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Abstract. Radiomics is a technology that extracts a large number of quantitative
features from high-throughput medical images and has become a focus of research.
It can help in disease diagnosis, therapy planning, and prognosis evaluation through
Big Data analysis algorithms. Radiomics technology can extract hundreds or even
tens of thousands of quantifiable data features from medical images, which can no
longer fit into the memory of one machine. Therefore, we propose a distributed
correlation analysis algorithm (DFCA) based on a MapReduce distributed com-
puting framework for breast ultrasound radiomics feature datasets. Each compute
node will produce massive intermediate data while the DFCA calculates the Pear-
son correlation coefficient of radiomics features. With the increase of feature data
and dimensions, the data transmission cost will be in a square growth. To reduce
the cost, we propose a distributed correlation estimation algorithm (DFCEA) for
radiomics features based on DFCA. The DFCEA algorithm estimates the Pearson
correlation coefficient using an iterative method, which can further reduce the I/O
cost. The experiment proved that our algorithms are more effective compared to
the algorithms in the literature.

Keywords: Radiomics, massive high-dimensional data, correlation analysis, dis-
tributed computing

1 INTRODUCTION

In 2012, Lambin et al. [1] first proposed radiomics, which includes the following
three stages:

1. segmentation of the image to determine the tumor region;

2. extraction of tumor features to produce quantized data; and

3. construction of a classification and prediction model for analyzing the feature
data.

Analyzing high-dimensional data of imaging radiomics features can refine the
analysis of small information in breast tumor imaging. Scholars constantly expand
and improve radiomics technology, which can extract thousands of high-dimensional
data features from medical images and play an important role in improving diagno-
sis [2, 3], clinical decision [4, 5], and prognostication [6, 7].

We use Matlab’s wavelet filter (which has 48 wavelet bases) to process images.
Each wavelet base has eight different filtering methods for image filtering in low-
pass and high-pass modes. Each filtering method uses 14 first-order statistics. Each
image will generate 5 376 (48 ∗ 8 ∗ 14) features. If various filters and classification
features are combined, each image can extract more features. For instance, if the
above methods are combined with 63 texture-based features, the image will extract
48 ∗ 8 ∗ (14 + 63) = 29 568 features [8].
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With time, doctors accumulate a large amount of imaging data when diagnosing
patients. For instance, the Affiliated Tumor Hospital of Xinjiang Medical University
receives more than 2 500 new patients with breast cancer annually. Moreover, com-
puted tomography, magnetic resonance imaging (MRI) and other medical imaging
examination data are also increasing yearly. When calculating the Pearson correla-
tion coefficient of the massive ultra-high-dimensional radiomics features data, one
machine has a poor processing speed. Therefore, we propose a distributed corre-
lation analysis (DFCA) algorithm. To further improve the efficiency of the DFCA
algorithm, we propose the distributed correlation estimation algorithm (DFCEA),
which estimates the Pearson correlation coefficient according to an iterative method,
to reduce the large input/output (I/O) cost. In summary, the contributions of this
paper are as follows:

1. To analyze the association of massive ultra-high-dimensional radiomics feature
data, we propose a DFCA algorithm;

2. To reduce the I/O cost of the DFCA algorithm in the Shuffle stage, we propose
the DFCEA algorithm, which raises the computing efficiency of the correlation
analysis of the massive high-dimensional radiomics feature data;

3. We evaluate the effectiveness of the algorithm on a real dataset and demonstrate
that our algorithm is superior to the algorithm in the literature.

The rest of this paper is organized as follows. Section 2 briefly discusses the
relevant research of the correlation analysis. Section 3 introduces the definitions and
preliminary knowledge of the DFCA and DFCEA algorithms. Section 4 presents the
DFCA and DFCEA algorithms, while Section 5 analyzes the experimental results.
Section 6 comprises the paper’s conclusions.

2 RELATED WORK

2.1 Study on the Correlation of Imaging Features

To analyze the patient’s condition more comprehensively, relevant research experts
use different processing methods to obtain ultra-high-dimensional image feature in-
formation [9]. Redundant features in ultra-high-dimensional image feature data will
degrade the performance of the prediction algorithm [10]. By analyzing the correla-
tion between features, we can not only find the correlation among features but also
select appropriate and effective features to improve the accuracy of the classification
and prediction algorithm.

