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Abstract. A brain-computer interface (BCI) based on motor imagery (MI) enables
users to communicate with the computer directly using brain signals. However, due
to the low signal-to-noise ratio and significant inter-subject variations, its long cali-
bration time hinders the development of brain-computer interfaces. Meta-learning,
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as the current popular framework in few-shot learning, enables the model to quickly
adapt to new few-shot tasks by learning a series of similar tasks. In this paper, we
propose a novel algorithm that combines pre-training and meta-learning. It can re-
duce the number of training samples required for the target subject and meanwhile
ensure stable and reliable BCI performance. This is achieved by first learning gen-
eral feature representations from a large number of other subjects’ data through pre-
training, and then further optimizing the model by task scale using meta-learning
based on the pre-training stage. Applications to a dataset confirm the effective-
ness of the combination of pre-training and meta-learning. Results indicate that
the proposed algorithm outperforms the considered comparable baseline algorithm,
early meta-learning frameworks without pre-training, and fine-tuning in transfer
learning. In addition, experiments show that the selection of source subjects can
further improve the overall performance of the algorithm, and the pre-training stage
is crucial for the model to achieve good performance. This study has significant
instruction for the application of BCI in the field of medical rehabilitation. It can
improve the classification performance of the disabled with poor motor imagination
characteristics by using the data of healthy typical subjects and greatly reducing
their training time.
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1 INTRODUCTION

Brain-Computer Interface (BCI) can realize direct communication or control of the
external device by the human brain without relying on peripheral nerves and muscle
tissues and thereby help those who are paralyzed but cognitively intact [1, 2]. In
BCIs, electroencephalogram (EEG) has become one of the most commonly used sig-
nals because of its non-invasiveness, convenience, inexpensiveness, and safety. Motor
imagery (MI), as an active control paradigm, is widely used in fields like medical
rehabilitation and has become a research hotspot in the current BCI field [3, 4]. In
order to build a stable and reliable classifier, this autonomously controlled brain-
computer interface usually requires subjects to undergo long-term calibration exper-
iments to ensure that easily identifiable EEG signals are generated. However, the
entire training process can easily lead to mental fatigue or even to be unbearable.
Therefore, reducing the number of training samples required by subjects and mean-
while keeping accuracy in an acceptable range is critical to the success of MI-based
BCIs [5, 6, 7].

At present, most of the literature uses transfer learning to solve this problem [8,
9, 10, 11, 12, 13, 14]. In MI-based BCIs, transfer learning can use data from other
subjects to facilitate learning for a target subject [15]. For traditional models, many
proposed algorithms focus on improving the common spatial patterns (CSP) by
modifying the covariance matrix estimation method [8, 9] or the CSP optimization
function [10, 11]. For deep models, a common technique is called fine-tuning (FT),
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which is established on a pre-trained model and then fine-tunes the parameters based
on the target subject/session [14].

However, most of the above-mentioned algorithms still require at least 10 sam-
ples per class of the target subject to help transfer training [7, 8, 12]. Little research
so far has looked at recognizing MI tasks when the target subject has extremely
few labeled samples (e.g., 1 or 5 trials per class), especially in the context of deep
learning models.

Deep learning has become an effective tool for developing BCI systems in recent
years [16, 17]. The good robustness, however, heavily relies on abundant labeled
instances. Therefore, it is a great challenge for deep models to extract information
from a small number of training samples.

Learning from a few number of samples, called few-shot learning (FSL), is ex-
tensively studied in computer vision [18, 19, 20, 21]. Although transfer learning
can utilize data from other subjects, its adaptability is limited when the target sub-
ject has little training data. Therefore, task-based Meta-Learning in FSL has been
widely studied in recent years.

