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Abstract. Generative adversarial networks (GANs) have been used as a solution
to handwritten Chinese character automatic generation (HCCAG) in recent years.
However, most existing GAN-based methods adopt a pixel-based strategy, which ig-
nores the radical structure of Chinese characters. To achieve better HCCAG, a rad-
ical constraint-based GAN (RC-GAN) is proposed in this work. In the proposed
method, a gated recurrent unit (GRU)-based radical learning network is designed
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to calculate the radical components among Chinese characters, and radical consis-
tent loss is applied to train this module. Finally, the radical learning module is
fused with a cyclic structure GAN to improve the performance of Chinese character
generation. The experimental results show that compared with the existing GAN,
the proposed method has better performance. Specifically, the proposed method
can reduce the stroke error in the generated Chinese character images.

Keywords: Handwritten Chinese character generation, generative adversarial net-
work, radical constraint, cyclic structure

Mathematics Subject Classification 2010: 68U10

1 INTRODUCTION

Chinese calligraphy is not only an expression of Chinese culture but also one of
the artistic and cultural carriers of China’s long history. For a long time, Chinese
calligraphy has been the object of imitation and study by many researchers. Due to
the large number of Chinese characters, the complexity of stroke structures and the
diversity of their styles, it often takes a great amount of time and effort to imitate
them well before one may achieve the desired visual aesthetic effect. The topic of
this work is the automatic generation of handwritten Chinese characters, which are
widely used in many applications, such as Chinese character art creation, calligra-
phy education and personalized character library creation. How to automatically
generate Chinese characters with strong artistic effects through a computer has re-
ceived extensive attention from numerous researchers, and many methods have been
proposed in recent years.

Many early works on handwritten Chinese character automatic generation
(HCCAG) relied on a hierarchical representation of simple strokes decomposing
Chinese character images (CCIs) into strokes and then combining the strokes to
mimic the writing style of Chinese characters. These approaches focused only on
the local representation of Chinese characters and not on their overall stylistic fea-
tures. Therefore, researchers have refined the method with various steps in an effort
to optimize the overall results. However, such improvement continues to be non-
significant.

With the rapid development of deep learning algorithms in computer vision and
computer graphics, researchers have begun to turn to more structurally complex
deep neural networks (DNNs) to solve HCCAG, such as DNN-based methods and
semi-amortized variational autoencoders. Specifically, due to the development of
generative adversarial networks (GANs) [1], researchers have started to use GANs
to achieve image-to-image style transfer. Referring to image-to-image translation
methods [2] between different domains, the HCCAG task is also regarded as the
image-to-image style translation problem. In these related works, different font
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styles, such as DFKai-SB script1, running script, DFKai-SB and Pen-Kai scripts2,
SIM-Kai script3 and Lanting script4, are regarded as different data domains. Zi2zi [3]
was the first work to use GAN to generate Chinese characters but required pair-
wise data as the input. DCFont [4] and pyramid embedded GAN (PEGAN) [5]
were the improved versions of the zi2zi method. Handwritten CycleGAN [6] was
designed to solve the need for pairwise input in the zi2zi algorithm, while Calli-
GAN [7] was proposed to generate Chinese calligraphy using strokes as the input
feature.

These GAN-based methods can be summarized as pixel-based methods, which
use pixel-level loss and adversarial loss to train the HCCAG model. However, Chi-
nese characters are composed of a few fundamental structural components called
radicals [8]. Therefore, extracting radical information in the HCCAG is crucial.
Traditional image-to-image style transfer focuses on the visual effect of the whole
image with a complex scene so that even if there is a small missing or subtle flaw in
the generated image, we are unlikely to notice this. However, in the case of HCCAG,
the generated CCI is a binary image. Small stroke errors have a greater influence
on the visual effect of HCCAG. As shown in Figure 1, there are some stroke errors,
including missing strokes, broken strokes, extra strokes, and incomplete strokes, in
the image generated by zi2zi [3], Handwritten-CycleGAN [6] and no independent
component for encoding GAN (NICE-GAN) [9].

Source Zi2zi TargetNICE-GAN OursCycle-GAN

Figure 1. Examples of HCCAG with different methods. The red circle indicates the stroke
error.