A study [11] extracted dynamic contrast-enhanced-MRI image features of the
breast through radiomics and evaluated the correlation between low- and high-Ki-
67 expression image features using the Mann–Whitney U test statistics method,
which provided a non-invasive detection method for medical experts to determine
the spread of breast cancer in patients. Fu et al. [12] used the minimum redundancy
and maximum correlation algorithm for radiomics feature selection, in which the
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minimum redundancy is realized between the selected feature and other features,
and the maximum correlation selected the feature with the highest correlation with
the development of coronavirus disease 2019. The least absolute shrinkage and selec-
tion operator regression algorithm was combined to complete the feature selection
process. In the literature [8], the data processed by various wavelets are divided
into subsets in a single-machine environment. Pearson correlation coefficient is sub-
sequently used to analyze the correlation of radiomics features with the same name
between subsets by normalizing the data, and radiomics features with correlations
greater than 0.9 are removed to reduce the “dimension disaster” and increase the di-
agnostic effectiveness of the algorithm. Oubel et al. [13] used the mutual information
method to observe the variability between multi-information and global extremum
of image features changing with time, to evaluate the repeatability between features
and achieve feature selection.

All of the methods mentioned above process data in a single-machine environ-
ment. The processing speed will be reduced as the data size and dimensions rise
because calculations involving massive ultra-high-dimensional data will take longer
and require more central processing unit (CPU) and memory resources.

2.2 Research on the Correlation of Distributed Computing

Hadar and Shayevitz [14] used Gaussian correlation to estimate the cross-correlation
matrix of a few vectors by calculating the mean of each node and jointly observed
the unknown vector correlation coefficient of the Gaussian scalar under random vari-
ables. A study [15] used the K-means++ algorithm to obtain the centroid of the
partitioned data and subsequently constructed a secondary storage index mecha-
nism to partition the data using the centroid. This method is suitable for cutting
data horizontally. If vertical cutting is used, we need to transpose the data, and
the number of rows and columns will be fixed. Palma-Mendoza et al. [16] used
vector partition, similar to the index table, to take features as indices and each
data object as index value and used spark combined with CFS feature selection
algorithm to perform a correlation analysis to realize feature selection. When every
data object is consistent and there is no missing value, the process of partition-
ing will also generate several calculations. CCCA-LTS algorithm is proposed in
the literature [17], which uses Euclidean distance to calculate the relationship be-
tween the data processed by normal distribution and Pearson correlation under the
original data to estimate the correlation of the time series. The CCCA-LTS al-
gorithm needs two MapReduce calculations. For the first calculation, it needs to
calculate the mean value and standard deviation of the feature columns in each
memory block and estimate the mean value and standard deviation of the standard-
ized sequences in each Map according to the mean value and standard deviation.
For the second calculation, it uses the relationship between the Euclidean distance
between any two features that conform to normal distribution and the estimated
mean value and standard deviation of each partial sequence to perform correlation
estimation.
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To address the problems, such as the slow calculation efficiency of processing
massive ultra-high-dimensional radiomics features and the limitation of distributed
processing formula correlation, we propose a DFCA algorithm to calculate the cor-
relation between massive ultra-high-dimensional radiomics features in a distributed
way. To reduce the I/O cost of a large amount of data generated in the calculation
process during data transmission between nodes, we propose a DFCEA algorithm to
estimate the relationship between the Pearson correlation coefficient and threshold
and compare with the CCCA-LTS algorithm.

3 RELEVANT DEFINITIONS AND FUNDAMENTAL CONCEPTS

This chapter mainly introduces the definitions and fundamental concepts of the
DFCA and DFCEA algorithms, which serve as the building blocks for creating
distributed correlation analysis algorithms for massive ultra-high-dimensional ra-
diomics feature data.

3.1 Related Definitions

Definition 1. According to the standard statistical division of the Image Biomarker
Standardization Initiative [18], radiomics features are frequently divided into shape
features, first-order statistics features, texture-based features, high-order features,
and features based on model transformation (filters). Taking PyRadiomics [19] as an
example, features can be divided into seven categories, as shown in Table 1. Before
feature extraction, we can use filtering to preprocess the medical images. Table 2
shows that this paper used various image filters. Through various filters, each image
can extract n ∗ m features (n is the sum of the number of features, and m is the
sum of the number of filtering methods).