The number of categories to be classified is N , and there are only K labeled
samples in each category (where K is generally between 1 to 5), then we call this
an N-way K-shot FSL problem. A “task” in meta-learning usually takes the form of
such an N-way K-shot, which contains N ×K training samples (called support set
refers to the training set within the task) and N ×Q testing samples (called query
set refers to the testing set within the task). The key idea of meta-learning is to treat
tasks as samples, and through the learning of a large number of similar tasks, the
model can adapt to new tasks quickly and accurately. Previous learning methods
learn from a set of labeled data samples, while meta-learning learns from a set of
labeled tasks, which elevates the learning level from data to tasks. It provides a new
perspective for solving few-shot problems.

Although there have been related studies applying meta-learning to the field of
brain-computer interfaces [22, 23], some recent work that takes advantage of both
transfer learning and meta-learning has established new state-of-the-art results in
the field of computer vision. Inspired by these advanced methods used for image
classification [19, 21], in this article, we propose a novel few-shot learning algorithm
in the context of MI-BCI, which combines the pre-training stage in fine-tune tech-
niques and the task-based training scheme in meta-learning. Since the algorithm
adds a simple and effective meta-learning framework on the basis of pre-training,
we call it the Pre-Trained Meta-Baseline (PTMB) model.

See the conceptual comparison of related methods (fine-tune in transfer learning,
early meta-learning frameworks without pre-training, and proposed PTMB strat-
egy) in Figure 1. In fine-tune strategy, the model is first pre-trained on large-scale
datasets from other subjects, and then fine-tuned using a small amount of data
from the target subject. In early meta-learning frameworks, the model is trained
on a large number of different tasks formed by other subjects, and then quickly
adapted to new tasks through strategies such as learning to fine-tune or metric
learning. Our proposed PTMB model combines the above mentioned two strate-
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gies. It retains the pre-training module and further uses constructed few-shot tasks
for meta-training.

Figure 1. Conceptual comparison of related methods (fine-tune in transfer learning, early
meta-learning frameworks, and proposed PTMB)

In general, our PTMB model mainly contains two stages:

1. Pre-training a deep model with a fully connected (FC) layer on source subjects
data. Notably, considering that few-shot learning tasks are sampled according
to subjects in the subsequent meta-training stage, we regard different subjects
as different categories in this stage. Specifically, assuming that there are data
fromm subjects in the pre-training stage, and they perform N types of MI tasks,
then the FC layer of our model will have m × N outputs representing m × N
categories, instead of N categories in previous methods [14]. Then we remove
the FC layer to obtain the feature encoding module.

2. Meta-updating the model parameters by performing N-way K-shot tasks with
the cosine nearest-centroid method. Finally, given a new subject with a few
samples, we predict the label using the abovementioned cosine nearest-centroid
metric.

In summary, the main contributions of our work are as follows:

1. We propose a novel PTMB framework applied to EEG-based MI classification,
which uses meta-learning on the basis of pre-trained models to further improve
performance. Moreover, the proposed framework is a general-purpose one, which
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can be applied to different few-shot classification problems of BCIs by simply
changing the feature encoding module.

2. In the pre-training stage, we first regard the MI tasks of different subjects as
different categories instead of mixing the same MI task data of various subjects.
This feature extraction schema implicitly learns the differences between individ-
uals. Besides, owing to the meta-learning method, the model can extract and
propagate transferable knowledge from a collection of tasks. Thus, when faced
with the target subject, the model shows better generalization performance.

The remainder of this article is arranged as follows. Section 2 elaborates some
basic concepts and related work. Section 3 introduces the overall framework of
the algorithm and the process of each stage. Section 4 presents the experiments
and implementation details. Section 5 shows results and discussion from multiple
perspectives. Finally, Section 6 summarizes the complete text.

2 RELATED WORK

In this section, we first introduce the relationship between few-shot learning and
meta-learning, as well as some current representative architectures of meta-learning.
Then, we discuss the differences and relationships between several related studies
and our proposed algorithm.