To address the problem of stroke errors in such methods and improve the visual
effect of HCCAG, inspired by the radical analysis work of Chinese characters [8, 10],
in this work, a radical constraint module is proposed to fuse with the existing GAN
model, and a new radical constraint-based GAN (RC-GAN) is proposed for the
HCCAG task. The key idea behind the proposed method is to constrain the radical
sequence of the Chinese character to be correctly decoded from the generated CCI
to avoid stroke errors. The overall framework of the proposed method is shown
in Figure 2. In the proposed method, a GAN with a cycle structure is adopted,
and NICE-GAN, which is an improved CycleGAN model, is used as the baseline
model. We assume that the standard radicals of the same Chinese character in
different domains are consistent. To implement radical constraints, a gated recurrent

1 This represents traditional Chinese characters with Kai script.
2 These represent handwritten Kai scripts with pen.
3 This represents simplified Chinese characters with Kai script.
4 This represents the characters from “The Orchid Thief” written by Wang Xizhi.
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unit (GRU) model is designed to learn the radical structure sequence of the CCI.
A radical consistent loss between the predicted radical sequence and the standard
radical sequence is defined to train the radical learning model. Finally, the radical
consistent loss is merged with the reconstruction loss, cycle loss and adversarial loss
to train the proposed model.

Figure 2. Illustration of the proposed RC-GAN. Blue lines indicate the conversion from
the X to Y domain. Green lines indicate the transformation from Y to X domain. The
network framework reuses the encoder part of the discriminator to extract image features.
In addition, the method adds a radical constraint module to the GAN to generate char-
acters with enhanced visual effects.

• We propose an RC-GAN to solve the stroke error problem of HCCAG and
improve the visual effect of the generated handwritten Chinese character images.

• We apply two GRU decoders and radical consistent loss to learn the radical
sequence from two domains.

• The experimental results show that the proposed method achieves state-of-the-
art performance. Compared with the baseline model, the proposed model can
significantly reduce the number of stroke errors in the generated handwritten
Chinese character image.
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The remainder of this paper is organized as follows. Section 2 introduces the related
works, Section 3 describes the proposed method, Section 4 presents and discusses
the experimental results, and Section 5 concludes the paper.

2 RELATED WORKS

2.1 Generative Adversarial Networks

In 2014, GAN was proposed for image-to-image transfer by Goodfellow et al. [1]
and contained a generator and a discriminator. The generator was used to generate
the target image, and the discriminator was used to distinguish the generated im-
age from the real image. This proposed network framework has produced a major
technological breakthrough in the field of deep learning and has started to be widely
studied and applied by researchers. However, the original GAN was not mature.
Problems such as gradient explosion and pattern collapse have limited its devel-
opment. Therefore, researchers have proposed many improved versions of GANs
to address these problems. The concept of conditional GAN [11] added new con-
straints to the original GAN to generate the network for the target sample, but its
model training was unstable. Wasserstein GAN [12] used the Wasserstein distance
instead of the Jensen-Shannon distance in the original GAN to measure the dis-
tance between true and generated samples to solve the problem of disappearing and
exploding gradients.

Traditional GANs transform the images between two different domains and re-
quire pairwise images with the same content in both domains as training data, but
such datasets are difficult to obtain. Therefore, CycleGAN [13] were proposed to con-
struct a learning strategy for mismatched images. The framework of these methods
usually contains two discriminators and two generators and forms a cyclic network,
enabling the transitions between the two domains to be generated mutually and thus
effectively solving the problem that the datasets need to be pairwise. In addition, an
unsupervised GAN with adaptive layer-instance normalization (AdaLIN) for image-
to-image translation added an attention mechanism module based on CycleGAN.
NICE-GAN [9] proposed an improved method by reusing the discriminator, using
its first part as the encoder to extract image features and enhance the performance
of the network structure.

2.2 Chinese Character Generation

Early works on Chinese character generation involved researchers layering Chinese
characters with strokes and then combining the strokes to mimic the font writing
style. With the application of machine learning, researchers turned to deep learning
for solutions to Chinese character generation. Zi2zi [3] was the first method to gen-
erate Chinese characters with a GAN. Subsequently, researchers have successively
started to use GANs, such as DCFont [4] and PEGAN [5], for Chinese character
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generation. PEGAN improved the performance of zi2zi by introducing multiscale
image pyramid refinement to transfer information. DCFont is an end-to-end learning
system that automatically generates the entire Chinese character library from a few
written characters. Handwritten-CycleGAN [6] was proposed based on the founda-
tion of CycleGAN, making it unnecessary to generate a Chinese character dataset
in a pairwise manner. FontRNN [14] treated Chinese characters as sequences of
points (writing trajectories) and proposed handling the task of Chinese character
generation by means of recurrent neural networks.

