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Abstract. In this paper, a PCA-SSA-DBIGRU-Attention multi-factor short-term
power load forecasting model is proposed. Taking a complete account of the in-
fluence of meteorological factors, principal components analysis (PCA) is used to
analyze the meteorological factors of daily minimum, maximum, daily average tem-
perature, relative humidity, daily precipitation and power load data at the same
time. The realization of original load data is dimensioned down. The complexity
of power load forecasting models is reduced. Then, the Attention Double Bidi-
rectional Gating Recurrent Unit (DBIGRU) model is constructed to calculate the
different weights of the hidden layer states of the two-layer BIGRU. The hidden
layer states are assigned different weights. The Sparrow Search Algorithm (SSA)
is incorporated into the DBIGRU-Attention. The SSA-DBIGRU-Attention net-
work model is constructed to optimize the learning rate, the number of iterations
and the four hyperparameters of the first and second hidden layer neurons. The
extracted principal components are input into SSA-DBIGRU-Attention to realize
multi-factor short-term power load forecasting. Experimental results show that the
prediction accuracy of the proposed model is improved, and the prediction time is
reduced. Compared to the VMD-BILSTM, PCA-DBILSTM, CNN-GRU-Attention
and CNN-BIGRU-Attention model, the four aspects of MAPE, MAE, RMSE and
time are reduced by 29.55%, 36.42%, 32.34% and 12.22%, respectively, the R2 is
improved by 3.09%.
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https://doi.org/10.31577/cai_2024_3_561


562 D. Wu, L. Yang, W. Ma

1 INTRODUCTION

In recent years, short-term power load forecasting has received much attention from
experts in the power industry. It accurately predicts the electricity load for a future
period based on data such as historical electricity load and meteorological indica-
tors. A machine learning model with a long short-term memory and factor analysis
was proposed by Veeramsetty et al. [1]. A Long Short Term Memory (LSTM) based
power demand forecasting model was submitted by Roy et al. [2]. A multi-layer
GA-LSTM model was proposed by Kumari et al. [3] for energy prediction. Fore-
casting of power load using optimal hybrid kernel functions was offered by Liang
et al. [4]. Multi-timescale-based integrated long and short-term dual memory (MTS-
LSTDM) for power load forecasting models in smart grids was proposed by Lou
et al. [5].

In the above literature, power load data is modeled. However, the impact of
meteorological factors on power load is not adequately considered. The literature [6]
introduced meteorological factors. In [7], the EMD decomposition was used to obtain
the correlation between the variation pattern of each component and the candidate
influencing factors. Then, short-term load forecasting was achieved. The maximum
deviation similarity criterion clustering algorithm with BP networks for predicting
short-term power load was proposed by Luo et al. [8]. For factor screening and ultra-
short-term power load forecasting, a data processing layer and a load prediction
layer based on a two-layer XGBoost algorithm were constructed by Sun et al. [9].
An empirical approach that emphasizes the impact of data updates, climate events,
power outages, human activities and public holidays on the overall performance
of the model was presented by Mir et al. [10]. An adaptive error trend quadratic
learning (A-SLET) for the adaptive trend effects was submitted by Elahe et al. [11].

Meanwhile, the correlation between the multivariate and the predicted results
vary from period to period. A prediction model that introduces attention to CNN-
GRU was offered by Zhao et al. [12]. A CNN-BIGRU-Attention-based network
prediction model was presented by Fang et al. [13].

In response to the problem of hyperparameters having an enormous impact
on the accuracy of traditional prediction models, many scholars have used popu-
lation intelligence algorithms to optimize the hyperparameters. A Particle Swarm
Optimization (PSO) optimized neural network forecasting model was presented by
Shafiei Chafi and Afrakhte [14]. A short-term power load forecasting model based
on improved PSO and neural networks was submitted by Duan et al. [15]. An evolu-
tionary algorithm-based STLF model for intelligent machine learning power systems
(IMLEA-STLF) was proposed by Mehedi et al. [16]. The sparrow search algorithm
(SSA) with better global and local exploitation capability was proposed by Xue
and Shen [17]. Hyperparametric optimization of the BIGRU model using SSA was
submitted by Li et al. [18].

