
Computing and Informatics, Vol. 43, 2024, 709–734, doi: 10.31577/cai 2024 3 709

LEVERAGING GENETIC ALGORITHMS
FOR EFFICIENT SEARCH-BASED
HIGHER ORDER MUTATION TESTING

Serhat Uzunbayir, Kaan Kurtel

Department of Software Engineering
Izmir University of Economics
Sakarya Cd. No. 156

35330, Balçova, İzmir, Türkiye
e-mail: {uzunbayir.serhat, kaan.kurtel}@ieu.edu.tr

Abstract. Higher order mutation testing is a type of white-box testing in which
the source code is changed repeatedly using two or more mutation operators to
generate mutated programs. The objective of this procedure is to improve the
design and execution phases of testing by allowing testers to automatically evaluate
their test cases. However, generating higher order mutants is challenging due to
the large number of mutants needed and the complexity of the mutation search
space. To address this challenge, the problem is modeled as a search problem. The
purpose of this study is to propose a genetic algorithm-based search technique for
mutation testing. The expected outcome is a reduction in the number of equivalent
high order mutants produced, leading to a minimum number of mutant sets that
produce an adequate mutation score. The experiments were carried out and the
results were compared with a random search algorithm and four different versions
of the proposed genetic algorithm which use different selection methods: roulette
wheel, tournament, rank, and truncation selection. The results indicate that the
number of equivalent mutants and the execution cost can be reduced using the
proposed genetic algorithm with respect to the selection method.

Keywords: Search-based mutation testing, higher order mutation testing, equiva-
lent mutants, genetic algorithms, selection methods

https://doi.org/10.31577/cai_2024_3_709

710 S. Uzunbayir, K. Kurtel

1 INTRODUCTION

Software testing is a vital step in the software development process to create reliable
products. To ensure success, the testing team must create an effective test suite that
thoroughly examines every aspect of the program to prevent defects. However, the
increased number of functional requirements and program specifications can make
testing a time-consuming part of the software development process. Unit testing,
a white-box testing approach, involves evaluating individual components or software
units to confirm that each component operates as intended.

An efficient method to evaluate product quality early on is by utilizing mutation
testing for unit tests, as proposed by DeMillo et al. [1]. This is a white-box testing
approach that focuses on identifying faults in the test cases by altering the original
program through a set of predefined rules on its syntax structure. This alteration
process, referred to as mutation, involves making small modifications to the code
that mimic potential mistakes made by programmers. This method is useful in
evaluating the program and highlighting the shortcomings of the test cases in the
test suite, and is therefore sometimes referred to as mutation analysis rather than
testing.

Mutation analysis has been researched for many years in software engineering
studies [2] and applied to industry applications [3, 4, 5]. It is used to tackle different
software testing problems such as measuring test suite quality [6, 7], evaluating and
minimizing the number of test cases in a test suite [8, 9, 10], locating faults in
a program [11, 12], evaluating and comparing test coverage criteria [13], automating
mutations of web applications [14], and software programs for popular programming
languages including Java [15] and C# [16].

Mutants generated by the mutation testing process can be grouped into two
categories: first order mutants and higher order mutants. First order mutants are
generated through applying mutation operators once during the mutant generation
process of mutation analysis, and higher order mutants through applying mutation
operators multiple times. This type of testing is called higher order mutation test-
ing [17]. The aim of higher order mutation is to demonstrate more complex, more
realistic programming faults, and therefore improving mutation analysis and reduc-
ing the number of equivalent mutants, i.e., mutants that output the same result as
the original program and cannot be killed in the mutation analysis process, relative
to first order mutation. A study on higher order mutation claims that mutants are
unlikely to be equivalent mutants [18], and the overall number of mutants can be
reduced [19]. Regardless of the extensive studies on higher order mutation testing,
finding useful mutants is still a problem, since the search space is large by nature.
Therefore, there is an opportunity to optimize the search space in the context of
mutation testing using heuristic approaches. The use of artificial intelligence tech-
nologies to eliminate the problems of higher order mutation and increase the test
quality will be helpful in producing faster and more workable test suites.

Search-based mutation testing involves the use of meta-heuristic optimization
techniques. Meta-heuristics represent a category of algorithms specifically designed

Leveraging Genetic Algorithms for Efficient Higher Order Mutation Testing 711

to tackle complex optimization challenges, which are typically resistant to conven-
tional optimization methods [20]. Such problems are characterized by their large-
scale, non-linear nature, and they either lack a precise solution or such a solution
is impractical to determine within a reasonable time. There are many traditional
methods such as ant colony optimization, genetic algorithms, simulated anneal-
ing, or particle swarm optimization [21]. Some newer approaches are giant trevally
optimizer [22], elephant clan optimization [23], and reptile search algorithm [24].
These methods offer sufficiently effective solutions within a manageable period of
time. Applying meta-heuristics to search-based mutation testing can be achieved
by defining fitness functions [25], generating test data [26], and incorporating mu-
tation operators [27]. Meta-heuristics are capable of solving complex problems with
the aim of finding an optimal solution from a large search space [28]. However,
one of the main limitations of higher order mutation is the size of its search space.
To overcome this problem, recent research suggests that utilizing meta-heuristic
approaches in mutation testing can effectively reduce the number of mutants gen-
erated [29].

This study mainly aims to analyze the problems of higher order mutation testing
by proposing a meta-heuristic approach using genetic algorithms to solve them. The
main contributions of this study can be summarized as follows:

• A meta-heuristic approach employing genetic algorithms to address the chal-
lenges of higher order mutation testing is proposed. The proposed method in-
cludes four different variants of the genetic algorithm, each incorporating a dif-
ferent selection method (roulette wheel, tournament, rank, and truncation selec-
tion). This variety allows for a comprehensive evaluation of different strategies
in the context of higher order mutation generation.

• A comparative analysis between four variants and a random search algorithm is
provided to validate and verify the effectiveness of the solution.

• The algorithm has been implemented in the C# programming language and has
been tested in seven different test programs, each accompanied by a specially
designed test suite. Given that each programming language has its unique mu-
tation testing tool, this study specifically experimented with a C# mutation
testing tool named VisualMutator.

• The findings from the study show that the genetic algorithm-based approach
with respect to the selection method outperforms the random search algorithm in
key performance metrics, such as reducing the occurrence of equivalent mutants
and achieving this in a shorter execution time, thereby enhancing computational
efficiency.

The remainder of the paper is organized as follows. Section 2 presents related
work and background research on the topic. Section 3 discusses the proposed method
and presents the details of the solution. In Section 4, experiments details, research
questions, and datasets are presented. Section 5 presents and discusses the results.
In Section 6, the conclusions and future work are discussed.

712 S. Uzunbayir, K. Kurtel

2 RELATED WORK

This section presents the concepts and terms of mutation testing outlined in the
study. Section 2.1 delves into the concept of first order mutants and provides exam-
ples of equivalent mutant terms. Section 2.2 focuses on the higher order mutation
testing. Section 2.3 investigates search-based mutation testing and examines signif-
icant studies related to it. Section 2.4 presents a review of the literature on this
topic.

2.1 First Order and Equivalent Mutant

The fundamental method in mutation testing is to create a replica of the original
program, apply mutation operators to introduce artificial errors and call it a mutant,
and then use a test suite to try to detect these errors in the faulty version of the
program. An example of this can be seen in Table 1, where the original program is
replicated and a mutant is created by changing the operator “greater than or equal
to (>=)” to the “less than (<)” operator.

When a mutant is created by applying a mutation operator only once to an
original program, it is called a first order mutant. Table 1 shows a first order
mutant.