However, most of the Chinese characters generated by these methods suffer from
various problems, such as missing strokes, incoherence and poor learning of char-
acter styles. Later, ChiroGAN [15] proposed extracting the skeleton information of
Chinese characters using erosion and expansion methods when generating Chinese
characters and then using the extracted information to generate a certain style of
Chinese characters. FontRL [16] also used stroke skeleton information to generate
Chinese characters. CalliGAN [7] used stroke information as a prior knowledge and
formed a set of vectors to pass into the generator to generate Chinese characters to
constrain the problem of missing strokes. Unfortunately, none of the above men-
tioned methods can solve the problems of stroke errors and missing strokes in the
generation of handwritten Chinese characters. Therefore, the work of this paper is
based on the idea of radical learning and improves the existing problems to solve the
problems of missing strokes, incorrect strokes, and poor style of generating Chinese
characters.

Although the ideal of radical learning was adopted in [17] and [18], the works in
these two references and ours are completely different. In [17], a radical sequence was
used as input to generate Chinese character images, while our method takes Chinese
character images as input and aims to generate another handwritten stylized image
of Chinese characters. In [18], a bidirectional LSTM-based network was designed
to learn radical images from input images, and a structure level loss was applied to
compute the loss between the generated radical images and generated whole Chinese
character images. Different from the above works, we add a GRU model to learn
radical sequence representation from the generated Chinese character image and
define cross-entropy loss between the standard radical sequence and the predicted
radical sequence as a method to reduce the stroke errors in the generated Chinese
character image.

3 PROPOSED METHOD

Given two different domains < X, Y >, the objective of this work is to build two
translation mappings, fx−>y = p(Y | X) and fy−>x = p(X | Y ). The overall
framework of the proposed RC-GAN in this paper is shown in Figure 2. In the
following section, we first introduce the overview of the structure of the proposed
method and then describe the proposed GRU-based radical learning network (RLN)
in detail. Finally, the overall training of the proposed model is presented at the end
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of this section. To make this paper easy to follow, all of the abbreviations are listed
in Table 1.

Abbreviations Full Names

GAN Generative adversarial network

HCCAG Handwritten Chinese character automatic generation

RC-GAN Radical constraint-based GAN

GRU Gated recurrent unit

CCI Chinese character image

DNN Deep neural network

PEGAN Pyramid embedded GAN

NICE-GAN No independent component for encoding GAN

AdaLIN Adaptive layer-instance normalization

RLN Radical learning network

ReLU Rectified linear unit

MLP Multilayer perceptron

MSE Mean square error

SSIM Structural similarity index measure

Table 1. Abbreviations list

3.1 General Formulation

The proposed RC-GAN adopts the structure of CycleGAN [13], including two dis-
criminators and two generators, as shown in Figure 2. Inspired by NICE-GAN [9],
in this structure, the first part of the discriminator is reused as the image feature
extractor in the generator.

In the proposed method, two different domain CCIs, Ax and By are treated as
the input, where Ax represents the image of Chinese character A with the X style.
Similarly, By represents the image of Chinese character B with the Y style. For
Chinese characters in printed font style, CCIs are generated by TrueTypeFont, while
for Chinese characters in handwriting style, CCIs are generated by specific people.
For example, Lanting font was written by Wang Xizhi. The output of the proposed
method is images B̃x and Ãy, where Ãy represents the generated CCI of Chinese
character A with Y style from Ax, and B̃x represents the generated CCI of Chinese
character B with X style from By. The translation from the X domain to the
Y domain is very similar to that from the Y domain to the X domain. Therefore, in
the following section, we take the translation from the X domain to the Y domain
as an example to explain the calculation process in detail.

The overall structure of CCI generation from the X domain to the Y domain
contains three main processes: translation from Ax to Ãy, reconstruction of Chinese
character A in the X domain, and cycle translation from Ãy to generate the Chinese
character image A in the X domain. Given the input image Ax, image feature fax
is extracted from the encoder network, followed by the classifier and the generator.
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The process of CCI generation from the X domain to the Y domain and Chinese
character reconstruction in the X domain can be expressed as follows:

fax = Ex(Ax),

Ãy = Gy(fax), (1)

Ãrx = Gx(fax),

where Ex(·) represents the encoder network, Gy(·) represents the generator of the
Y domain, and Gx(·) represents the generator of the X domain. Ãrx represents the
reconstructed CCI of Chinese character A in the X domain.