Feature Type Number of Features

First-order statistics features 19
Shape features (2D) 10
Gray level co-occurrence matrix (GLCM) features 24
Gray level size zone matrix (GLSZM) features 16
Gray level run length matrix (GLRLM) features 16
Neighboring gray-tone difference matrix (NGTDM) features 5
Gray level dependence matrix (GLDM) features 14

Table 1. Feature classification

For instance, we processed the breast ultrasound images using the wavelet filter.
The Grayscale of the image has four different filtering methods (LH, HL, HH, and
LL), and extracts first-order (standard deviation is not enabled by default, and
there are only 18 features when extracting), GLCM, GLSZM, GLRLM, NGTDM,
and GLDM features. The original filtered images can extract (1 + 4) ∗ (18 + 24 +
16 + 16 + 5 + 14) = 465 features. Table 3 shows the partial feature data.
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Feature Type Number of Filtering Results

Original 1
Wavelet 4
LoG 1
Square 1
Square Root 1
Exponential 1
Gradient 1
LocalBinaryPattern2D 1

Table 2. Filters

Original firstorder
10Percentile

Original firstorder
90Percentile

Wavelet-LH firstorder
10Percentile

Wavelet-LH firstorder
90Percentile

26 95 −9.550913443 9.650366591
0 127 −7.731168297 7.770054805
27 110 −7.908291615 7.866153714
3 100 −5.427456432 5.456422723

17 135 −8.326565507 8.386594786
3 92 −5.827297771 5.920504416

37 92 −6.201063772 6.291238555
36 95 −6.673283964 6.573962048
29 83 −3.910080637 3.929090028

Table 3. Extracted partial feature data of breast ultrasound image

Definition 2 (Pearson correlation coefficient). Two feature sequences are X =
{x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. n denotes the quantity of data items.
xi, yi (1 ≤ i ≤ n) denotes the X and Y feature values for the ith entity. The two
features’ Pearson correlation coefficient is as follows:

ρ (X, Y ) =
1

n

n∑
i=1

(
xi − X̄

σX

)(
yi − Ȳ

σy

)
. (1)

The mean and standard deviation of X and Y respectively are and X̄ = 1
n

∑n
i=1 xi,

Ȳ = 1
n

∑n
i=1 yi. The results of the Pearson correlation coefficient are as follows:

ρ (X, Y ) = 0 demonstrates that the two features are linearly independent; ρ (X, Y ) >
0 indicates that the two features are positively correlated; and ρ (X, Y ) < 0 indicates
that the two features are negatively correlated.

Definition 3 (Basic inequality). a and b satisfy a ∗ b ≤ a2+b2

2
(a ∈ R and b ∈ R).

R is the set of real numbers.

Problem definition. An ultra-high-dimensional radiomics data D is stored in
HDFS.
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For any two feature columns X, Y ∈ D (X ̸= Y ), the correlation coefficient
threshold of X and Y is ε. We used parallel computing to analyze the correlation
between X and Y features.

3.2 Preliminary Knowledge

MapReduce is a parallel computing framework of the Hadoop processing platform,
which puts the calculation on each storage node with data and finally summarizes
it. MapReduce’s task includes three steps.

1. The Map Task: the total amount of data slices in each storage node determines
how many Map Task tasks are needed, which are mostly used to read the file
data line by line for associated processing.

2. The Reduce Task: the Reduce Task is responsible for summarizing and com-
puting each Map Task that generates the intermediate data and outputting the
results.

3. MRApp Task: this task is responsible for scheduling and resource coordination
during MR execution.

The Shuffle stage exists between the Map Task and the Reduce Task and is used
to integrate the results of the Map stage and output the data to be pulled by the
Reduce task, as shown in Figure 1.

Map

Map

Map

Map Task

Shuffle Reduce

Reduce Task

Result 
output

MRAPP Task

Data Slice 1

Data Slice 2

Data Slice 3

Figure 1. Overview of the MapReduce execution process

4 ALGORITHM PRINCIPLE

In this section, we introduce the DFCA and DFCEA algorithms’ principles and
implementation procedures, at the same time, we have also demonstrated the cor-
rectness of our approach.
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4.1 DFCA Algorithm Principle

The DFCA algorithm is a distributed correlation analysis algorithm for massive
ultra-high-dimensional breast ultrasound radiomics feature data. According to Def-
inition 2, the Pearson correlation coefficient formula can be modified as follows:

ρ (X, Y ) =
1

n

∑n
i=1 xiyi −

∑n
i=1 xiȲ −

∑n
i=1 yiX̄ + nX̄Ȳ

σXσy

.