Traditional prediction models have high input data dimensionality and training
complexity. In [19], the PCA reduces the multiple correlations between data sets.
By using optimal support vector machines, Elman neural networks and their com-
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bination, prediction models are built. A multi-factor short-term load forecasting
model based on PCA-DBILSTM was proposed by Li et al. [20].

Traditional short-term power load forecasting models suffer from inadequate
consideration of meteorological influences, high input data dimensionality and dif-
ficulties in hyperparameters tuning. A PCA-SSA-DBIGRU-Attention short-term
power load forecasting model is proposed. The PCA is used to extract the prin-
cipal components of multivariate time series. The attention mechanism calculates
different weights of the two-layer BIGRU hidden layer states. To optimize multiple
hyperparameters of DBIGRU-Attention, the SSA algorithm is incorporated into the
DBIGRU-Attention forecasting model.

The rest of the paper is organized as follows. The implementation process of the
PCA-SSA-DBIGRU-Attention is introduced in detail in Section 2. Experimental
results and analysis are presented in Section 3. Section 4 concludes the paper.

2 PCA-SSA-DBIGRU-ATTENTION MULTI-FACTOR
SHORT-TERM FORECASTING MODEL

In this paper, the five meteorological factors of daily minimum, maximum and
average temperatures, relative humidity and daily precipitation are fully consid-
ered. Therefore a short-term power load forecasting model based on the PCA-SSA-
DBIGRU-Attention network is proposed. The meteorological data such as historical
power load, daily minimum and maximum temperature are supplemented with miss-
ing values and normalized. To achieve the dimensionality reduction of the original
data, the PCA is used to extract the principal components of multivariate time
series. Then, a two-layer BIGRU network is constructed to thoroughly learn the
changing pattern of the data. To calculate different weights for the hidden layer
states of the two-layer BIGRU, the attention mechanism is added after the two-
layer BIGRU. By using SSA, the hyperparameters in the DBIGRU-Attention are
optimized. The prediction results are output through the fully connected layer. The
framework of PCA-SSA-DBIGRU-Attention power load forecasting model is shown
in Figure 1.

2.1 Input Layer

In the input layer, power load, daily maximum, minimum, average temperature,
relative humidity and daily precipitation are the inputs for each time step. The
time step sliding window size is T . The input sequence is represented as shown in
Equation (1), (2).

X = [Xt−T+1, Xt−T+2, . . . , Xt−T+i, Xt] , (1)

Xt = load t0, load t1, . . . , load t23, tempmaxt, tempmint, tempavert, rht, prcpt, (2)

where load t0, load t1, load t23 represent the load at 0, 1 and 23 o’clock on day t, re-
spectively. tempmaxt, tempmint, tempavert, rht, prcpt denote the daily maximum, min-
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Figure 1. The framework of PCA-SSA-DBIGRU-Attention power load forecasting model

imum, average temperature, relative humidity and daily precipitation on day t. After
the missing values are supplemented and normalized, the data is input into the PCA.
The dimensionality is reduced from the actual data X [x1, . . . , xt−1, xt, . . . , xn]

T to
Y [y1, . . . , yt−1, yt, . . . , yk]

T (n > k). Then the reduced dimensional information is
input into the prediction model.

1) Missing Value Addition. Missing values are clustering, grouping, deletion or
truncation of data due to missing information in rough data. If the original data
contains missing values, noisy data is produced. Then, the prediction accuracy
is affected. Therefore, before the original information is input into the prediction
model, the missing values are screened. To remove noisy data, missing values
are filled directly with zero.

2) Data Normalization. Due to large fluctuations in time series data such as
load, daily maximum temperature and daily precipitation, the training time is
long and prediction efficiency is low in the prediction models. So, the data is
normalized according to the standard min−max. The normalisation process is
shown in Equation (3).

x∗ =
x−min

max −min
, (3)

where x is the original value, min and max represent the minimum and maxi-
mum value of the original data, and x∗ is the normalized value.
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3) PCA Principal Component Extraction. Multivariate time series input to
short-term power load forecasting models is somewhat correlated. Therefore,
the PCA method extracts the principal components of the multivariate time
series [21]. By using new variables instead of the original multiple variables,
the dimensionality of the input data to the prediction model is reduced. The
effect of superimposed information on the prediction results is eliminated. The
complexity of model training is reduced. The prediction accuracy is not affected.