Algorithm 1 Original Program

1: Read a number
2: if number >=30 then
3: Print “GREEN”
4: else
5: Print “BLUE”
6: end if

Algorithm 2 First Order Mutant

1: Read a number
2: if number < 30 then
3: Print “GREEN”
4: else
5: Print “BLUE”
6: end if

Table 1. Original program and its first order mutant

The equivalent mutant outputs the same result as the original program. This
situation leads to the problem of mutant detection during mutation analysis. Fun-
damentally, the test suite cannot detect an equivalent mutant due to the injected
fault, and it cannot be killed automatically; a manual intervention is needed to de-
tect and kill it. Studies have shown that these mutants are not very rare; in fact,
they are actually generated quite often. Sometimes more than 50% of the overall
mutants can be equivalent at the end of the test [30]. Table 2 shows an example of
an equivalent mutant.

The idea of ordering mutation testing is performed by applying more than one
fault artificially to an original program. To represent the order of a mutant, the
number of inserted faults is used. For example; if two faults are inserted to create
a mutant, it becomes a second order mutant; if three faults are inserted, it becomes
a third order mutant.

Leveraging Genetic Algorithms for Efficient Higher Order Mutation Testing 713

Algorithm 3 Original Program
1: a = 2
2: if b==2 then
3: Print “b”
4: b = a+ b
5: end if

Algorithm 4 Equivalent Mutant
1: a = 2
2: if b==2 then
3: Print “b”
4: b = a ∗ b
5: end if

Table 2. Original program and an equivalent mutant

2.2 Higher Order Mutation Testing

Second order mutation testing was first proposed in 1992 by Offutt [31] while study-
ing the coupling effect of mutation analysis. He claimed that complex faults can
be detected using second ordering and showed that fewer second order mutants sur-
vived after experiments. This phenomenon was then investigated further by Polo
et al. [32], Madeyski [33], and Mateo et al. [34], who showed that the number or
equivalent mutants can be reduced by combining first order mutants in order to cre-
ate second order mutants, the number of mutants can be reduced without changing
the test suite quality. However, one drawback from these studies suggested that
some second order mutants become more difficult to kill during mutation analy-
sis.

Higher order mutation testing was proposed in 2009 by Jia and Harman [17].
Instead of injecting a single fault into a mutant, two or more faults are injected.
Table 3 shows an example of a higher order mutant with two faults, i.e. a second
order mutant.

Algorithm 5 Original Program

1: Read A and B
2: multiplication = 1
3: if A > B then
4: multiplication = A ∗B
5: result = multiplication/2
6: end if

Algorithm 6 Higher Order Mutant

1: Read A and B
2: multiplication = 1
3: if A > B then
4: multiplication = A+B
5: result = multiplication ∗ 2
6: end if

Table 3. Original program and its higher order mutant

In practice, a considerable number of higher order mutants are useless. Since
a test that kills a first order mutant which is generated by one of the mutation
operators of a higher order mutant, can also kill that higher order mutant due
to coupling effect hypotheses of mutation testing. However, Jia and Harman [17]
underline that there are some types of higher order mutant that are useful; there
exist several classes of higher order mutants that are potentially valuable, because

714 S. Uzunbayir, K. Kurtel

they show strange characteristics. These mutants are named as strongly subsum-
ing higher order mutants, in which the combining mutants can make higher or-
der mutants more difficult to kill. Therefore, the authors used the three search-
based algorithms to generate subsuming higher order mutants. They experimented
with ten programs and showed that 67% of the higher order mutants generated
were indeed more difficult to kill than the first order mutants used to generate
them.

2.3 Search-Based Mutation Testing

Exhaustive testing is impossible due to the infinite number of test data. Therefore, it
cannot be used to test an entire system in practice. In mutation testing, the number
of mutants is so large and it is costly to find required amount of mutants that can
increase mutation score among those having no effects at all. In the literature,
search-based approaches have been applied to several optimization problems [35].
Software test design problems can be formulated as an optimization problem and
have been solved using meta-heuristic techniques [36]. To this end, the generation
of test cases using search-based testing techniques to find a good solution within the
search space can be automated [37].

Search-based mutation testing involves the formulation of test data generation
and mutant optimization as optimization problems. Then, meta-heuristic algorithms
are applied to solve these problems with full or partial automation. Meta-heuristics
are high-level algorithmic frameworks aimed at generating or finding solutions with
strategies for heuristic optimization algorithms [38]. Promising solutions can be
produced using meta-heuristic algorithms such as genetic algorithms, ant colony op-
timization, particle swarm optimization, simulated annealing, artificial bee colony,
and harmony search combined with mutation testing. Figure 1 shows the catego-
rization of the algorithms and some examples [39].

Bottaci [40] proposed a fitness function and applied it to an optimization al-
gorithm to kill mutants. He suggested that his function was based on reachability,
sufficiency, and necessity conditions. Since then, these three conditions have become
the foundation of search-based mutation testing.

In spite of having advantages, each meta-heuristics has limitations. Some can
be listed as follows:

• Genetic algorithms have premature convergence, slow speed, large iteration
times, and low efficiency in test case generation.

• Ant colony optimization is difficult to analyze its theoretical concepts, and there
is an uncertainty of time convergence.

• Particle swarm optimization suffers from a low convergence rate and a high
chance of being stuck in local optima.

• Simulated annealing has many parameters to be tuned and trade-offs to be
considered between result quality and run time of the algorithm.

Leveraging Genetic Algorithms for Efficient Higher Order Mutation Testing 715

Meta-Heuristic Optimization Algorithms

Evolutionary
Algorithms

Science-Based
Algorithms

Swarm Intelligence
Algorithms

Human-Based
Algorithms

Genetic Algorithms

Evolution Strategy

Generic Programming

Evolutionary
Programming

Simulated Annealing

Charged System
Search

Central Force
Optimization

Black Hole Algorithm

Particle Swarm
Optimization

Ant Colony
Optimization

Artificial Bee Colony

Crow Search
Algorithm

Harmony Search

Exchange Market
Algorithm

Human Group
Formation Algorithm

Political Optimizer

Figure 1. Meta-heuristic optimization algorithms categorization with examples

• Artificial bee colony requires a good balance between exploration and exploita-
tion and is not very predictable due to its stochastic nature.

• Harmony search is sensitive to its parameters and can stuck on local optima
especially in complex programs.

There are many studies that tackle the disadvantages of meta-heuristics propos-
ing additional methods to avoid local optimum, better parameter selection mech-
anisms, or increasing accuracy additions. Therefore, the area of meta-heuristics is
always open for further research.

2.4 Literature Review

This section presents a review of related work on higher order mutation, automated
test data generation, and search-based mutation testing.

The concept and application of higher order mutation testing are extensively ex-
plored in the literature. Jia and Harman [17] introduced higher order mutation and
types of higher order mutants, particularly focusing on subsuming mutants which
are harder to kill than their constituent mutants. They demonstrated the existence
of such mutants in C programs using search-based optimization techniques. This
was the first study to propose higher order mutation, paving the way for further
experiments especially for test data generation processes. Similarly, Kapoor [41]
emphasized the difficulty of killing higher order mutants compared to first order
mutants, highlighting the reduced testing cost when a subsuming higher order mu-
tant is present. Although the paper offers theoretical arguments and highlights
potential benefits, it does not provide comprehensive empirical validation through

716 S. Uzunbayir, K. Kurtel

large-scale experiments. Polo et al. [32] proposed a method to reduce mutation
costs for second order mutants. They merged first order mutants generated con-
taining one fault to generate second order mutants, halving the number of mutants
are reducing and the costs. While the technique showed positive results in both
experiments, further research involving industrial software is necessary for its vali-
dation. Madeyski et al. [42] conducted a systematic review on the equivalent mutant
problem, categorizing solutions into detect, suggest, and avoid approaches. Further-
more, they proposed some second order mutation methods based on the work of
Polo et al. Wong et al. [43] and Oh et al. [44] contributed by suggesting methods
for identifying strongly subsuming higher order mutants. While Wong et al. pro-
posed a three-step approach including variational search and prioritized search, Oh
et al. utilized Causal Program Dependence Analysis for this purpose. The first study
faced limitations due to the specific choices of programs, mutation operators, and
test cases. Technical constraints necessitated the exclusion of some tests and muta-
tions, which may have slightly impacted the results. The second study, on the other
hand, required the implementation of different heuristic designs and a larger dataset
for experimentation. Langdon et al. [45] investigated the relationship between mu-
tant syntax and semantics, particularly in mutants difficult to kill. Their approach
considered large and small syntax changes and experimented to determine whether
the effects are similar. They showed that there are some higher order mutants that
are similar to the original program semantically. The research was centered on the C
programming language, utilizing traditional mutation operators. It did not encom-
pass object-oriented mutation operators typical of languages such as Java or C#.