Then, the generated CCI Ãy is fed into the encoder of the Y domain to capture
the features, and then the generator in the X domain is applied to generate the
original CCI of Chinese character A in the X domain from the feature of Ãy, which
is defined as the cycle translation. The calculation process is defined in Equation (2).

f̃ay = Ey(Ãy),

Ãcx = Gx(f̃ay),
(2)

where Ey(·) represents the encoder network for the Y domain image, f̃ay represents
the feature of generated CCI Ãy and Ãcx represents the cyclically generated CCI of
character A in domain X.

In addition, the encoder network and classifier are combined to form the discrim-
inator. DX and DY represent the discriminators of the X domain and Y domain,
respectively. Finally, the f̃ay and the fby in the Y domain extracted from encoder
Ey(·) are fed into the classifier in DY to calculate adversarial loss. The reconstruc-
tion loss between the generated CCI Ãrx and original CCI Ax is calculated by the
L1 distance function. The distance between the cyclically generated CCI Ãcx and
the original CCI Ax is calculated as cycle loss. These loss functions are fused to
train the model.

Discriminator: In the proposed method, the structures of these two discriminators
are exactly the same. Therefore, only discriminator Dx(·) is explained in detail
in this paper. Dx(·) contains an encoder Ex(·), and a classifier Cx(·).

Input image Ax is fed into Ex for downsampling through convolution, spectral
normalization and leaky rectified linear unit (ReLU) activation functions to obtain
the encoded feature maps. For the classifier to determine whether a generated Chi-
nese character image is true or false, these feature maps are fed into global average
and max pooling to obtain the weight information for each feature map. Specifically,
the Cx of the discriminator uses a multiscale classifier with three components: C0

x

for the local scale (10×10 receptive field), C1
x for the middle scale (70×70 receptive

field) and C2
x for the global scale (286 × 286 receptive field). We use the residual

attention mechanism to obtain attention maps, which are connected to classifier C0
x.
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The output of C0
x after downsampling is connected to two branches: one branch

is linked to C1
x, and the other branch is input to C2

x after further downsampling
through the convolution layer. C0

x, C
1
x and C2

x are all trained to determine whether
an image is true or false. Figure 3 illustrates the discriminator in detail.
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Figure 3. Illustration of the discriminator

Generators: For the generator, the feature maps output by the encoder are fed
into the generator, which are sampled to obtain a new feature vector. We divide
the feature vector into two branches, with one side going through global average
pooling, multilayer perceptron (MLP), and the ReLU activation function to
obtain α, β in AdaLIN. The other side is generated with six adaptive residual
blocks, two subpixel convolutions, and one convolution to obtain the target
image. The details are shown in Figure 4.

Figure 4. Illustration of the generator
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3.2 Radical Constraint Module

To ensure the correctness of the radical in the generated CCI, a GRU-based RLN is
added into the GAN model. Similar to the discriminator and generator, there are
also two RLN models, which are used in the X and Y domains. These two RLN
models adopt the same structure. In this section, we describe only the RLN in the
X domain. In addition, in our work, the input image is correct by default, and
the main purpose of this work is to reduce stroke errors in the generated Chinese
character image. Radical learning on the generated image can help find stroke errors
in that image and guide the generation network to output a more accurate image.
Additionally, during the training process, the radical information of each Chinese
character is known and can be directly used as a label for radical learning. Therefore,
we only apply the radical constraint module to the generated image.

In previous works on radical learning [19], thirteen different basic structures of
Chinese characters were defined, as shown in Figure 5. For example, “a” represents
the left-right spatial relationship of two radicals, “d” represents the upper-lower
spatial relationship and “single” represents a single radical to form a Chinese char-
acter. In addition, we use a pair of braces to constrain a single structure in character
caption. Taking Chinese character “賢” as an example, it is captioned as “d { a {臣
又} d {目八} }”, where “臣”, “又”, “目” and “八” are radicals in the dictionary.
Similarly, each Chinese character can be disassembled into a sequence of radical re-
lations. Radical learning can be regarded as a problem involving sequence prediction
from images.

In our experiment, the length of the radical dictionary is 473, including 460
radical codes and 13 spatial structure relationship codes. Each radical or spatial
structure relationship is encoded as a one-hot vector ei ∈ R473 by the dictionary,
where ei denotes the vector with a 1 in the ith coordinate and 0 elsewhere. For
example, for the radical “臣”, it is coded as 412 in the dictionary and transferred
into a one-hot vector e412. Similarly, the spatial structure relationship “d” is coded
as 266 in the dictionary and represented as e266. Finally, the Chinese character “賢”
is represented by the sequence {e266, e134, e412, e8, e266, e369, e254}, where e134, e8, e369
and e254 represent “a”, “又”, “目” and “八” respectively.