Predictive model training complexity is influenced by the dimensionality of the
input data. Therefore, the PCA is used to extract principal component information
from the input historical power load, daily maximum, minimum, average tempera-
ture and precipitation data, while ensuring the accuracy of the model. Then, the
dimensionality of the minimum input variable is determined. The eigenvalues, con-
tribution rates and cumulative contribution rates of each principal component are
obtained.

To reduce the dimensionality of the data on power load and meteorological
influences, PCA is used. The specific implementation process is as follows:

Step 1: Assume that there are n historical load data in the normalized data X =
[X1, X2, . . . , Xn]. Each data has P power load and meteorological influence
factor data Xi = [x1, x2, . . . , xp]. Calculate the covariance matrix ZP×P =∑p

i,j=1 Qi,j of the normalized data. Qi,j =
∑n

k=1(xki−xi)(xkj−xj)
n−1

, x is the mean of
x.

Step 2: Calculate the eigenvalues of the covariance matrix and the corresponding
orthogonalized unit eigenvectors. The ith principal component of the original
variable is Fi = αiX. αi =

λi∑m
i=1 λi

.

Step 3: The number of principal components m is determined by calculating the
variance contribution βi = 100%λi∑p

i=1 λi
and the cumulative variance contribution.

Then, the scores Fi = α1iX1 + α2iX2 + · · ·+ αpiXp of power load and meteoro-
logical data on the m principal components are calculated. αij represents the
eigenvector corresponding to the eigenvalues of the covariance matrix.

2.2 Hidden Layer

The hidden layer is composed of two BIGRU power load forecasting network units.
The GRU is a unidirectional neural network that always propagates in an orderly
sequence from front to back. The GRU is described in detail in the literature [22].
The BIGRU can be considered structurally as a combination of forward and back-
ward propagating GRU. The implicit state ht at the current moment is determined
by a combination of three components. The three sections are the implicit output←−−
ht−1 at the moment t− 1 along the time forward propagation, the hidden layer out-

put
−−→
ht−1 at the moment t − 1 along the time backward propagation and the input

xt at the current moment.
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At moment t, the process of calculating the implicit state of each layer of the
BIGRU is shown in Equation (4).

−→
ht = GRU

(
xt,
−−→
ht−1

)
,

←−
ht = GRU

(
xt,
←−−
ht−1

)
,

ht = αt

−→
ht + βt

←−
ht + bt,

(4)

where αt and βt are the output weight of the forward and backward propagating
GRU unit implicit layer at the moment t, ht represents the implicit layer state at
the moment t and bt denotes the ht corresponding bias amount.

The single-layer BIGRU can learn the impact of past and future data on the
current power load. So, deep-level features of load data are beneficial to be ex-
tracted. However, historical load and meteorological data cannot be fully learned
by a single-layer of BIGRU. Meanwhile, complex time series type data is processed
with unsatisfactory performance. Therefore, a two-layer BIGRU power load fore-
casting model is constructed. The structure of DBIGRU is shown in Figure 2.

2.3 Attention Layer

To assign weights to the output of the hidden layer, the attention layer uses the
attention mechanism. The attention mechanism mimics the resource allocation
mechanism of human visual attention. In terms of network structure, the atten-
tion mechanism learns a distribution of weights on data features by focusing on the
data input. Then, the learned weights are applied to the original data features.
A salient feature impact is provided for subsequent processing of the data so that
the focused features receive greater attention.

To dig deeper into the historical load curve features, probabilistic assignment
weights are used instead of random assignment weights. To highlight the role of
important information, different weights are given to the implicit layer of DBIGRU
through the attention mechanism. Attention is used to calculate the different weights
of the implicit layer states of a two-layer BIGRU network. Time series state features
of historical load data are efficiently learned. Historical time series status weights
are obtained. Critical information is provided to forecast. Therefore, the accuracy
of short-term load forecasting for power is improved. The structure of the power
load feature weight assignment incorporating attention is shown in Figure 3.