Alshraideh and Bottaci [46], and later Alshraideh et al. [47], made significant
contributions to automated test data generation. They employed genetic algorithms
for generating test data, particularly focusing on branch coverage and string opera-
tions in the programs. They also proposed a multiple-population genetic algorithm,
which outperformed the single-population version in terms of execution time and
search quality. Alshraideh et al.’s method uses acyclic predicate paths in order
to reach all branches with various island populations. As a result, the multiple-
population algorithm performs better than the single-population version based on
execution time and search quality. While superior to single-population algorithms
in several performance metrics, its main limitation is inefficiency for simpler pro-
grams, where it might target irrelevant code sections. This inefficiency in small
programs is balanced by its effectiveness in more complex scenarios, where single-
method searches typically struggle. Mala et al. [48] presented a hybrid genetic
algorithm with the aim of improving the quality of test cases. The study showed
that the mutation score is increased and the total number of test cases can be re-
duced, also reducing the execution time. The results were compared with a generic
genetic algorithm and the implementation of a bacteriologic algorithm. Therefore,
the proposed hybrid genetic algorithm produced near-optimal solutions. The study
would benefit from additional experimentation with methods such as hill climbing or
swarm intelligence to demonstrate the effectiveness of the proposed methods more
comprehensively.

Leveraging Genetic Algorithms for Efficient Higher Order Mutation Testing 717

The use of search-based techniques in higher order mutation testing has been
a focal point of several studies. Omar and Ghosh [49] worked on AspectJ programs
and proposed four approaches to automatically generate higher order mutants. They
arranged faults based on their parts occurrence, such as base classes or aspect inter-
actions. The four proposed approaches are for aspect-oriented programming faults
from a previous work [50]. The study is promising, but there is also a need for more
extensive research on different HOM construction methods, particularly with larger
programs and extensive test sets. Omar et al. [51] continued with this approach in
their next study by introducing three new search techniques to find higher order
mutants; guided local search, restricted random search, and restricted enumeration
search. Omar et al. [52] later introduced HOMAJ, a tool for higher order mutation in
Java and AspectJ, demonstrating its efficacy in creating and executing mutants. The
research also suggests an exploration into extending existing techniques to identify
equivalent HOMs, which could reduce the manual labor involved in distinguishing
non-equivalent subtle HOMs. Derezinska and Halas [53] used Python to propose
four algorithms for generating higher order mutants; Between-Operators, FirstTo-
Last, Random, and Each-Choice, to generate higher order mutants. As a result,
they were able to generate 50% fewer higher order mutants than the number of
first order mutants. The research on Python programs may require for more com-
prehensive evaluation of equivalent mutants and further exploration of additional
mutation operators. A more recent study by Aratesh et al. [54] employed an ar-
tificial bee colony optimization algorithm to identify the most fault-prone paths,
suggesting this method could reduce the number of overall mutants and the asso-
ciated costs in popular Java mutation testing tools. Nishta et al. [55] conducted
a systematic review of the search-based mutation testing literature, highlighting
trends up to 2017. They focused on the application of these techniques primarily in
mutant generation and test case optimization. Silva et al. [28] also reviewed search-
based mutation testing, particularly involving meta-heuristic approaches. However,
both reviews require updates to include newer, more comprehensive methodologies
in the field, such as machine learning or other artificial intelligence methods.

3 PROPOSED METHOD

In this section, the justification for selecting the investigated methods, the details
of the implementation of the proposed genetic algorithm, and the random search
algorithm are discussed.

3.1 Justification for Selected Methods

Higher order mutation testing is potentially useful and provides improved opportu-
nities compared to first order mutation testing. It can simulate more realistic faults
that a programmer can make with complex changes and improved test optimization
techniques [17].

718 S. Uzunbayir, K. Kurtel

The proposed method aims to attack the most important problem in higher order
mutation testing; the reduction of the number of mutants at mutant generation level.

Higher order mutants are generated by using search-based testing techniques,
namely meta-heuristics, by aiming to reduce costs. There are three reasons for
selecting this technique:

• There is a large set of mutants. Some of these mutants are useful, but not all.
A selection process for good mutants would reduce costs.

• A meta-heuristic search is guided by a fitness function. Instead of applying an
exhaustive technique to visit all the solutions, a specific search process can be
processed in a clever way, and good solutions can be found.

• There are several related studies in the literature that present promising results
for search-based mutation testing.

3.2 A Genetic Algorithm for Higher Order Mutant Generation

Our approach generates higher order mutants by using a genetic algorithm, aiming
to find the fittest mutants in the search space. We define chromosome representation
and the fitness function and discuss the algorithm details for higher order mutant
generation in this section.

3.2.1 Chromosome Representation

The algorithm uses a population that includes individuals to represent candidate
solutions. These solutions contain chromosomes that act on features. Therefore,
a higher order mutant represents a chromosome. It is an array of strings, and each
element of it is a one-line from the source code of a higher order mutant. Every single
line of a higher order mutant is included in chromosomes. Mutated statements come
from their related first order mutants. There can be two or more faults contained
in chromosomes to represent higher order mutants. Figure 2 shows a chromosome
representation as an array of strings.

3.2.2 Fitness Function

A fitness function is used to evaluate a candidate solution compared to the optimal
solution to the problem. In other words, it defines whether a solution is good, bad,
or close to both sides. It is one of the essential requirements of a genetic algorithm
in order to select a good solution from the search space.

The algorithm starts the selection phase after the first initialization. To perform
a selection, the fitness of the mutants is calculated. The result of the fitness can be
a value from 0 to 1. If the value is closer to 1, it means that the mutant can be
easily killed. Otherwise, the mutant is more difficult to kill and requires more than
one test case to kill it. Taking into account TCn as the nth test case of the test suite

Leveraging Genetic Algorithms for Efficient Higher Order Mutation Testing 719

int multiplicationProcedure(int number1, int number2){

 if (number1 > number2){

int multiplication = 1;

 multiplication = number1 + number2;

 result = multiplication * 2; }

return result;

}

Figure 2. A chromosome representation

that kills mutant c, the total number of test cases is TCtotal and the fitness value
f(c) in a population is calculated as follows:

f(c) =

∑n
i=1 TCn

TCtotal

.

Basically, the total number of test cases that kill a mutant c is divided by the
total number of test cases that produce the fitness value of the algorithm.

3.2.3 Initialization

The first population is generated by merging some first order mutants randomly.
Two or more first order mutants can be merged, depending on the user’s preferences.
For example, to create a third order mutant, three first order mutants should be
merged.

3.2.4 Selection

In the selection phase, higher order mutants are selected to generate offspring in the
later stages. This process serves as the linchpin for identifying candidate solutions
for application to subsequent generations. In this study, four prevalent selection
mechanisms were selected for experimentation: roulette wheel, tournament, rank,
and truncation selection.