We replace X̄, Ȳ , σX , and σY in ρ (X, Y ) = 1
n

∑n
i=1 xiyi−

∑n
i=1 xiȲ−

∑n
i=1 yiX̄+nX̄Ȳ

σXσy
.

The Pearson correlation coefficient formula is as shown in formula (2):

ρ (X, Y ) =
n
∑n

i=1 xiyi −
∑n

i=1 xi

∑n
j=1 yj√

n
∑n

i=1 (xi)
2 − (

∑n
i=1 xi)

2
√
n
∑n

i=1 (yi)
2 − (

∑n
i=1 yi)

2
. (2)

According to formula (2), we only need to determine the value of
∑n

i=1 xi,∑n
i=1 (xi)

2,
∑n

i=1 yi,
∑n

i=1 (yi)
2,

∑n
i=1 xiyi to calculate the size of ρ (X, Y ), which

can be compared with the given correlation threshold.

4.1.1 Correlation Coefficient of Distributed Computing

Distributed calculation of correlation coefficient requires each Map to calculate the
value of partial data

∑n
i=1 xi,

∑n
i=1 (xi)

2,
∑n

i=1 yi,
∑n

i=1 (yi)
2,

∑n
i=1 xiyi. Our ap-

proach can reduce the cost of calculating the Pearson correlation coefficient accord-
ing to the results of the calculation for each node.

Assume that the dataset D = {d1, d2, d3} is split into three portions (d1, d2, d3)
and stored on each of the three computer nodes N1,N2, N3. Two columns in the
dataset D are X and Y . The values of the kth data of the X and Y features at
the nth node are Xn

k and Y n
k . We assume that the dataset is divided into three equal

parts m = |D|
3
. In the experiment, the dataset also cannot be divided equally. |D| is

the total number of datasets D. As shown in Figure 2, each node calculates the
five values of

∑m
i=1 xi,

∑m
i=1 (xi)

2,
∑m

i=1 yi,
∑m

i=1 (yi)
2,

∑m
i=1 xiyi. We sum up the

calculation results of each node and use formula (2) to calculate ρ (X, Y ).
Suppose a node has n (n ≥ 2) feature columns, each node needs to output 2n+C2

n

data. Each computer node needs to output 125 750 data if there are 500 features.
The number of data transmitted between the nodes in the DFCA algorithm accounts
for (n− 1)/(n+3) of the total number when calculating the sum of any two-feature
data multiplication. To further optimize the DFCA algorithm, we propose the
DFCEA algorithm.

4.2 DFCEA Algorithm Principle

The DFCEA algorithm uses the inequality of the arithmetic and geometric means
principle to estimate the Pearson correlation coefficient, which only needs to trans-
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Figure 2. Process of the distributed calculation of the Pearson correlation coefficient

mit four data
∑n

i=1 xi,
∑n

i=1 (xi)
2,

∑n
i=1 yi,

∑n
i=1 (yi)

2 between nodes (the dataset
contains only two feature columns, X and Y . n > 0 is the number of data pieces).
Each node only needs to output 2m data if the data is in the m (m ≥ 2) dimension,
which reduces the number of C2

m data produced by the multiplication of any two
dimensions. The following is the estimation formula:

The threshold is ε. ρ1 is the Pearson correlation coefficient value under for-
mula (1). ρ2 is the value of the estimated Pearson correlation coefficient and is
always ≥ ρ1 (equal sign is taken when the two-feature data coincide consistently).
The relationship between ρ2 and ε will produce the following two results:

Result 1: When ρ2 < ε, then ρ1 < ε, the two features do not have a high correla-
tion.

Result 2: When ρ2 ≥ ε, we cannot judge the relationship between ρ1 and ε.

The DFCEA algorithm can obtain the relationship between ρ1 and ε in the
form of estimation without calculating the real Pearson correlation coefficient. The
principle of the DFCEA algorithm is proven as follows:

Proof. First, three prerequisites are listed.

Condition 1: The two feature sequences are X = {x1, x2, . . . , xn} and Y = {y1, y2,
. . . , yn}. n(n > 0) denotes the number of the data size. xi, yi correspond to the
two feature values of X and Y of the ith (1 ≤ i ≤ n) data object.

Condition 2: According to Definition 3, ab ≤ a2+b2

2
.

Condition 3: The standard deviation of the data must be > 0.