Xt represents the load data after dimensionality reduction at the moment t. ht

denotes the implicit layer state of the hidden layer at the moment t. At the moment
t, the attention weight αt =

exp(et)∑t
k=1 exp(ek

of the implicit layer state ht is calculated

by dot product form. et denotes the value of the attention probability distribution
determined by ht at the moment t. et = u tanh(ωht+ b). The input of the attention
layer is the implicit layer state ht and the attention weights αt of the hidden layer
DBIGRU network. The output of the attention layer is Rt =

∑i
t=1 αtht. u and ω

are the weight coefficients. b denotes the bias coefficient.
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Figure 2. Structure of DBIGRU power load forecasting model

2.4 Optimization Layer

In the optimization layer, the hyperparameters in the two-layer BIGRU are opti-
mized by SSA. In neural networks, parameters such as the number of hidden layers,
units, iterations and batch size are called hyperparameters. Structural parame-
ters of BIGRU networks are essential for training and predicting samples. Opti-
mization of essential hyperparameters can improve the accuracy of prediction mod-
els.

Recently, SSA is a population intelligence optimization algorithm that simulates
the process of sparrow flock foraging. Sparrow populations are divided into three
types depending on their duties. Finders are responsible for searching for food.
Followers are accountable for following the finders to forage. Scouts are in charge of
vigilance detection.
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Figure 3. Structure of Attention power load feature weight distribution

The steps of SSA are in Algorithm 1.

The optimization process of SSA for the DBIGRU-Attention network is shown
in Figure 4. The optimization parameters include the learning rate, the number of
iterations, neurons in the first and second hidden layers.

The SSA parameters are initialized. The number of hyperparameters of the BI-
GRU network is taken as the dimension of the sparrow search. The BIGRU network
hyperparameters pop = (pop0, pop1, pop2, pop3) are encoded as the initial position
vector of individual sparrows Xi,j = (xi1, xi2, xi3, xi4). pop0 − pop3 correspond to
the learning rate of BIGRU, the number of iterations and neurons in the first and
second hidden layers. Xi,j denotes the jth position of the ith sparrow in the four-
dimensional space. The fitness value of the sparrow is calculated. The individual
part of the sparrow is updated and compared with the historical optimum. If the
stopping condition is satisfied, the iteration is terminated. Otherwise, the iteration
continues.
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Algorithm 1: SSA

Input: Initial values for learning rate, number of iterations, neurons in the two BIGRU
hidden layers of the optimal upper and lower bounds (lr, M, hn1, hn2)
Output: Optimal values for learning rate, number of iterations and the first, second
hidden layer neurons
Step 1: Set the maximum number of iterations, the number of sparrow populations,
discoverers, detectors and warning values, form a search space matrix and initialize
the relevant hyperparameters.
Step 2: Initial adaptation calculation, find the best and worst adapted individual.
Step 3: Update the location of finders, followers and scouts.
Step 4: Compare fitness values and update sparrow global optimal position.
Step 5: Determine if the maximum number of iterations is reached and the optimal
parameters are output, otherwise repeat Steps 2–4.

Yes

No

 Initializing  of BIGRU network and SSA algorithm parameters

Updating adaptation values and sparrow global optimal position 

Reaching maximum number of iterations 

Calculating of initial fitness values

Calculating early warning value, updating finder location 

Updating follower location 

Updating on the location of sparrows aware of the danger

Begin

End

Outputting optimal parameter 

Figure 4. Flow chart of SSA optimised DBIGRU-Attention network



570 D. Wu, L. Yang, W. Ma

After several iterations, the global optimal point is searched. To obtain the
optimal hyperparameters of the BIGRU network, the optimal solution after SSA
optimization is decoded and transformed. Then, the optimal hyperparameters are
assigned to the BIGRU network. The optimized BIGRU network is used to train
and predict the input vectors.

2.5 Output Layer

The output of the attention layer is used as the input of the Output layer. The
output layer calculates the prediction result Y = {y1, y2, . . . , yn}T through the fully
connected layer. The fully connected layer selects the sigmoid as the activation
function. Then, the power load value yt at the moment t + 1 is output. The yt is
calculated as shown in Equation (5).

yt = sigmod (ωRt + α), (5)

where yt is the predicted output value at time t. ω denotes the weight matrix.
α represents the deviation vector.