Roulette Wheel Selection: The algorithm uses the roulette wheel selection pro-
cedure to replace the statements in the first version. In this method, the aim is

720 S. Uzunbayir, K. Kurtel

to select the best parents among a set of parents to create an offspring. In a reg-
ular roulette wheel, the slot sizes are the same; therefore, all slots have the same
probability of being selected. In genetic algorithms, the aim is to have a weighted
version of a roulette wheel. The individual is more likely to be selected if the
fitness is greater than the others. For each chromosome c and the correspond-
ing fitness value f(c) in a population P of size n, P = {c1, c2, c3, . . . , cn}. The
probability p(ck) is calculated using the following formula:

p(ck) =
f(ck)∑n
i=1 f(cl)

,

where l = 1, 2, 3, . . . , n.

In other words, the sum of fitness is calculated for each individual in the popula-
tion and the relative fitness value for each is evaluated using the above formula.
Roulette is partitioned according to the proportions calculated in the previous
step. The roulette wheel is spun n times, where n is the size of the population.
Two individuals are selected from the partition when the roulette stops.

Tournament Selection: Tournament selection is used in the second version of
the algorithm. It involves selecting a random subset of individuals from the
population and conducting a “tournament” among these. The individual with
the highest fitness score in this subset is then selected as a parent for the next
generation. This process is usually repeated to select multiple parents to create
offspring through crossover and mutation operations. In the mutation testing
paradigm, each “individual” in the population represents a test suite, and fitness
is a measure of the test suite’s ability to detect mutants.

Rank Selection: Rank selection is used as the third version of the algorithm. It
is a strategy in which individuals are sorted according to their fitness levels and
then, within the sorted list, selected according to their rank. Unlike methods
such as roulette wheel selection, where the absolute fitness values dictate selec-
tion probability, in rank selection, the focus is on the relative standing of an
individual within the population. The advantage is to mitigate the risk of pre-
mature convergence by focusing on relative, rather than absolute, fitness. This
is important in mutation testing where the objective function can be rugged.

Truncation Selection: The last version of the algorithm uses the truncation se-
lection method. It is a selection strategy that truncates the population by
discarding the least fit individuals and replicating the fittest ones for the next
generation. This method is highly elitist and is best suited for scenarios where
rapid convergence to a high-quality solution is desirable. The formula to calcu-
late how many individuals are selected can be given as:

Number of Selected Individuals = ⌈T ×N⌉,

where T is the truncation threshold, a number between 0 and 1. For example,
T = 0.2 would mean that the highest 20% of the individuals is selected based

Leveraging Genetic Algorithms for Efficient Higher Order Mutation Testing 721

on their mutation score. And N represents the total number of individuals in
the population.

3.2.5 Mating

In the mating step, crossover and mutation are applied to selected higher order
mutants based on the following criteria:

Crossover: Two selected higher order mutants are selected and combined together
to create offspring. Crossover points can be one or more based on user selection.
In this study, double point crossover is used. It should not generate a new
offspring as a first order mutant, but if it does, another mutation is applied
randomly to generate a second order mutant.

Mutation: Mutation is performed on a higher order mutant by randomly adding
a first order mutant or removing it. If a first order mutant is to be added,
it is selected randomly among all first order mutants. On the other hand, if
a first order mutant is to be removed from a higher order mutant, it is selected
from first order mutants that generate related higher order mutants. The user
can determine the number of first order mutants to be added or removed from
higher order mutants. It should not convert a higher order mutant to a first
order mutant.

3.2.6 Stopping Condition

Deciding when to stop a genetic algorithm is an important consideration in its
implementation. The choice of stopping criteria can influence both the performance
and the computational cost of the algorithm. One of the stopping criteria can be
a fixed number of generations, which is the simplest approach; the algorithm stops
once this number is reached. Another criterion is convergence. The algorithm stops
if the population has converged, which means that there is very little variance in
the fitness values of the individuals. Convergence might suggest that the algorithm
has found a local or global optimum, although this is not necessarily the case. The
threshold fitness value can also be a stopping criterion. The algorithm can be set to
stop once an individual reaches or exceeds a certain fitness value. This is particularly
useful if there is a known solution or a minimum acceptable solution quality.

In this study, the algorithm stops by a predefined parameter by the user, which is
the maximum number of different higher order mutants. After the algorithm stops,
it returns a list of higher order mutants found. The proposed genetic algorithm is
given in Algorithm 7 below. The flow chart of the algorithm can be seen in Figure 3.

3.3 A Random Search Algorithm for Higher Order Mutant Generation

Random search is a non-heuristic-based approach used to explore the search space of
possible solutions. Genetic algorithms evolve a population of solutions over several

722 S. Uzunbayir, K. Kurtel

Initialize population

Select individuals for
the mating process

Choose

Use
Roulette
Wheel

selection

Use
Tournament

selection

Use Rank
selection

Use
Truncation
selection

Perform crossover

Perform mutation

No

Add offspring into the
current population

Stop?

Population set

Start

Evaluate fitness

Return population

Yes

End

Figure 3. Flow chart of the proposed algorithm

Leveraging Genetic Algorithms for Efficient Higher Order Mutation Testing 723

Algorithm 7 Proposed Genetic Algorithm

Require: firstOrderMutants , size, selectionMethod , cPoint ,mRatio
1: i = 0
2: higherOrderMutants ← ∅
3: population[i]← initializePopulation(firstOrderMutants , size)
4: population[i].execute()
5: population[i].calculateFitness()
6: while stoppingCondition ̸= true do
7: parent ← population[i].select(selectionMethod)
8: offspring ← parents .crossover(cPoint)
9: offspring ← parents .mutation(mRatio)

10: population.add(offspring)
11: end while
12: i← i+ 1
13: population[i].execute()
14: population[i].calculateFitness()
15: higherOrderMutants .add(population[i])
16: return higherOrderMutants

generations by employing techniques like selection, crossover, and mutation, while
a random search algorithm uniformly samples the search space and directly evaluates
the randomly generated solutions. The parameters of selection are random, and
there is no intelligence procedure for sampling solutions from the search space.

In this study, the random search approach randomly selects candidate higher
order mutants among all higher order mutants individually. The algorithm requires
an arbitrarily selected set of first order mutants to generate higher order mutants,
and their fitness is evaluated. According to the results, they are selected and stored
in a higher order mutants list.

Random search can serve as a baseline to evaluate the performance of more
sophisticated algorithms such as the method proposed in this study. Showing that
our solution outperforms a simple random search provides empirical evidence that
the proposed algorithm is adding value, rather than simply navigating the search
space randomly. The pseudocode of the algorithm is given in Algorithm 8.

4 EXPERIMENT DETAILS

In this section, we present the details of the experiments performed in order to eval-
uate our research goals. Section 4.1 describes the setup of the test environment used
in the study. Section 4.2 introduces the research questions of this study. Section 4.3
introduces the subject programs that were used with the experiments. Section 4.4
describes the settings of the genetic algorithm parameters before performing the
experiments.

724 S. Uzunbayir, K. Kurtel

Algorithm 8 Proposed Random Search Algorithm

Require: firstOrderMutants
1: i = 0
2: higherOrderMutants ← ∅
3: while stoppingCondition ̸= true do
4: randomHigherOrderMutant ← makeHigher(firstOrderMutants)
5: randomHigherOrderMutant .execute()
6: fitness ← randomHigherOrderMutant .calculateFitness()
7: if fitness ==OK then
8: higherOrderMutants ← randomHigherOrderMutant
9: end if

10: i← i+ 1
11: population.add(offspring)
12: end while
13: return higherOrderMutants

4.1 Test Environment Setup

We created our test environment as shown in Figure 4 to create first order mutants
based on the following setup and programs:

• The experiments were performed on a desktop computer running Windows 11
operating system with an Intel i7 9700k 2.8 GHz processor.

• In this experiment, we used VisualMutator which is a mutation testing tool for
C# that generates, compiles, and runs mutants. We used this tool to generate
first order mutants. These first order mutants are taken as inputs to assess test
cases.

• To generate and organize test cases in our test suite, we used IntelliTest and
SentryOne tools, which are automated test case generators for unit testing in
NUnit format. The aim of using both tools is to guarantee full coverage for the
subject programs that can kill all generated first order mutants. If, for whatever
reason, the mutants are not killed, more test cases are added manually.