When i = 1: a = x1, b = y1. Then x1y1 ≤ (x1)
2+(y1)

2

2
.
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When i = 2: a = x2, b = y2. Then x2y2 ≤ (x2)
2+(y2)

2

2
.

...

When i = n: a = xn, b = yn. Then xnyn ≤ (xn)
2+(yn)

2

2
.

We sum xiyi ≤ (xi)
2+(yi)

2

2
from i = 1 to i = n to generate formula (3):

n∑
i=1

xiyi ≤
n∑

j=1

(xj)
2 + (yj)

2

2
. (3)

According to conditions 2 and 3, we convert the left part of formula (3) into the
form of formula (2):

n
∑n

i=1 xiyi −
∑n

i=1 xi

∑n
i=1 yi√

n
∑n

i=1 (xi)
2 − (

∑n
i=1 xi)

2
√
n
∑n

i=1 (yi)
2 − (

∑n
i=1 yi)

2

≤ n
∑n

i=1 ((xi)
2 + (yi)

2)− 2
∑n

i=1 xi

∑n
i=1 yi

2
√

n
∑n

i=1 (xi)
2 − (

∑n
i=1 xi)

2
√
n
∑n

i=1 (yi)
2 − (

∑n
i=1 yi)

2
,

n
∑n

i=1 xiyi√
n
∑n

i=1 (xi)
2 − (

∑n
i=1 xi)

2
√
n
∑n

i=1 (yi)
2 − (

∑n
i=1 yi)

2

≤ n
∑n

i=1 ((xi)
2 + (yi)

2)

2
√
n
∑n

i=1 (xi)
2 − (

∑n
i=1 xi)

2
√

n
∑n

i=1 (yi)
2 − (

∑n
i=1 yi)

2
. (4)

According to formula (4), the formula of ρ1 is as follows:

ρ1 =
n
∑n

i=1 xiyi −
∑n

i=1 xi

∑n
j=1 yj√

n
∑n

i=1 (xi)
2 − (

∑n
i=1 xi)

2
√
n
∑n

i=1 (yi)
2 − (

∑n
i=1 yi)

2
.

The estimated value of ρ2 is as follows:

ρ2 =
n
∑n

j=1 (xj)
2 + n

∑n
j=1 (yj)

2 − 2
∑n

i=1 xi

∑n
j=1 yj

2
√
n
∑n

i=1 (xi)
2 − (

∑n
i=1 xi)

2
√
n
∑n

i=1 (yi)
2 − (

∑n
i=1 yi)

2
.

According to formula (4), we can get ρ1 ≤ ρ2. The relationship between ρ1 and
threshold ε is shown in Figure (3) (ε = 0.8). When ρ2 < ε, as Result 1 in Figure
(3) shows, ρ1 must be < ε. When ρ2 ≥ ε, as shown in Result 2 in Figure (3), the
relationship with X and Y cannot be determined at this time. If the mean value –

X̄ = 1
n

∑n
i=1 xi, Ȳ = 1

n

∑n
i=1 yi – and standard deviation – σX =

√∑n
i=1 (xi)

2

n
−
(
X̄
)2
,
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σY =

√∑n
i=1 (yi)

2

n
−
(
Ȳ
)2

– of these two features are calculated according to
∑n

i=1 xi,∑n
i=1 (xi)

2,
∑n

i=1 yi,
∑n

i=1 (yi)
2 after the completion of the Reduce task, Figure (4)

describes the execution process of the second MapReduce task. Each computing
node receives the mean – X̄ = 1

n

∑n
i=1 xi, Ȳ = 1

n

∑n
i=1 yi – and standard deviation –

σX =

√∑n
i=1 (xi)

2

n
−
(
X̄
)2
, σY =

√∑n
i=1 (yi)

2

n
−
(
Ȳ
)2

– of these two feature columns.
In the Shuffle stage, each node calculates the Pearson correlation coefficient of some

data r =
∑t

i=1

(
xi−X̄
σX

)(
yi−Ȳ
σy

)
, t = |D|

3
, 1 ≤ i ≤ t, |D| is the total number of

data. In the Reduce stage, the Reduce Task summarizes the data of each node and

obtains the correlation ρ (X, Y ) =
∑num

j=1 rj

|D| (num is the number of nodes, representing

the features of the jth node X and Y (1≤ j ≤ num)) between X and Y features
according to formula (1). The computing time will grow as the second MapReduce
task run. 2