The steps of the PCA-SSA-DBIGRU-Attention model are as follows:

Step 1: Fill and normalize the data with missing values. The data includes histor-
ical daily whole hours load for the previous N days x = x1, x2, . . . , x23, influenc-
ing factors (daily maximum, minimum, average temperature, relative humidity,
daily precipitation). So that the data is distributed in the interval [0, 1] for
subsequent model training.

Step 2: Extract the principal components of the normalized data.

Step 3: Build a two-layer BIGRU neural network model. To learn the temporal
state features of the historical data, attention mechanism is added to the model.
The historical material state weights are obtained.

Step 4: Incorporate the SSA into DBIGRU-Attention. Therefore, the necessary
hyperparameters are optimized and the optimal hyperparameters are obtained.

Step 5: Output the inverse normalized prediction results. Whole hours load for
day N + 1 y = y1, y2, . . . , y23.

A PCA-SSA-DBIGRU-Attention short-term power load forecasting model is
proposed in this paper. In the input layer, the PCA is used to perform princi-
pal component extraction on multivariate time series. The complexity of the power
load forecasting model is reduced. The hidden layer consists of BIGRU power load
forecasting network units. In the Attention layer, the Attention mechanism is used
to compute different weights for the hidden layer states of the two-layer BIGRU.
Different weights are assigned to the hidden layer states. In the Optimisation layer,
SSA is incorporated into the DBIGRU-Attention prediction model and DBIGRU-
Attention multiple hyperparameters are optimised. In the fully-connected layer, the
prediction value at each moment is calculated by the sigmoid activation function.



Load Forecasting of Sparrow Search Algorithm Optimization Double BIGRU 571

In summary, Principal Components Analysis Algorithm, Hyper Parameter Optimi-
sation Algorithm Sparrow Search Algorithm and Attention Mechanism are incorpo-
rated into the DBIGRU Algorithm in order to improve the power load forecasting
accuracy, speed and fitting effectiveness.

3 EXPERIMENTAL RESULTS AND ANALYSIS

3.1 Dataset and Experimental Environment Setup

The experiments are conducted in Win 10 with Python programming language and
Kear’s framework. In this paper, the short-term load dataset of the power system
in Group A of the 9th Electrical Property Modelling Competition test in 2016 is
used. The sampling start time is from January 1, 2012, to January 10, 2015, with
more than one thousand data. The ratio of training and test set in the data is 7:3.
The original data contains the total 0-24 o’clock power load value of a day, daily
maximum, minimum, average temperature, relative humidity and daily precipita-
tion. The input for the time step is ten days of 290-dimensional data. The output
is the load data of the next day. The dataset attributes and some of the dataset are
shown in Tables 1 and 2.

Attribute Serial Number Attribute Name

1–24 0–23 hour load
25 Maximum temperature
26 Minimum temperature
27 Average temperature
28 Relative humidity
29 Precipitation

Table 1. Dataset attribute table

YMD
Maximum

Temperature
[℃]

Minimum
Temperature

[℃]

Average
Temperature

[℃]

Relative
Humidity

[%]

Precipitation
[mm]

20120104 14.9 9.3 10.9 62 0
20120105 9.2 5.1 6.9 78 2.9
20120106 11 6.3 8.2 92 3.3
20120107 12.4 9.4 10.5 80 0

Table 2. Partial dataset table

3.2 Evaluation Indicators

In this paper, four prediction performance evaluation metrics are selected. The
four are absolute percentage error (MAPE), mean absolute error (MAE), root mean
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square error (RMSE), and goodness of fit (R2). They are calculated as shown in
Equations (7), (8), (8) and (9).

MAPE =
1

n

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100%, (6)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2, (7)

MAE =

∑n
i=1 |yi − ŷi|

n
, (8)

R2 = 1−
∑n

i=1 (ŷi − yi)
2∑n

i=1 (ȳi − yi)
2 . (9)

The smaller the MAPE, MAE and RMSE, the higher the prediction accuracy.
The closer R2 to 1, the more accurate the prediction. yi and ŷi are the actual and
predicted load at the ith sampling point on the prediction day. n is the total number
of predicted sampling points.