After first order mutants for all subject programs are created, the random search
algorithm and four variants of the genetic algorithm are executed to create higher
order mutants to evaluate the results. Figure 5 is a diagram showing this process.

4.2 Research Questions

In this study, the focus is on addressing the following key research questions (RQs):

RQ1: Which selection method generates the least number of equivalent higher order
mutants? There are different selection strategies that can be applied during the
selection phase of a genetic algorithm. The aim of this question is to find the

Leveraging Genetic Algorithms for Efficient Higher Order Mutation Testing 725

Run VisualMutator to
create First Order

Mutants

Subject
Programs

Run IntelliTest &
SentryOne to create

TestSuites

Subject
ProgramsSubject

ProgramsSubject
ProgramsSubject

ProgramsSubject
ProgramsSubject

Programs

First Order
MutantsFirst Order

MutantsFirst Order
MutantsFirst Order

MutantsFirst Order
MutantsFirst Order

MutantsFirst Order
Mutants Sets

Figure 4. Test environment to create first order mutants

best selection method that can produce a smaller amount of equivalent mutants
when generating higher order mutants.

RQ2: Which selection method has the highest and lowest execution cost? Consid-
ering different selection strategies, the objective of this RQ is to evaluate the
fastest and the slowest selection method compared to the others implemented
in this study on average.

First Order
Mutants
Subject

Program 1

First Order
Mutants
Subject

Program 6

Apply Genetic
Algorithm

Roulette Wheel
Selection Tournament Selection Rank

Selection
Truncation
Selection

Higher
Order

Mutants
Subject

Program 1

Higher
Order

Mutants
Subject

Program 7

Apply Random
Search Algorithm

First Order
Mutants
Subject

Program 2

First Order
Mutants
Subject

Program 3

First Order
Mutants
Subject

Program 4

First Order
Mutants
Subject

Program 5

First Order
Mutants
Subject

Program 7

Higher
Order

Mutants
Subject

Program 7

Higher
Order

Mutants
Subject

Program 7

Higher
Order

Mutants
Subject

Program 7

Higher
Order

Mutants
Subject

Program 7

Higher
Order

Mutants
Subject

Program 7

Figure 5. Experiment details to create higher order mutants

726 S. Uzunbayir, K. Kurtel

RQ3: What is the percentage of higher order mutants generated for each mutation
order? One of the main drawbacks of higher mutation testing is the amount of
mutants generated. The motivation behind this RQ is to test whether the order
of mutants is able to lower the number of mutants generated and still produce
better results.

4.3 Subject Programs

Subject programs are implemented using C# and are given in Table 4 below includ-
ing their size, the number of first order mutants, and the number of test cases.

Subject programs are described as follows:

• TriangleType: The program determines whether a given triangle is equilateral,
isosceles, or scalene.

• PrintPrimes: The program finds and outputs all prime numbers from a given
input.

• CalculateDays: The program calculates the number of days between given inputs
and prints the result.

• HashTable: The program creates a hash table and fills it according to a given
test file, and then finds values based on their specified keys.

• CocktailSort: The program is an alteration of the bubble-sort algorithm. The
idea is to traverse over an input array starting from the beginning and the end
as opposed to starting point only.

• MatchPattern: The program finds the occurrences of a given pattern in an ex-
pression.

• MoonPhases: The program calculates the moon’s phase at the moment and
roughly how many days remain in the cycle.

Project Name Lines of Code # of First Order Mutants # of Test Cases

TriangleType 40 102 77
PrintPrimes 49 99 65
CalculateDays 51 85 89
HashTable 95 172 56
CocktailSort 75 204 83
MatchPattern 62 68 71
MoonPhases 165 381 95

Table 4. Subject programs

4.4 Genetic Algorithm Parameter Settings

The selected values for the proposed genetic algorithm parameters are given as
follows after experimenting with various values:

Leveraging Genetic Algorithms for Efficient Higher Order Mutation Testing 727

• Probability of crossover is 0.7 as this value is a commonly used value in genetic
algorithms, often considered a good balance between allowing the algorithm to
explore new solutions and exploiting existing good solutions.

• Probability of mutation is 0.07 since a lower probability of mutation allows the
algorithm to introduce slight randomness without disturbing the main charac-
teristics of the individuals. This value helps to escape local optima.

• Maximum number of iterations is selected as 1000, because there was no change
to the results after this number.

• Mutant ratio is 4%. During experiments, a mutant ratio 4% provided a good
trade-off between computational efficiency and algorithm performance in terms
of the fitness function.

• Chromosome size is equal to the number of lines of code of the subject program,
which effectively captures the essential characteristics of the subject program
and aids in optimization.

The experiments were performed 30 times on each subject program to validate
whether there were changes in each trial or not. After 30 trials, the results show no
change and the experiments were terminated.

5 RESULTS

This section presents the results calculated by averaging 30 experiments conducted
on each of the seven test programs.

Table 5 answers RQ1: “Which selection method generates the least number of
equivalent higher order mutants?” It presents the ratio of generated equivalent
mutants for each test subject compared with random search and versions of GA
using four selection strategies; roulette wheel, tournament selection, rank selection,
and truncation selection. Each algorithm generated equivalent mutants; however,
the ratio for each is different. Among all trials, the random search was the least
effective in terms of the number of equivalent mutants, with an average of 26.8%.
For the proposed genetic algorithm, the truncation selection version has a slightly
lower percentage than the rank approach with 18% and performed the best among
others.

MatchPattern had a ratio of 33% equivalent mutants using random search, while
HashTable had a ratio of 11% equivalent mutants using GA with the roulette wheel
selection strategy.

Table 6 answers RQ2: “Which selection method has the highest and lowest execu-
tion cost?” The aim of this research question is to find out which selection strategy
performs faster than the others in terms of execution duration on average. Random
search seems to be the least effective performer in this experiment with 13.5 min-
utes on average. The next worst one is GA with rank selection with 12.9 minutes.
GA with tournament selection performed 0.4 minutes slower than GA with roulette

728 S. Uzunbayir, K. Kurtel

Project
Name

Random
Search

GA with
Roulette Wheel

Selection

GA with
Tournament

Selection

GA with
Rank

Selection

GA with
Truncation
Selection

TriangleType 30% 25% 25% 21.2% 14%
PrintPrimes 30.3% 28.4% 24.1% 25.5% 21%
CalculateDays 23.2% 15.2% 18.8% 15% 20%
HashTable 16% 11% 15% 13% 15%
CocktailSort 22.5% 18% 12.3% 16.3% 14.2%
MatchPattern 33% 20.7% 17.6% 22.5% 20.4%
Moon Phases 28.1% 21.5% 25% 20.1% 18%

Average 26.8% 20% 19.7% 19.1% 18%

Table 5. Ratio of generated equivalent mutants

wheel selection. In general, the fastest algorithm is GA with truncation selection of
9.5 minutes on average.

CalculateDays was the fastest program to execute, with 7.3 minutes using GA
with truncation selection, and the slowest experiment recorded was CocktailSort
with 16.1 minutes using random search.