The DFCEA algorithm uses the method of expanding ρ1 to get ρ2 and expands
the multiplication result of any two eigenvalues in each data object and sums the
expanded values. ρ2 must be > ρ1. As a result, a threshold that is fair will reduce
the number of MapReduce tasks and increase calculating efficiency. To determine
whether any two features are correlated, this study expands the threshold and com-
pares ρ2 with the expanded threshold ε1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Result1 ＜2



＜1(a)  1(b) 

Result2  2

Figure 3. Relationship between ρ2 and threshold ε

5 EXPERIMENTAL RESULTS

First, the configuration needed for the experiment is initially described in this chap-
ter, including the number of clusters, the settings for each computing node, the
threshold for the Pearson correlation coefficient, and the software version. Sec-
ond, we analyze the correlation of massive ultra-high-dimensional radiomics feature
data. Finally, the effectiveness, computational efficiency, and ability to solve prac-
tical problems of the DFCA and DFCEA algorithms are analyzed in detail.

5.1 Experimental Configuration

Cluster settings: This experiment runs on five machines with CentOS7.5 operat-
ing system. Each machine has a 4-core CPU and 8 gigabyte (GB) main memory.
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Figure 4. The processing flow of the second MapReduce task

The version of Hadoop in the distributed cluster environment is 2.7.3. One mas-
ter node (the master node runs NameNode and ResourceManager processes) and
four computing nodes (the computing nodes run DataNode and NodeManager
processes) are set in the cluster. The physical memory of Map and Reduce con-
tainers is configured as 4GB. Yarn’s virtual memory to physical memory ratio
is set to 6.

Dataset: Ultrasound images of breast tumors from the Affiliated Tumor Hospital
of Xinjiang Medical University were used. First, we used Harr wavelet to process
the ultrasound image, which generated four filtered images.

Subsequently, we used the filter in Table 2 to process the four filter images and
the original image, which produced 11 sub-filter images. We extracted all the
features in Table 1 except GLSZM, GLDM, and shape features from 11 sub-filter
images (a total of 63 features). In the end, we obtained 20 000 data pieces (each
data has 3 465 (5 ∗ 11 ∗ 63 features).

Parameter setting: The Pearson correlation coefficient’s threshold is 0.9.

5.2 Experimental Comparison Algorithm

In this experiment, the following algorithms were compared to the DFCA and
DFCEA algorithms:

1. Correlation analysis algorithm in single-machine environment is a common small
sample analysis method in the medical analysis. We checked the execution
efficiency of the algorithm on a large-sample dataset in one machine, which can
be seen as the DFCA algorithm in one machine (SFCA algorithm).

2. When the DFCEA algorithm is run in a single-machine environment, the DF-
CEA algorithms can be thought of as a single node computing partial data in
a distributed environment (SFCEA algorithm).
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3. The experiment was contrasted with the DFCA and CCCA-LTS algorithms be-
cause there is no other research on the Pearson correlation coefficient of massive
ultra-high-dimensional data in distributed computing outside the CCCA-LTS
algorithm [17].

5.3 Experimental Results and Analysis

1.Effectiveness of the algorithm. With the use of the aforementioned dataset,
we confirmed the efficacy of the DFCA and DFCEA algorithms. The DFCA
algorithm was run to obtain the correlation coefficient of any two columns in
the dataset, as shown in Figure 5 a). (Each feature name is separated by “ ”.
The first part represents the preprocessing operation of the image before feature
extraction. o represents the unprocessed operation. cA, cH, cV, and cD rep-
resent the sub-images generated from the Haar wavelet-processed images; the
second part is the selection of the filter before feature extraction, as shown in
Table 2. The third and fourth parts represent specific features under a cer-
tain feature class). A darker cell indicates a higher correlation. The correla-
tion between o wavelet-HH fir-storder MeanAbsoluteDeviation and cD wavelet-
LL glcm Difference Variance is significantly higher than o original glrlm Gray
Level Variance. The DFCEA algorithm is an estimation algorithm, which can
judge the relationship between correlation coefficient and threshold of any two
features without accurately calculating Pearson correlation coefficient, as shown
in Figure 5 b). The DFCEA algorithm adopts the form of estimation. The re-
sults of any two features either be correlated or uncorrelated. In Figure 5 b),
black indicates correlation and gray indicates noncorrelation.