3.3 Multi-Factor Short-Term Forecasting Model Results and Analysis

The data input to the prediction model is highly dimensional. The data are sup-
plemented with missing values and normalized. Then, the covariance matrix of
the normalized data, the eigenvalues, contribution rates and cumulative contribu-
tion rates of the covariance matrix are calculated. The principal components are
extracted based on the cumulative contribution rates (≥ 98%). The calculation
results are shown in Table 3 and Figure 5.

Principal
Components

Eigenvalue
Contribution
of Variance [%]

Cumulative
Contribution
Rate [%]

0 2.8413 71.996 71.996
1 0.2733 6.9264 78.9224
2 0.2242 5.6819 84.6043
3 0.1867 4.7331 89.3374
4 0.0979 2.4823 91.8196
5 0.0944 2.3925 94.2121
6 0.0678 1.718 95.9302
7 0.0446 1.1302 97.0604
8 0.0423 1.0719 98.1323

Table 3. Sample variable eigenvalue and variance contribution rate
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Figure 5. Principal components and contribution rate

As shown in Table 3 and Figure 5, the first eight principal components can be
used as the input of the prediction model instead of the original data. Therefore,
the first eight principal components are selected to replace the original input data
for SSA-DBIGRU-Attention network model training. Using the PCA method, the
dimensionality of data is reduced while ensuring maximum information retention.
Prediction model training complexity and prediction time are reduced.

By using the PCA method, the original load data is dimensionally reduced
to obtain principal components. Then, the principal components are input into
the SSA-DBIGRU-Attention model for prediction. The single-layer BIGRU predic-
tion model does not sufficiently learn the feature patterns of the data. Therefore,
a two-layer BIGRU network is selected. In the sparrow search algorithm, T is
set to 0.8, the learning rate lr, the number of iterations M and two BIGRU layer
nodes hn1, hn2 of the optimal upper and lower bounds are set to [0.001, 1, 1, 1]
and [0.01, 50, 100, 100], respectively. To find the optimal hyperparameters efficiently
and improve the prediction accurately, the SSA is incorporated into the DBIGRU-
Attention network model. The optimal hyperparameters are obtained, as shown in
Table 4.

Serial Number Hyperparameters Hyperparameter Values

1 Learning Rate 0.0049
2 Number of iterations 48
3 First hidden layer neurons 28
4 Second hidden layer neurons 72

Table 4. Sample variable eigenvalue and variance contribution rate

The optimization process of PCA-DBIGRU-Attention network hyperparameters
is shown in Figures 6, 7, 8 and 9. Four hyperparameters are optimized and T is
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set to 0.8. Figure 6 shows the optimal learning rate search process. The learning
rate is stable and constant at first, then increase gradually. The second iteration
reaches a plateau, the sixth iteration starts to gradually increase and the seventh
iteration reaches stability with a learning rate of 0.0049. Figure 7 shows the optimal
search process of iterative value. At the start of the seventh iteration, a plateau is
reached and the optimal iteration value is 48. Figure 8 shows the first hidden layer
node search process. The number of nodes in the first hidden layer reaches stability
at the beginning of the seventh iteration. The optimal number of neurons is 28.
Figure 9 shows the second hidden layer node search process. The number of nodes
in the second hidden layer is stable from the seventh iteration. The optimal number
of neurons is 72.
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Figure 9. The process of finding the optimal number

As shown in Figure 10, the difference between the prediction effect of this model
and the real value is slight. And it has a high degree of match. The above exper-
iments verify that the proposed model has good applicability for short-term power
load prediction.

3.4 Model Comparison

To verify the effectiveness of the proposed model in terms of forecasting accuracy
and time, the comparison experiments are conducted with the following four existing
models.
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Figure 10. The result of the PCA-SSA-DBIGRU-Attention power load forecasting model

1) VMD-BILSTM [20]: By using the VMD, the load sequence is decomposed
into a set of sub-series components. A BILSTM-based time series prediction
model is constructed for each sub-series. Bayesian theory is used to optimize
sub-series correlation hyperparameters. The load predictions are obtained by
superimposing the forecasts of each subseries.