Project
Name

Random
Search

GA with
Roulette Wheel

Selection

GA with
Tournament

Selection

GA with
Rank

Selection

GA with
Truncation
Selection

TriangleType 12.1 10.2 10.4 13 9.4
PrintPrimes 15.4 11 11.3 13.2 10.2
CalculateDays 9 8.2 8.5 10.5 7.3
HashTable 15.8 10.2 10.6 12.3 10
CocktailSort 16.1 14 15.3 16 12.3
MatchPattern 11.6 8.5 9 10 6.3
MoonPhases 14.5 12.7 12.9 15 11.1

Average 13.5 10.7 11.1 12.9 9.5

Table 6. Execution cost of different selection strategies

Table 7 presents the percentage of higher order mutants from each mutation
order including second order, third order, and fourth order mutants to answer RQ3:
“What is the percentage of higher order mutants generated for each mutation or-
der?”. The motivation for this experiment is to assess whether a higher order is
capable of producing a reduced number of mutants that can produce better results.
The table clearly shows that when the order is increased, the number of generated
mutants is reduced. For this experiment, all subject programs applied with random
search and all different variants of the algorithm, and the average results are shown
in the table. For instance, the ratio of higher order mutants in the second order
mutation using GA with truncation selection is 50.1%, however, when the fourth
order mutation is applied, the average number of higher order mutants is reduced to
14.2%. Therefore, the proportion of mutant ratio is decreased by 35.9% in general.

Leveraging Genetic Algorithms for Efficient Higher Order Mutation Testing 729

Project
Name

Random
Search

GA with
Roulette Wheel

Selection

GA with
Tournament

Selection

GA with
Rank

Selection

GA with
Truncation
Selection

SecondOrder 55.5% 46.3% 55.2% 64.2% 50.1%
ThirdOrder 37.6% 29.4% 26.1% 23.1% 29.2%
FourthOrder 30.2% 18.1% 15.2% 15.5% 14.2%

Table 7. Percentage of the generated higher order mutants from each mutation order

Overall, these research questions and experiments collectively explore the in-
tricacies of mutation testing, focusing on the optimization of selection strategies,
resource efficiency, and the structural characteristics of higher order mutants. They
reflect a comprehensive approach to improving the effectiveness and efficiency of
mutation testing practices.

6 CONCLUSION

In this study, higher order mutation is discussed and a search-based mutation testing
method using genetic algorithms is proposed. Four different versions of the genetic
algorithm were proposed, each of which involves different selection methods; roulette
wheel, tournament, rank, and truncation selection. The proposed solution is applied
to the first order mutants to create higher order mutants. The goal is to address
the equivalent mutant problem, and the results show that the number of equivalent
mutants can be reduced using the proposed method when higher order mutants are
formed.

We implemented our proposed algorithm using the C# programming language.
To rigorously assess the efficacy and robustness of our approach, we selected seven
different test programs, each equipped with relative test suites specifically designed
to target and kill higher order mutants. These test environments provided a compre-
hensive landscape on which to evaluate the performance of the proposed algorithm.

To further substantiate the merits of our method, we performed a comparative
analysis against a random search algorithm. Empirical findings convincingly demon-
strated that our genetic algorithm-based approach outperformed the random search
algorithm in key performance metrics. Specifically, the genetic algorithm not only
reduced the occurrence of equivalent mutants, but also accomplished this task in
a shorter execution time, thus enhancing computational efficiency.

In future work, we identify several promising directions. The application of alter-
native selection strategies and different search-based optimization techniques, such
as ant colony optimization or particle swarm optimization, can be applied to this
study. Comparative analyses under the same test conditions could yield insightful
data, enabling us to fine-tune our method and perhaps discover a universally more
effective approach for dealing with the challenges posed by higher order mutants
and the equivalent mutant problem.

730 S. Uzunbayir, K. Kurtel

REFERENCES

[1] DeMillo, R.A.—Lipton, R. J.—Sayward, F.G.: Hints on Test Data Selection:
Help for the Practicing Programmer. Computer, Vol. 11, 1978, No. 4, pp. 34–41, doi:
10.1109/C-M.1978.218136.

[2] Usaola, M.P.—Mateo, P.R.: Mutation Testing Cost Reduction Techniques:
A Survey. IEEE Software, Vol. 27, 2010, No. 3, pp. 80–86, doi: 10.1109/MS.2010.79.

[3] Jia, Y.—Harman, M.: An Analysis and Survey of the Development of Muta-
tion Testing. IEEE Transactions on Software Engineering, Vol. 37, 2011, No. 5,
pp. 649–678, doi: 10.1109/TSE.2010.62.

[4] Papadakis, M.—Kintis, M.—Zhang, J.—Jia, Y.—Le Traon, Y.—
Harman, M.: Chapter Six – Mutation Testing Advances: An Analysis and Survey.
In: Memon, A.M. (Ed.): Advances in Computers. Vol. 112, 2019, pp. 275–378, doi:
10.1016/bs.adcom.2018.03.015.

[5] Vercacmmen, S.—Borg, M.—Demeyer, S.: Validation of Mutation Testing in
the Safety Critical Industry Through a Pilot Study. 2023 IEEE International Con-
ference on Software Testing, Verification and Validation Workshops (ICSTW), 2023,
pp. 334–343, doi: 10.1109/ICSTW58534.2023.00064.

[6] Nayyar, Z.—Rafique, N.—Hashmi, N.—Rashid, N.—Awan, S.: Analyzing
Test Case Quality with Mutation Testing Approach. 2015 Science and Information
Conference (SAI), 2015, pp. 902–905, doi: 10.1109/SAI.2015.7237249.

[7] Ojdanic, M.—Soremekun, E.—Degiovanni, R.—Papadakis, M.—
Le Traon, Y.: Mutation Testing in Evolving Systems: Studying the Relevance
of Mutants to Code Evolution. ACM Transactions on Software Engineering and
Methodology, Vol. 32, 2023, No. 1, Art. No. 14, doi: 10.1145/3530786.

[8] Noemmer, R.—Haas, R.: An Evaluation of Test Suite Minimization Techniques.
In: Winkler, D., Biffl, S., Mendez, D., Bergsmann, J. (Eds.): Software Quality:
Quality Intelligence in Software and Systems Engineering (SWQD 2020). Springer,
Cham, Lecture Notes in Business Information Processing, Vol. 371, 2020, pp. 51–66,
doi: 10.1007/978-3-030-35510-4 4.

[9] Palomo-Lozano, F.—Estero-Botaro, A.—Medina-Bulo, I.—Núñez, M.:
Test Suite Minimization for Mutation Testing of WS-BPEL Compositions. Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO ’18), 2018,
pp. 1427–1434, doi: 10.1145/3205455.3205533.

[10] Jehan, S.—Wotawa, F.: An Empirical Study of Greedy Test Suite Minimization
Techniques Using Mutation Coverage. IEEE Access, Vol. 11, 2023, pp. 65427–65442,
doi: 10.1109/ACCESS.2023.3289073.

[11] Kim, J.—An, G.—Feldt, R.—Yoo, S.: Learning Test-Mutant Relationship for
Accurate Fault Localisation. Information and Software Technology, Vol. 162, 2023,
Art. No. 107272, doi: 10.1016/j.infsof.2023.107272.

[12] Pearson, S.—Campos, J.—Just, R.—Fraser, G.—Abreu, R.—
Ernst, M.D.—Pang, D.—Keller, B.: Evaluating and Improving Fault
Localization. 2017 IEEE/ACM 39th International Conference on Software Engineer-
ing (ICSE), 2017, pp. 609–620, doi: 10.1109/ICSE.2017.62.

https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/MS.2010.79
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1109/ICSTW58534.2023.00064
https://doi.org/10.1109/SAI.2015.7237249
https://doi.org/10.1145/3530786
https://doi.org/10.1007/978-3-030-35510-4_4
https://doi.org/10.1145/3205455.3205533
https://doi.org/10.1109/ACCESS.2023.3289073
https://doi.org/10.1016/j.infsof.2023.107272
https://doi.org/10.1109/ICSE.2017.62

Leveraging Genetic Algorithms for Efficient Higher Order Mutation Testing 731

[13] Barani, M.—Labiche, Y.—Rollet, A.: On Factors That Impact the Relation-
ship Between Code Coverage and Test Suite Effectiveness: A Survey. 2023 IEEE In-
ternational Conference on Software Testing, Verification and Validation Workshops
(ICSTW), 2023, pp. 381–388, doi: 10.1109/ICSTW58534.2023.00071.