2. Runtime evaluation. We contrasted the DFCA and DFCEA algorithms with
the SFCA, SFCEA, and CCCA-LTS algorithms.

Through the analysis of the aforementioned dataset, Figure 6 shows the results
of the computing time. When dealing with high-dimensional data, DFCA re-
quires to randomly choose two feature data to multiply, which will generate
data that will be stored in memory and cause a memory overflow. Therefore,
one machine is not suitable to analyze the massive ultra-high-dimensional data.
The DFCEA algorithm uses distributed parallel computing, which is superior
to other algorithms since the DFCEA reduces the CPU and memory usage
of a single node and increases computing efficiency. In distributed comput-
ing, the number of data transmitted between the nodes by the DFCEA al-
gorithm is less than that of the DFCA algorithm, which greatly reduces the
I/O cost caused by the data transmission between nodes. The DFCEA algo-
rithm offers the largest advantage of employing estimation to reduce the exe-
cution of MapReduce tasks and enhance processing efficiency when compared
to the CCCA-LTS algorithm, which necessitates two MapReduce processing
stages.
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a) DFCA algorithm

b) DFCEA algorithm

Figure 5. Correlation between some features



770 Y. Tang, Y. Chen, W. Liu, Z. Gu, H. Yao

Figure 6. Comparison of each algorithm’s computing times

3. Threshold expansion’s effect on error rate. By repeatedly altering the
multiples of the threshold expansion, as seen in Figure 7, the probability of
estimate inaccuracy of the DFCEA algorithm while predicting Pearson corre-
lation coefficient is confirmed. Since the threshold of the Pearson correlation
coefficient is adopted by the CCCA-LTS algorithm and the threshold does not
change during estimation, the error rate of CCCA-LTS algorithm is 12.8% at
the aforementioned dataset. To reduce the significant, I/O cost in the Shuf-
fle stage, the DFCEA algorithm converts the multiplication of any two feature
values in each data item into the sum of the squares of the two feature val-
ues. With the expansion of the threshold, the error rate gradually decreases
and becomes flat. The threshold for the lowest error rate is required in this
algorithm.

Figure 7. Expanding threshold’s effect on the estimation results

4. Scalability. This section verifies the scalability of the DFCEA algorithm. With
3 465 dimensions unchanged, we verified the impact of the data size changes on
the execution efficiency of the algorithm. The execution results are shown in
Figure 8 a). When the dimensions constantly change and the data size remains
at 20 000, the impact of data dimensions on the DFCEA algorithm is shown in
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Figure 8 b). With the increase of dimension or data size, the running time of
the DFCEA algorithm shows a linear growth trend. The calculation quantity of
each node is decreased when the number of computing nodes is increased. When
the 20 000 pieces of data (each data contains 3 465 dimensions) were calculated,
the number of nodes increased while the running time is reduced. Figure 8 c)
shows the experimental results.
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c) The influence of the number of nodes on the algorithm

Figure 8. Correlation between some features
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5. Algorithm running time in different stages. In this section, the Map, Shuf-
fle, and Reduce stage running times of the DFCA and DFCEA algorithms are
compared. The results are shown in Figure 9. The task of the DFCA algorithm
in the Map stage is to output xi, (xi)

2, yi, (yi)
2, xiyi (i is the number of data,

x and y are the two features) of each data object (assuming that the object
has two features). The DFCEA algorithm only needs to compute four values
xi, (xi)

2, yi, (yi)
2 in the Map stage and this reduces the I/O cost to improve the

processing efficiency in the Shuffle stage. In the Reduce stage, the running time
of the two algorithms is relatively close.

0 200 400 600 800

Average Map

Time

Average

Shuffle Time

Average

Reduce Time

Computing time: s

DFCEA DFCA

Figure 9. Expanding threshold’s effect on the estimation results

6 CONCLUSION

This paper proposes the DFCA for ultra-high-dimensional radiomics feature data.
We studied how to use the Pearson correlation coefficient to make the correlation
calculation more efficient in a distributed environment. Also, we proposed an esti-
mation approach, named DFCEA. DFCEA uses a MapReduce task to calculate the
relationship between the Pearson correlation coefficient and the correlation thresh-
old without accurately calculating it. Different from the CCCA-LTS algorithm,
DFCEA only needs the form of estimation to reduce the amount of data pro-
cessed in the Shuffle stage of MapReduce. The experimental results showed that
the efficiency of the DFCEA algorithm is better than that of the traditional meth-
ods.
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