2.1 Few-Shot Learing and Meta-Learning

Few-shot learning aims to identify new classes from very few labeled examples.
Conventional methods such as data augmentation and regularization techniques
can only alleviate overfitting, but they do not solve the problem. Besides, this
setting challenges the standard “fine-tuning” practice in deep models of transfer
learning [18]. Thus, the current few-shot learning methods mostly follow the meta-
learning framework, which can be roughly classified into three types: initialization-
based methods, memory-based methods, and metric-based methods [21].

1. Initialization-based methods address the FSL problem through “learning to
fine-tune”. One classical approach [18] called MAML aims to learn good model
initialization so that the model can converge fast on a limited number of labeled
examples within several optimization steps. Ravi and Larochelle [24] not only
focus on initialization but also trains an LSTM-based optimizer to help with
fine-tuning.

2. Memory-based methods [25, 26, 27] mainly focus on training an RNN-based
model to store historical information of previous tasks and extract important
knowledge required to solve the problem. Then the stored knowledge can be
used to assist the learning of new tasks.

3. Metric-based methods aim to learn an effective deep representation and then
make their prediction based on distance or metric. Vinyals et al. [28] use cosine
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similarity to classify query samples. Snell et al. [29] compute squared Euclidean
distance to class-mean representation and classify query samples by the nearest-
centroid method. Sung et al. [30] learn metric relationships between samples by
using relation networks.

In addition to the different variants of these methods, some recent work [19, 21]
has achieved better results by exploiting the advantages of both pre-trained classifier
and meta-learning.

2.2 Meta-Learning in EEG Classification

Although meta-learning has extensive research on image classification, the literature
on its application to EEG is relatively limited. Tynes and Parsapoor [31] employ
MAML [18] and prototypical networks [29] to distinguish people with schizophrenia
from healthy controls based on their brain activity. Zhu et al. [32] use meta-learning
in seizure detection to mitigate the inter-patient seizure pattern variation. All of
their methods apply meta-learning frameworks to the field of disease diagnosis based
on EEG, rather than the MI-based BCI system we have studied so far.

Li et al. [22] and Duan et al. [33, 34] both draw on the ideas of MAML [18] to
train an MI-based EEG decoder that can be fine-tuned easily on a new user with only
a few gradient steps. The scenarios where they use meta-learning are similar to ours,
but they mainly use initialization-based methods, unlike our metric-based methods,
which do not require fine-tuning to update the model and are more convenient for
real-time applications. An et al. [23] propose a metric-based algorithm that learns
an end-to-end relation net to calculate relation scores between the support data and
query data, thus it can classify target subject categories with limited MI EEG data.
However, their method does not take advantage of pre-trained classifiers which have
proven to generalize better than randomly initialized ones [35].

Therefore, in this paper, we propose a novel few-shot learning method that takes
both strengths of pre-trained classifiers and meta-learning strategy, it outperforms
the method of fine-tuning pre-trained classifiers or other traditional meta-learning
methods.

3 METHODOLOGY

First, we formally define the few-shot learning problem we want to solve in the
context of brain-computer interfaces.

Assume that there is a target subject and m auxiliary subjects (or called source
subjects in transfer learning) performing N motor imagination tasks. The target
subject has only K labeled trials per MI task, while the source subject has a rela-
tively large number of labeled trials. Thus, for the target subject, it forms an N-way
K-shot few-shot problem. The aim of our model is to leverage the data from source
subjects to achieve better models for the target subject.
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In the remainder of this section, we first introduce the overall framework of our
method, and then we describe every essential stage in the proposed framework.

3.1 The Framework of the Approach

The overall framework of the proposed method is shown in Figure 2, which mainly
consists of two stages, the pre-training stage, and the meta-learning stage. First, in
the pre-training stage, the data from a pool of source subjects is used to learn the
feature encoder fθ, and then the learned feature encoder is used as the initial model
parameter of the following meta-learning stage. Subsequently, in each iteration of
meta-training, we randomly select a subject from the m subjects and use its data to
construct an N-way K-shot task (2-way 2-shot is taken as an example in Figure 2).
The average feature vector of each class in the support set is calculated as the
centroid representing that class, and the query set samples are classified according
to the nearest centroid principle using the cosine distance.