For the generated CCI Ãy, the RLN is connected to the encoder network, as

shown in Figure 2. The image feature f̃ay ∈ Rw×h×l is applied as the input of
the RLN, where w, h and l represent the width, height and length of the feature
map, respectively. In this paper, we use GRU to implement the RLN. Assume that
R = r1, . . . , rT represents the radical sequence of each CCI and that T is the length
of this sequence. ri ∈ RK represents the one-hot vector of each radical, where K
is the length of the radical dictionary. We use a unidirectional GRU to generate
the radical sequence word by word. For example, for the Chinese character “賢”,
r1 = e266. First, the input feature is transferred into the feature sequence Q, as
defined in Equation (3).

Q = q1, . . . , qw×h, qi ∈ Rl. (3)
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Figure 5. Illustration of the thirteen common spatial structure relationships among Chi-
nese characters defined in [19]. Each component represents one radical.

Then, the probability of each predicted word is computed by the context vector
ct, and the current GRU hidden state represents the previous target word rt−1 using
the following equation:

P (rt | rt−1) = fs(Wo × fmax(E× rt−1 +Ws × st +Wc × ct)), (4)

where Wo ∈ RK×m
2 , Ws ∈ Rm×n, Wc ∈ Rm×L, fs(·) denotes a softmax activation

function, fmax((·)) denotes a maxout activation function, E denotes the embedding
matrix, m and n are the dimensions of embedding and GRU decoder, respectively.

Finally, the RLN uses two unidirectional GRU layers to compute implicit state st:

ŝt = GRU(rt−1, st−1) ,

ct = fcatt (ŝt,Q) ,

st = GRU(ct, ŝt) ,

(5)

where st−1 denotes the previous hidden state and ŝt is a prediction of the current
GRU hidden state. fcatt (·) denotes the coverage-based attention model [20] param-
eterized as an MLP:

F = J ∗
t−1∑
i=1

αi,

eti = νT
att tanh (Wattŝt +Uattai +Uf fi) ,

αti =
exp (eti)∑L
k=1 exp (etk)

.

(6)

Coverage vector F is calculated from the sum of all past attention probabilities,
where the spatial attention coefficient of ai at time t is denoted as αti. Let n

′ denote
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the attention dimension and M denote the number of feature maps of filter J; then,
νatt ∈ Rn′

,Watt ∈ Rn′×n,Uatt ∈ Rn′×D and Uf ∈ Rn′×M . With weight αti, we
compute the context vector ct as follows:

ct =
L∑
i=1

αtiai. (7)

In the training stage, the objective function is minimized as follows:

Lx→y
radical = −

T∑
i=1

log(P (r̃i)), (8)

where r̃i is the predicted radical at the ith time step.

3.3 Loss Function

In summary, there are four loss functions used in the proposed method, including
adversarial loss, cycle-consistency loss, reconstruction loss and radical constraint
loss. The encoder in this paper is not only part of the discriminator but also the
input to the generator. Therefore, referring to NICE-GAN [9], instead of regular
adversarial loss training, decoupled training is used in the experiments to freeze
the encoder weights when minimizing adversarial loss, reconstruction loss, cycle-
consistency loss and radical constraint loss and to train the encoder when maximizing
training adversarial loss. The details of this loss function are specified as follows:

Adversarial loss: The purpose of adversarial loss is to prompt domain transfers
to produce higher-quality images.

min
Gy

max
Dy=(Cy◦Ey)

Lx→y
gan := Ey∼Y

[
(Dy(By))

2]+ Ex∼X

[
(1−Dy (Gy (Ex(Ax))))

2] .
(9)

Cycle-consistency loss: To reduce the variability between the generated and real
images, a cycle-consistency loss is added.

min
Gy
Gx

Lx→y
cycle := Ex∼X

[
∥Ax −Gx (Ey (Gy (Ex (Ax))))∥1

]
. (10)

Reconstruction loss: Reconstruction loss is similar to cycle-consistency loss in
that the two domain generators are induced to produce images that are consis-
tent in the hidden vector space through reconstruction.

min
Gx

Lx→y
recon := Ex∼X [∥Ax −Gx (Ex(Ax))∥1] . (11)

In particular, the loss functions from y to x, Ly→x
gan , Ly→x

cycle , L
y→x
recon , L

y→x
radical , are

defined the same way.
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Full objective: Finally, the final objective is defined by fusing these loss functions:

Ldisct = max
Ex,Cx,Ey ,Cy

λ1Lgan, (12)