[14] Leotta, M.—Paparella, D.—Ricca, F.: Mutta: A Novel Tool for E2E Web
Mutation Testing. Software Quality Journal, Vol. 32, 2024, No. 1, pp. 5–26, doi:
10.1007/s11219-023-09616-6.

[15] Kintis, M.—Papadakis, M.—Papadopoulos, A.—Valvis, E.—
Malevris, N.—Le Traon, Y.: How Effective Are Mutation Testing Tools?
An Empirical Analysis of Java Mutation Testing Tools with Manual Analysis and
Real Faults. Empirical Software Engineering, Vol. 23, 2018, No. 4, pp. 2426–2463,
doi: 10.1007/s10664-017-9582-5.

[16] Uzunbayir, S.—Kurtel, K.: An Analysis on Mutation Testing Tools for C# Pro-
gramming Language. 2019 4th International Conference on Computer Science and
Engineering (UBMK), IEEE, 2019, pp. 439–443, doi: 10.1109/UBMK.2019.8907222.

[17] Jia, Y.—Harman, M.: Higher Order Mutation Testing. Information and Software
Technology, Vol. 51, 2009, No. 10, pp. 1379–1393, doi: 10.1016/j.infsof.2009.04.016.

[18] Akinde, A.O.: Using Higher Order Mutation for Reducing Equivalent Mutants in
Mutation Testing. Asian Journal of Computer Science and Information Technology,
Vol. 2, 2012, No. 3, pp. 13–18.

[19] Ghiduk, A. S.—Girgis, M.R.—Shehata, M.H.: Higher Order Mutation Testing:
A Systematic Literature Review. Computer Science Review, Vol. 25, 2017, pp. 29–48,
doi: 10.1016/j.cosrev.2017.06.001.

[20] Sarhani, M.—Voß, S.—Jovanovic, R.: Initialization of Metaheuristics: Com-
prehensive Review, Critical Analysis, and Research Directions. International Trans-
actions in Operational Research, Vol. 30, 2023, No. 6, pp. 3361–3397, doi:
10.1111/itor.13237.

[21] Hussain, K.—Mohd Salleh, M.N.—Cheng, S.—Shi, Y.: Metaheuristic Re-
search: A Comprehensive Survey. Artificial Intelligence Review, Vol. 52, 2019, No. 4,
pp. 2191–2233, doi: 10.1007/s10462-017-9605-z.

[22] Sadeeq, H.T.—Abdulazeez, A.M.: Giant Trevally Optimizer (GTO): A Novel
Metaheuristic Algorithm for Global Optimization and Challenging Engineering
Problems. IEEE Access, Vol. 10, 2022, pp. 121615–121640, doi: 10.1109/AC-
CESS.2022.3223388.

[23] Jafari, M.—Salajegheh, E.—Salajegheh, J.: Elephant Clan Optimiza-
tion: A Nature-Inspired Metaheuristic Algorithm for the Optimal Design of
Structures. Applied Soft Computing, Vol. 113, 2021, Art. No. 107892, doi:
10.1016/j.asoc.2021.107892.

[24] Abualigah, L.—Abd Elaziz, M.—Sumari, P.—Geem, Z.W.—
Gandomi, A.H.: Reptile Search Algorithm (RSA): A Nature-Inspired
Meta-Heuristic Optimizer. Expert Systems with Applications, Vol. 191, 2022,
Art. No. 116158, doi: 10.1016/j.eswa.2021.116158.

[25] Khoshniat, N.—Jamarani, A.—Ahmadzadeh, A.—Haghi Kashani, M.—
Mahdipour, E.: Nature-Inspired Metaheuristic Methods in Software Testing. Soft

https://doi.org/10.1109/ICSTW58534.2023.00071
https://doi.org/10.1007/s11219-023-09616-6
https://doi.org/10.1007/s10664-017-9582-5
https://doi.org/10.1109/UBMK.2019.8907222
https://doi.org/10.1016/j.infsof.2009.04.016
https://doi.org/10.1016/j.cosrev.2017.06.001
https://doi.org/10.1111/itor.13237
https://doi.org/10.1007/s10462-017-9605-z
https://doi.org/10.1109/ACCESS.2022.3223388
https://doi.org/10.1109/ACCESS.2022.3223388
https://doi.org/10.1016/j.asoc.2021.107892
https://doi.org/10.1016/j.eswa.2021.116158

732 S. Uzunbayir, K. Kurtel

Computing, Vol. 28, 2024, No. 2, pp. 1503–1544, doi: 10.1007/s00500-023-08382-8.

[26] Rani, S.—Suri, B.: Mutation Based Test Generation Using Search Based So-
cial Group Optimization Approach. Evolutionary Intelligence, Vol. 15, 2022, No. 3,
pp. 2105–2114, doi: 10.1007/s12065-021-00618-6.

[27] Jatana, N.—Rani, S.—Suri, B.: State of Art in the Field of Search-Based Muta-
tion Testing. 2015 4th International Conference on Reliability, Infocom Technologies
and Optimization (ICRITO) (Trends and Future Directions), IEEE, 2015, pp. 1–6,
doi: 10.1109/ICRITO.2015.7359256.

[28] Silva, R.A.—Senger de Souza, S. d. R.—Lopes de Souza, P. S.: A Systematic
Review on Search Based Mutation Testing. Information and Software Technology,
Vol. 81, 2017, pp. 19–35, doi: 10.1016/j.infsof.2016.01.017.

[29] Arasteh, B.—Gharehchopogh, F. S.—Gunes, P.—Kiani, F.—
Torkamanian-Afshar, M.: A Novel Metaheuristic Based Method for Soft-
ware Mutation Test Using the Discretized and Modified Forrest Optimization
Algorithm. Journal of Electronic Testing, Vol. 39, 2023, No. 3, pp. 347–370, doi:
10.1007/s10836-023-06070-x.

[30] Grün, B. J.M.—Schuler, D.—Zeller, A.: The Impact of Equivalent Mutants.
2009 International Conference on Software Testing, Verification, and Validation
Workshops, 2009, pp. 192–199, doi: 10.1109/ICSTW.2009.37.

[31] Offutt, A. J.: Investigations of the Software Testing Coupling Effect. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), Vol. 1, 1992, No. 1,
pp. 5–20, doi: 10.1145/125489.125473.

[32] Polo, M.—Piattini, M.—Garćıa-Rodŕıguez, I.: Decreasing the Cost of Muta-
tion Testing with Second-Order Mutants. Software Testing, Verification and Reliabil-
ity, Vol. 19, 2009, No. 2, pp. 111–131, doi: 10.1002/stvr.392.

[33] Madeyski, L.: Impact of Pair Programming on Thoroughness and Fault Detec-
tion Effectiveness of Unit Test Suites. Software Process: Improvement and Practice,
Vol. 13, 2008, No. 3, pp. 281–295, doi: 10.1002/spip.382.

[34] Mateo, P.R.—Usaola, M.P.—Alemán, J. L. F.: Validating Second-Order Mu-
tation at System Level. IEEE Transactions on Software Engineering, Vol. 39, 2013,
No. 4, pp. 570–587, doi: 10.1109/TSE.2012.39.

[35] Mohammadi, A.—Sheikholeslam, F.—Mirjalili, S.: Nature-Inspired Meta-
heuristic Search Algorithms for Optimizing Benchmark Problems: Inclined Planes
System Optimization to State-of-the-Art Methods. Archives of Computational Meth-
ods in Engineering, Vol. 30, 2023, No. 1, pp. 331–389, doi: 10.1007/s11831-022-09800-
0.

[36] Rahman, N.A.A.: A Review on Search-Based Mutation Testing. Academia of In-
formation Computing Research, Vol. 3, 2022, No. 1.