2) PCA-DBILSTM [5]: Multi-layer BILSTM in PCA-DBILSTM is set to two
layers. PCA-DBILSTM uses PCA to extract principal components from a time
series consisting of original multidimensional input variables. Initial load dimen-
sionality reduction is achieved. Using the DBILSTM algorithm, the non-linear
relationship between the extracted principal component and the actual output
sequence of the load is modeled for network prediction.

3) CNN-GRU-Attention [12]: CNN is used to extract high-dimensional featu-
res. The proposed feature vectors are input into the GRU network. To give
different weights to the implied states of the GRU, the attention mechanism
is introduced. The loss of historical information is reduced and the impact of
important information is enhanced. The short-term load prediction is completed.

4) CNN-BIGRU-Attention [13]: CNN is used for load and weather data fea-
tures extraction. The latent timing patterns are extracted using BIGRU. To
highlight key features, the Attention mechanism is incorporated into the CNN-
BIGRU model. The prediction results are output.

The MAPE, MAE, RMSE, R2 and time results of the prediction model compar-
ison experiments are shown in Table 5.

From the analysis of the prediction results, the proposed model has the highest
prediction accuracy and the shortest prediction time compared to the other four
models. Compared to the other four models, MAPE is reduced by 35.19%, 50.36%,
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Models
MAPE

[%]
RMSE MAE R2 Time

[ms]

VMD-BILSTM 3.85 320.817 281.892 0.9506 923
PCA-DBILSTM 5.18 455.527 368.011 0.9004 90
CNN-GRU-Attention 3.64 345.028 274.269 0.9428 355
CNN-BIGRU-Attention 3.35 326.788 242.417 0.9487 557
PCA-SSA-DBIGRU-Attention 2.36 203.968 164.023 0.9800 79

Table 5. Comparison of prediction performance indicators of different models

19.30%, 21.55%. RMSE is reduced by 36.42%, 55.22%, 40.88%, 37.58%. MAE is
reduced by 41.81%, 55.43%, 40.20%, 32.34%, respectively. The R2 is closest to 1.
In contrast to the VMD-BILSTM and PCA-DBILSTM models, the model proposed
in this paper utilises the Attention mechanism to calculate different weights for the
hidden layer states of the BIGRU network. Larger weights are given to the variables
that have a greater impact on the prediction results. The model prediction accuracy
is effectively improved. In contrast to the CNN-GRU-Attention model, the two-layer
BIGRU network is adopted by the PCA-SSA-DBIGRU-Attention model. Data fea-
ture laws are fully learnt. In contrast to the CNN-GRU-Attention and CNN-BIGRU-
Attention models, hemp SSA is incorporated into the PCA-SSA-DBIGRU-Attention
model. The hyperparameters of the two-layer BIGRU model are optimised. The
optimal value is found. Model prediction accuracy is effectively improved. The time
is reduced by 91.44%, 12.22%, 77.75%, and 85.82% compared to the other four
models, mainly due to the fact that PCA is employed in this model before the data
is fed into the prediction model. The original high dimensional data was reduced
to low dimensions. The prediction time of the prediction model was effectively
reduced.

The reasons for their generation are described below in terms of both predic-
tion time and accuracy. The experimental results are shown in Table 5 and Fig-
ure 11.

In terms of prediction time, among the five prediction models, VMD-BILSTM
has the longest prediction time. Firstly, the original sequence is decomposed by
the VMD. Each dimensional data is raised to multiple dimensions. Then the sub-
sequences are modeled separately. And the prediction results are overlaid and re-
constructed. Hence the prediction time overhead is not ideal. When extracting
high dimensional features reflecting complex dynamic changes of load, CNN-GRU-
Attention and CNN-BIGRU-Attention models build a CNN architecture consisting
of convolutional and pooling layers. Then, the time series is constructed by the
proposed feature vector. And It is input into the GRU and BIGRU network predic-
tion models. Although the forecast time overhead has improved in the two models
above, the forecast time is relatively long. Without affecting the prediction effect,
principal component analysis is used to reduce the original high-dimensional data
to low-dimensional. The prediction time of the forecasting model is effectively re-
duced.
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Regarding prediction accuracy, the model PCA-DBILSTM uses the PCA to
achieve dimensionality reduction of the data. And, the prediction time is reduced.
However, the BILSTM model considers all input data to be of equal importance to
the prediction result. The impact of important data information is not highlighted.
Thus, the prediction accuracy is not high. The proposed model uses the attention
mechanism to calculate the different weights of the hidden layer states of the BIGRU
network. The information entered is selectively focused. Larger weights are given
to variables with more significant predictive impact. The model prediction accuracy
is effectively improved. The other four comparison models have more hyperparam-
eters. Therefore, it is more difficult to find the optimal value of hyperparameters
manually. Thus, the prediction effect is compromised and the prediction accuracy
is not high. The proposed model incorporates a sparrow optimization algorithm
in the two-layer BIGRU prediction process. It simulates the foraging process of
a flock of sparrows. The hyperparameters of the two-layer BIGRU model are opti-
mized. Until the optimal value is found, the model prediction accuracy is effectively
improved.