Lgenet = min
Gy ,Gx

λ1Lgan + λ2Lcycle + λ3Lrecon + λ4Lradical, (13)

Lgan = Lx→y
gan + Ly→x

gan , (14)

Lcycle = Lx→y
cycle + Ly→x

cycle, (15)

Lrecon = Lx→y
recon + Ly→x

recon, (16)

Lradical = Lx→y
radical + Ly→x

radical, (17)

where Ldisct represents the objective function of the discriminator, and Lgenet

represents the objective function of the generator. To make a fair comparison
with the baseline model [9], λ1, λ2, and λ3 are set to 1, 10 and 10, respectively.
Moreover, λ4 is discussed in the experiment.

4 EXPERIMENTS

4.1 Dataset and Implementation Details

To verify the effectiveness of this method, we evaluate the proposed method on three
pairs of Chinese character translations with different styles, including DFKai-SB and
Pen-Kai scripts, DFKai-SB and running scripts, and SIM-Kai and Lanting scripts,
for a total of five fonts. All five fonts are used as target fonts. Among them, DFKai-
SB and SIM-Kai are printed fonts, while the other three scripts are handwritten
fonts. The DFKai-SB, Pen-Kai and running scripts each include 1 000 images, while
the Lanting script has 324 images. Each image contains only one Chinese character.
Some examples are shown in Figure 6.

In the experiment, all of images are cropped and resized to 256×256 for training
and testing. We use ReLU as the activation function in the generator and leaky-
ReLU with a slope of 0.2 in the discriminator. We train all models using the Adam
optimizer with the learning rate 0.0001 and (α, β) = (0.5, 0.999) on NVIDIA RTX
3090 graphic card. The batch size is set to 1 for all experiments. We also use a
weight decay at the rate of 0.0001. The proposed model is implemented by PyTorch.
In the training process, the model is trained by 100K iterations.

4.2 Evaluation Metrics

Mean square error (MSE) and structural similarity index measure
(SSIM): To evaluate the similarity between the generated image and the real
image, three evaluation metrics are applied: MSE, SSIM and human evaluation.
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Figure 6. Illustrations of CCIs of different styles

MSE and SSIM are defined as in Equation (18).

MSE =
1

Z

Z∑
i=1

(Ii − Ĩi)
2,

SSIM =
1

Z

Z∑
i=1

(2µIiµĨi
+ c1)(2σIiĨi

+ c2)

(µ2
Ii
+ µ2

Ĩi
+ c1)(σ2

Ii
+ σ2

Ĩi
+ c2)

,

(18)

where Ii represents the real CCI, Ĩi represents the generated CCI, and Z is the
number of images. µIi represents the mean of image Ii, and µĨi

represents the

mean of image Ĩi. σ2
Ii

represents the variance in image Ii. σ2
Ĩi

represents the

variance in image Ĩi. σIiĨi
represents the covariance between Ii and Ĩi. c1 and c2

are constants. The higher the value of SSIM is, the better the similarity between
the generated image and the real image. Furthermore, the lower the MSE value
is, the better the performance.

Human evaluation for radical error: To evaluate the quality of the generated
CCIs, the radical error of the generated image is counted by humans. We select
three volunteers who have been trained in Chinese calligraphy to find the radical
error in the generated images of different methods. In this work, we define four
radical errors: missing strokes, broken strokes, extra strokes, and incomplete
strokes, as shown in Figure 4.2. The average number of radical errors is applied
as the evaluation metric.
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Figure 7. Examples of these four radical errors

4.3 Experimental Results and Discussion

Parameter Discussion. First, we discuss the influence of parameter λ4 on the
overall loss function. λ4 is set from 10 to 50. The experimental results are
shown in Figure 8. It can be found from these results that the value of λ4 has
little effect on the MSE and SSIM results. Therefore, in this work, λ4 is set to
30, which exhibits the best performance.

Figure 8. Experimental results of different λ4

In addition, we show the accuracy of radical sequence prediction in Table 2.
BLEU, a widely used metric in sequence prediction, is applied to evaluate the
performance of radical sequence prediction in RC-GAN. From these results, it
can be observed that compared with the handwritten fonts, the radical prediction
is more effective for the printed fonts DFKai-SB and SIM-Kai.

