 5.75 5.28 4.50 7.31 4.17
NRQM ↑ 7.78 4.67 5.08 5.91 4.34 6.19
FID ↓ 108.45 121.78 106.16 114.50 122.06 98.92

Table 2. Comparison of different methods on the real-world CelebChild dataset. The
optimal and suboptimal results are highlighted in red and blue.

4.4 Experiments on the Real-World Dataset

As for the real-world datasets, we consider two typical ones with different degrees of
degradation, namely CelebChild-Test, WebPhoto-Test. CelebChild-Test consists of
100 degraded child face images in the wild. WebPhoto-Test is made up of 407 real
old photo images crawled from the internet.

Some of them are old photos with real severe degradations, and are thus suitable
to test the robustness of different methods under severe degradations.

Metrics PULSE GPEN PSFRGAN GLEAN RestoreFormer Ours

NIQE ↓ 3.92 6.54 5.58 5.38 12.75 4.46
PI ↓ 3.24 5.77 4.74 4.56 9.71 4.42
NRQM ↑ 7.94 4.93 6.16 6.65 3.13 6.06
FID ↓ 100.47 96.11 89.19 100.12 101.70 81.42

Table 3. Comparison of different methods on the real-world WebPhoto dataset. The
optimal and suboptimal two results are highlighted in red and blue.

Quantitative experiment. In experiments on two real-world datasets, we mainly
employ FID as a quantitative metric since its ground truth is not accessible.

We estimate the feature statistics of HQ images and the recovered images sep-
arately in the FFHQ [22] dataset, and then compute the KL divergence as the
FID.

The ground truth of the real-world datasets is not available, we adopt the
non-reference image quality assessment (IQA) metrics including NIQE, PI, and
NRQM for perception quantitative evaluation.

Note that NIQE and PI are reference-free metrics, and lower values mean that
the restored image has higher perceptual visual quality. The results of the com-
parison are summarized in Tables 2 and 3. We can observe that DifBFSR
achieves the best performance on both CelebChild-Test and WebPhoto-Test
datasets, it also outperforms most state-of-the-art BFR methods.

Although PULSE achieves the best non-reference metrics, the resulting images
have completely lost their fidelity and are not worthy of comparison.
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As can be seen, the proposed DifBFSR achieves the best perceptual metrics at
all datasets, which indicates that our results are more in line with human visual
senses and satisfy the semantic identity fidelity of the input.

Qualitative experiment. To further analyze the characteristics of our method,
we show three representative examples of two datasets in Figure 4, and more
visualizations are given in Figure 5.

It is again observed that DifBFSR gives better recovery results, especially in the
second and third examples with severe unknown degeneracy in Figure 4.

We notice that our DifBFSR tends to produce realistic texture detail, e.g. hair
and eyelashes, which cannot be restored by other methods.

The main reason is that DifBFSR reconstructs the complete structure and high-
fidelity texture separately through conditional diffusion contractions, and takes
advantage of more realistic face image priors in the diffusion model.

To further verify the robustness of DifBFSR, we compare it under real severe
degradation in old photos shown in Figure 5.

As can be seen, DifBFSR repairs damaged old photos relying on the natural
diffusion face prior and restores natural real faces while maintaining identity
information. And other methods have lower fidelity, such as PULSE and GPEN.

These results confirm the effectiveness and robustness of our DifBFSR for un-
known severe degradations in real-world scenarios.

4.5 Ablation Studies

Model ID SRM CFM PSNR ↑ SSIM ↑ LPIPS ↓
#1 ✗ ✗ 20.38 0.5021 0.5052
#2 ✗ ✓ 22.74 0.5964 0.4123
#3 ✓ ✗ 24.01 0.6896 0.3561
#4 ✓ ✓ 25.27 0.7349 0.2276

Table 4. The ablation study of the individual components

To verify the effectiveness of the proposed DifBFSR method, we conduct abla-
tion experiments to study the impact of the Super-Resolution Module (SRM) and
Contraction Filter Module (CFM) on the CelebA-Test dataset.

As shown in Table 4, the results of ID #2 and #3 indicate that our CFM and
SRM achieve average improvements of 2.36 dB and 3.63 dB in terms of PSNR. The
results of #4 show that the PSNR/SSIM values of 20.38/0.5021 from baseline are
significantly increased to 25.27/0.7349 dB by the combination of the two modules.

According to the results, we can conclude that by relying on self-supervised
optimization learning, our SRM can find intermediate faces with degradation in-
variance without complex parameter adjustment and pre-training. By mining face
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prior information, our CFM can accurately eliminate complex unknown degradation
to enhance the results through adaptive dynamic filtering.

5 CONCLUSIONS

In this paper, we propose a self-supervised cooperative learning framework via
a conditional diffusion contraction method for Blind Face Super-Resolution, dubbed
DifBFSR, which establishes the posterior distribution of HR face images from de-
graded LR face images with unknown degradation via a powerful diffusion model
without expensive degradation supervised training or additional complex constraint
design.

SRM transforms the degraded LR face image to an intermediate HR face pre-
diction with degradation-invariant, which only relies on self-supervised optimization
learning without additional training.

CFM gradually contract the restoration error by adaptive dynamic filtering to
enhance the face prediction, which leverages rich nature face prior information en-
capsulated in a pre-trained diffusion model through conditional posterior sampling.

By combining the SRM, CFM, and DDPM in the self-supervised cooperative
learning framework, DifBFSR can robustly handle unknown complex degradations,
which favorably avoids the cumbersome training and parameter tuning.

Extensive qualitative and quantitative experiments in various settings show that
our method outperforms state-of-the-art BFSR methods on complex degraded syn-
thetic and real-world datasets.

As a result, DifBFSR provides a new way to solve BFSR for real-world applica-
tions, we hope that this work could inspire more robust diffusion-based restoration
methods in the future.
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