According to a comprehensive analysis, the indicators of MAPE, MAE, RMSE
and time all decreased significantly, and the indicator of R2 increased. It shows
that the prediction error of the proposed model is small and the goodness of the
fitting result is closer to 1. To display the load prediction results more clearly and
intuitively, it compares the actual values and the short-term load prediction curves
of different models in the last two days in Figure 11.

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35 40 45

P
o
w

er
  

v
al

u
e 

 /
M

W

Sampling point sequences  /h

 true
VMD-BILST M
PCA-DBILSTM
CNN-GRU-Attention
CNN-BIG RU-Atte ntion
PCA-SSA-DBIGRU-Attention

Figure 11. Comparison of results of different power load forecasting models

As it can be seen from Figure 11, the proposed model fitting has better results
and a higher prediction accuracy. This dataset has a significant variation in daily
load. In the morning, the load value changes significantly. Compared with other
models, this model can predict the load value more accurately and smoothly now. It
can also capture the load change pattern better near each peak and trough. By using
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the PCA, the original data is dimensioned down to obtain updated data. Then, the
updated information is input into the DBIGRU forecasting model. To calculate the
different weights of the implicit layer states of the BIGRU network, the attention
mechanism is added after the DBIGRU. The information entered is selectively fo-
cused on. Larger weights are assigned to variables with a higher predictive impact.
Then the sparrow search algorithm is incorporated into the DBIGRU-Attention to
obtain the optimal hyperparameters. So the optimal forecasting results are obtained.
As shown in Table 4 and Figure 11, compared with the other four forecasting mod-
els, the proposed model fitting results better, with higher prediction accuracy and
shorter prediction time.

4 CONCLUSIONS

Traditional short-term power load forecasting models suffer from low accuracy and
long forecasting times. A PCA-SSA-DBIGRU-Attention power load forecasting
model is proposed. In the input layer, the PCA extracts principal components
from the normalized data. The model training complexity is effectively reduced.
The attention mechanism is used to assign weights to the DBIGRU output con-
tent. The more important the data, the more weight it will be given. In the
output data, the richness of the properties and regularities are effectively learned.
The SSA algorithm is incorporated into the DBIGRU-Attention model. Then, op-
timal hyperparameters of the model are obtained. In the fully connected layer,
the predicted values are calculated at each moment through the sigmoid activa-
tion function. Power load forecasting accuracy and speed are improved. Better
fitting results are obtained. Under the short-term load dataset of the power sys-
tem in Group A of the 9th Electrical Property Modelling Competition test in 2016,
the PCA-SSA-DBIGRU-Attention model proposed in this paper shows higher ac-
curacy in prediction error metrics compared to PCA-DBILSTM, VMD-BILSTM,
CNN-GRU-Attention, and CNN-BIGRU-Attention power load forecasting models.
The MAE, MAPE and RMSE are reduced by 32.34%, 19.30% and 36.42% at the
lowest, respectively. The MAE, MAPE and RMSE are reduced by 55.43%, 50.36%
and 55.22% at the highest, respectively. Compared with other models, The R2

is closest to 1. The R2 improved by a minimum of 3.09% and a maximum of
8.84%. The prediction time is reduced by a minimum of 12.22% and a maximum
of 91.44%.
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