Comparison with existing methods. To evaluate the effectiveness of the pro-
posed method, we compare the proposed RC-GAN with the existing GAN for
HCCAG. The comparison results of MSE are shown in Table 3, those of SSIM
are shown in Table 4, and those of human evaluation are reported in Tables 5
and 6.
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Style BLEU-1

Pen-Kai → DFKai-SB 0.76

DFKai-SB → Pen-Kai 0.44

Running → DFKai-SB 0.60

DFKai-SB → Running 0.48

Lanting → SIM-Kai 0.85

SIM-Kai → Lanting 0.49

Table 2. BLEU values for radical sequence prediction

Style Ours NICE-GAN Handwritten-CycleGAN zi2zi

Pen-Kai → DFKai-SB 6.408 6.596 11.149 7.389

DFKai-SB → Pen-Kai 5.591 5.746 9.601 6.246

Running → DFKai-SB 6.667 6.633 11.355 8.996

DFKai-SB → Running 5.507 5.520 9.128 6.548

Lanting → SIM-Kai 22.039 22.263 25.306 21.091

SIM-Kai → Lanting 29.044 28.745 31.367 36.714

Table 3. MSE values for different methods

MSE evaluation. From the MSE value results, we find that for the HCCAG task,
compared with the CycleGAN and zi2zi methods, the proposed method and
NICE-GAN achieve a lower MSE value in most experiments. Specifically, com-
pared with NICE-GAN, our methods have the lowest MSE value for the trans-
lations from Pen-Kai script to DFKai-SB script, DFKai-SB script to Pen-Kai
script and Pen-Kai script to running script.

SSIM evaluation. From the SSIM value results, we find that the results of all
methods are very similar. Nonetheless, the proposed method achieves the best
performance on the translations from Pen-Kai script to DFKai-SB script, run-
ning script to DFKai-SB script, DFKai-SB script to running script and SIM-Kai
script to Lanting script. Although SSIM is a commonly used metric for evalu-
ating the performance of HCCAG, we argue that it is not entirely suitable and
reasonable. SSIM uses the similarity of the distribution of image brightness to
measure the similarity of images. It is difficult to measure the tiny difference

Style Ours NICE-GAN Handwritten-CycleGAN zi2zi

Pen-Kai → DFKai-SB 0.895 0.895 0.887 0.884

DFKai-SB → Pen-Kai 0.906 0.906 0.899 0.909

Running → DFKai-SB 0.885 0.884 0.877 0.858

DFKai-SB → Running 0.905 0.903 0. 899 0.897

Lanting → SIM-Kai 0.700 0.696 0.684 0.716

SIM-Kai → Lanting 0.697 0.696 0.680 0.639

Table 4. SSIM values for different methods
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DFKai-SB → Pen-Kai Ours NICE-GAN Handwritten-CycleGAN

Extra strokes 6 13 2

Missing strokes 1 1 79

Broken strokes 14 44 52

Incomplete strokes 21 4 55

Total 42 62 188

Table 5. Illustrations of the Pen-Kai style Chinese characters statistics for DFKai-SB →
Pen-Kai

DFKai-SB → Running Ours NICE-GAN Handwritten-CycleGAN

Extra strokes 35 78 5

Missing strokes 10 44 78

Broken strokes 9 38 27

Incomplete strokes 16 60 82

Total 70 220 192

Table 6. Illustrations of the running style Chinese characters statistics for DFKai-SB →
running

between Chinese characters in images, for example, stroke errors in CCIs. There-
fore, to evaluate the performance of these different methods, human evaluation
is adopted in this work.

Human evaluation. Tables 5 and 6 show the number of stroke errors in the gener-
ated CCIs. In this experiment, we translate the DFKai-SB script to the Pen-Kai
script and the running script. Both DFKai-SB and Pen-Kai are regular scripts,
and it is relatively simple to transfer the DFKai-SB script to the Pen-Kai script.
Due to the large difference between the DFKai-SB script and the running script,
this becomes a more difficult task. In the generated Pen-Kai script and running
script images, the numbers of stroke errors of the proposed method are 42 and
70, respectively. Compared with NICE-GAN, the numbers of stroke errors are
reduced by 20 and 150. In Tables 5 and 6, we also show the detailed values for
the four types of stroke errors. For the Pen-Kai script, the proposed method
greatly reduces the number of broken errors. For the running script, the number
of these four errors also declines significantly.