[37] Srivastava, P.R.—Ramachandran, V.—Kumar, M.—Talukder, G.—
Tiwari, V.—Sharma, P.: Generation of Test Data Using Meta Heuristic Approach.
TENCON 2008 – 2008 IEEE Region 10 Conference, 2008, pp. 1–6, doi: 10.1109/TEN-
CON.2008.4766707.

[38] Sörensen, K.—Glover, F.W.: Metaheuristics. In: Gass, S. I., Fu, M.C. (Eds.):
Encyclopedia of Operations Research and Management Science. Springer, US, Boston,

https://doi.org/10.1007/s00500-023-08382-8
https://doi.org/10.1007/s12065-021-00618-6
https://doi.org/10.1109/ICRITO.2015.7359256
https://doi.org/10.1016/j.infsof.2016.01.017
https://doi.org/10.1007/s10836-023-06070-x
https://doi.org/10.1109/ICSTW.2009.37
https://doi.org/10.1145/125489.125473
https://doi.org/10.1002/stvr.392
https://doi.org/10.1002/spip.382
https://doi.org/10.1109/TSE.2012.39
https://doi.org/10.1007/s11831-022-09800-0
https://doi.org/10.1007/s11831-022-09800-0
https://doi.org/10.1109/TENCON.2008.4766707
https://doi.org/10.1109/TENCON.2008.4766707

Leveraging Genetic Algorithms for Efficient Higher Order Mutation Testing 733

MA, 2013, pp. 960–970, doi: 10.1007/978-1-4419-1153-7 1167.

[39] Kumar, A.—Bawa, S.: A Comparative Review of Meta-Heuristic Approaches to
Optimize the SLA Violation Costs for Dynamic Execution of Cloud Services. Soft
Computing, Vol. 24, 2020, No. 6, pp. 3909–3922, doi: 10.1007/s00500-019-04155-4.

[40] Bottaci, L.: A Genetic Algorithm Fitness Function for Mutation Testing. Proceed-
ings of the SEMINALL-Workshop at the 23rd International Conference on Software
Engineering, Toronto, Canada, 2001.

[41] Kapoor, S.: Test Case Effectiveness of Higher Order Mutation Testing. International
Journal on Computer and Technology Application (IJCTA), Vol. 2, 2011, No. 5,
pp. 1206–1211.

[42] Madeyski, L.—Orzeszyna, W.—Torkar, R.—Jozala, M.: Overcoming
the Equivalent Mutant Problem: A Systematic Literature Review and a Comparative
Experiment of Second Order Mutation. IEEE Transactions on Software Engineering,
Vol. 40, 2013, No. 1, pp. 23–42, doi: 10.1109/TSE.2013.44.

[43] Wong, C. P.—Meinicke, J.—Chen, L.—Diniz, J. P.—Kästner, C.—
Figueiredo, E.: Efficiently Finding Higher-Order Mutants. Proceedings of the 28th

ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2020), 2020, pp. 1165–1177,
doi: 10.1145/3368089.3409713.

[44] Oh, S.—Lee, S.—Yoo, S.: Effectively Sampling Higher Order Mutants
Using Causal Effect. 2021 IEEE International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW), 2021, pp. 19–24, doi:
10.1109/ICSTW52544.2021.00017.

[45] Langdon, W.B.—Harman, M.—Jia, Y.: Efficient Multi-Objective Higher Or-
der Mutation Testing with Genetic Programming. Journal of Systems and Software,
Vol. 83, 2010, No. 12, pp. 2416–2430, doi: 10.1016/j.jss.2010.07.027.

[46] Alshraideh, M.—Bottaci, L.: Search-Based Software Test Data Generation for
String Data Using Program-Specific Search Operators. Software Testing, Verification
and Reliability, Vol. 16, 2006, No. 3, pp. 175–203, doi: 10.1002/stvr.354.

[47] Alshraideh, M.—Mahafzah, B.A.—Al-Sharaeh, S.: A Multiple-Population
Genetic Algorithm for Branch Coverage Test Data Generation. Software Quality
Journal, Vol. 19, 2011, No. 3, pp. 489–513, doi: 10.1007/s11219-010-9117-4.

[48] Mala, D. J.—Ruby, E.—Mohan, V.: A Hybrid Test Optimization Framework –
Coupling Genetic Algorithm with Local Search Technique. Computing and Informat-
ics, Vol. 29, 2010, No. 1, pp. 133–164.

[49] Omar, E.—Ghosh, S.: An Exploratory Study of Higher Order Mutation Testing
in Aspect-Oriented Programming. 2012 IEEE 23rd International Symposium on Soft-
ware Reliability Engineering, 2012, pp. 1–10, doi: 10.1109/ISSRE.2012.6.

[50] Wedyan, F.—Ghosh, S.: On Generating Mutants for AspectJ Programs. In-
formation and Software Technology, Vol. 54, 2012, No. 8, pp. 900–914, doi:
10.1016/j.infsof.2011.12.001.

[51] Omar, E.—Ghosh, S.—Whitley, D.: Constructing Subtle Higher Order Mu-
tants for Java and AspectJ Programs. 2013 IEEE 24th International Symposium

https://doi.org/10.1007/978-1-4419-1153-7_1167
https://doi.org/10.1007/s00500-019-04155-4
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1145/3368089.3409713
https://doi.org/10.1109/ICSTW52544.2021.00017
https://doi.org/10.1016/j.jss.2010.07.027
https://doi.org/10.1002/stvr.354
https://doi.org/10.1007/s11219-010-9117-4
https://doi.org/10.1109/ISSRE.2012.6
https://doi.org/10.1016/j.infsof.2011.12.001

734 S. Uzunbayir, K. Kurtel

on Software Reliability Engineering (ISSRE), 2013, pp. 340–349, doi: 10.1109/IS-
SRE.2013.6698887.

[52] Omar, E.—Ghosh, S.—Whitley, D.: Subtle Higher Order Mutants. Information
and Software Technology, Vol. 81, 2017, pp. 3–18, doi: 10.1016/j.infsof.2016.01.016.

[53] Derezinska, A.—Halas, K.: Experimental Evaluation of Mutation Testing Ap-
proaches to Python Programs. 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation Workshops, 2014, pp. 156–164, doi:
10.1109/ICSTW.2014.24.

[54] Arasteh, B.—Imanzadeh, P.—Arasteh, K.—Gharehchopogh, F. S.—
Zarei, B.: A Source-Code Aware Method for Software Mutation Testing Using
Artificial Bee Colony Algorithm. Journal of Electronic Testing, Vol. 38, 2022, No. 3,
pp. 289–302, doi: 10.1007/s10836-022-06008-9.

[55] Nishtha, J.—Bharti, S.—Shweta, R.: Systematic Literature Review on Search
Based Mutation Testing. e-Informatica Software Engineering Journal (EISEJ),
Vol. 11, 2017, No. 1, pp. 59–76, doi: 10.5277/e-Inf170103.

Serhat Uzunbayir received his B.Sc. degree in software engi-
neering (2012), his M.Sc. degree in intelligent computing systems
(2015), and his Ph.D. degree in computer engineering (2024)
from the Izmir University of Economics. He is currently work-
ing as Research Assistant Doctor at the Izmir University of Eco-
nomics, Software Engineering Department. His primarily re-
search interests are software testing, Big Data, and optimization
algorithms.

Kaan Kurtel received his M.Sc. degree from the Computer
Engineering Department, Ege University (2005), and his Ph.D.
degree in computer science from the Trakya University (2009).
His main interests are software verification and validation, soft-
ware quality, software maintenance, and context-aware systems.
He is currently working as Assistant Professor in the Software
Engineering Department, at the İzmir University of Economics.

https://doi.org/10.1109/ISSRE.2013.6698887
https://doi.org/10.1109/ISSRE.2013.6698887
https://doi.org/10.1016/j.infsof.2016.01.016
https://doi.org/10.1109/ICSTW.2014.24
https://doi.org/10.1007/s10836-022-06008-9
https://doi.org/10.5277/e-Inf170103