In summary, from the above comparison results, it can be seen that the pro-
posed RC-GAN is slightly superior to the state-of-the-art methods in commonly
used MSE and SSIM indicators. Additionally, in terms of the statistical indica-
tors of stroke errors, our method can significantly reduce the number of stroke
errors and improve HCCAG performance. These comparison results verify the
effectiveness of the proposed method. In addition, NICE-GAN is applied as
the baseline model of the proposed method. The comparison results between
RC-GAN and NICE-GAN also verify the effectiveness of the proposed radical
constraint module.
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Visualization evaluation. Some visualization results of different methods are
shown in Figures 9 and 10. From Figures 9 and 10, we also find that some
stroke errors of the existing methods were corrected in the proposed method.
These visual analysis results further verify that the proposed radical constraint
in this paper is helpful for improving the accuracy of Chinese character genera-
tion.

Figure 9. Examples of Pen-Kai script images generated by different methods. The red
circle indicates the stroke error.

Figure 10. Examples of the running script images generated by different methods. The
red circle indicates the stroke error.
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Unseen Chinese character generation. To further verify the effectiveness of the
proposed method, we apply the proposed method to generate unseen Chinese
characters. In this experiment, 1 000 handwritten running style Chinese char-
acters that are not used in the training process are regarded as the testing set.
The experimental results are shown in Tables 7 and 8. Table 7 shows that the
proposed method has a lower MSE value. Table 8 shows the number of stroke
errors in these generated unseen Chinese characters. From these comparison
results, we find that there are fewer stroke errors in the proposed method.

Method MSE SSIM

Ours 5.55 0.90

NICE-GAN 5.61 0.90

Handwritten-CycleGAN 9.48 0.89

zi2zi 6.74 0.89

Table 7. Comparison results on unseen running style Chinese characters

Running Ours NICE-GAN Handwritten-CycleGAN

Extra strokes 56 82 20

Missing strokes 5 108 90

Broken strokes 15 21 22

Incomplete strokes 15 90 121

Total 91 301 253

Table 8. Illustrations of the unseen running style Chinese characters statistics

Comparison of different fonts and limitations. In addition, from the compar-
ison results in Tables 5 and 6, we find that the GAN-based methods, including
the proposed RC-GAN, have better performance in hard pen HCCAG than in
soft pen HCCAG. In detail, for Pen-Kai, running, and DFKai-SB scripts, the
MSE value of these GAN-based methods falls in the range [5, 6]. However, for
the Lanting script, it exceeds 29. Similarly, for Pen-Kai, running, and DFKai-
SB scripts, the SSIM values of these methods exceed 0.85, but this value is less
than 0.7 for the Lanting script.

Compared to the previous tasks, generating the Lanting script is more chal-
lenging. We argue that in the Lanting script, the stroke width is quite different
compared to other fonts. The widths of the previous hard pen fonts are relatively
consistent. However, the width of the Lanting script changes with the stroke.
Because of some continuous strokes and changes in the stroke that constitute
its style, it is not very appropriate to use stroke error to measure the quality
of the generated Lanting script image. Therefore, in this paper, we show some
visual comparison results in the Lanting script in Figure 11. Some stroke errors
of the state-of-the-art methods have also been labeled in this figure. From this
comparison, we also find that the proposed radical constraint is effective for the
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generated Lanting script. Certainly, how to effectively generate Chinese char-
acters with the Lanting script and quantitatively evaluate the artistic effects
of this script are still challenging problems in HCCAG. Thus, we attempt to
conduct an in-depth discussion of the possible directions for future work.

Figure 11. Examples of Lanting script images generated by different methods. The red
circle indicates the stroke error.

5 CONCLUSIONS

In this paper, we propose incorporating a radical constraint module in GAN for the
HCCAG task. A GRU decoder is used to achieve radical sequence learning from the
input CCI. Finally, a new HCCAG method, named RC-GAN, is proposed in this
work. We use three styles of Chinese characters, including Kai, running and Lanting
scripts, to verify the effectiveness of the proposed method. The experimental results
show that the proposed method achieves competitive results on common MSE and
SSIM indicators. Additionally, compared with the state-of-the-art methods, the
proposed method can obviously reduce the number of stroke errors in the generated
CCIs.

However, due to the large number of strokes, the complexity of the structure and
the variety of expressions, Chinese character generation remains a great challenge.
First, the style of Chinese calligraphy is very personalized. For the same font, the
styles written by different people are quite different. Learning the styles of specific
people, especially when the quantity of data is small, is an important issue for future
research. Moreover, how to evaluate the artistic effect of generating CCIs is also a
problem worthy of in-depth study. We argue that the commonly used MSE and SSIM
measures are pixel-based evaluation indicators that judge only image similarity. The
stroke error proposed in this work evaluates the completeness and correctness of the
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generated Chinese characters. However, there is still no good solution for evaluating
artistic effects.
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