Figure 2. The framework of our proposed approach PTMB

The details of the two stages are given below.

3.2 Pre-Training Stage

The first fundamental step is to pre-train an effective EEG feature encoder based
on the large-scale EEG data previously recorded from source subjects.

We adopt a model similar to [16] to extract meaningful features from raw EEG
signals. The specific process is as follows. Raw EEG signals formed as a 2D array
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with the number of electrode channels as the height and the number of time steps
as the width are fed into the deep model. The first two layers perform a temporal
convolution and a spatial convolution. These steps are analogous to the bandpass
filter and spatial filter steps in Filter Bank Common Spatial Patterns (FBCSP)
algorithm [36]. After that, we apply a batch normalization layer to reduce the
internal covariate shift of the network [37]. Then, a squaring nonlinearity, a mean
pooling layer, and a logarithmic activation function followed. Together these steps
are analogous to the trial log-variance computation in FBCSP. Subsequently, we
add a dropout layer to avoid overfitting, which prevents units from co-adapting
too much [38]. Finally, we use a convolutional layer to turn the feature map into
a feature vector, and then input it into the FC layer for classification.

Note that in the previous methods that leverage pre-training for MI classifica-
tion [14, 33], data from all source subjects under each MI category are merged to
form a large-scale dataset. However, simply combining data may cause key differ-
ences across subjects to cancel out. Thus, we treat the data of different subjects on
the same MI task as different categories (that is, given m source subjects perform
N motor imagination tasks, we have a total of m × N categories instead of the
traditional N categories). During the pre-training stage, the standard cross-entropy
loss function is used to iteratively update the parameters of the network, then the
FC layer of the network is removed to obtain the feature encoder, which maps the
input EEG signal to the corresponding feature space.

The feature space extracted in this way is shared across subjects. It facilitate
the ability to fast adapt to new subjects in the subsequent meta-learning stage.

3.3 Meta-Learning Stage

After getting the pre-trained feature encoder fθ, we further optimize the model in
the meta-learning stage.

Specifically, we sample N-way K-shot tasks from source subjects’ data. In each
task, K support samples and Q query samples in each MI class are selected from
one randomly chosen source subject. Unlike the practice of constructing few-shot
tasks from the mixed data of all source subjects [33], we treat each source subject
as an independent sample, which is in line with the idea of separate the categories
of different subjects in the pre-training stage.

In each N-way K-shot task, we first obtain the feature vectors (pink, light blue,
and white rectangles in Figure 2) of the support set and query set samples through
the feature encoder, and then calculate the average feature vector (red and blue
rectangles in Figure 2) under each category in the support set as the centroid of
the class. Let the average feature vector under category i be wi, then its formal
representation is as follows:

wi =
1

|K|
∑
x∈Si

fθ(x), (1)
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where x represents a sample in the support set, Si denotes the subset consisting
of K samples under the same category i (i = 1, . . . , N) in the support set, and fθ
denotes feature encoder.

Then for a query instance x in the meta-training task, we calculate the prob-
ability that the x belongs to class i according to the cosine similarity between its
feature vector and the centroid of class i:

p(y = i|x) = exp(cos⟨fθ(x), wi⟩)∑N
j=1 exp(cos⟨fθ(x), wj⟩)

, (2)

where cos⟨·, ·⟩ represents the cosine similarity of two vectors.
For the tasks extracted from the source subjects, we calculate the cross-entropy

loss between the predicted probability and the labels in the query set, and update
the network weights accordingly.

Finally, after completing the meta-training phase, we can use the model to test
the performance of the few-shot task on the target subject.

4 EXPERIMENTS

In this section, we first introduce the data set we use and the preprocessing process,
then we explained our implementation details.

4.1 Dataset and Preprocessing

To evaluate the performance of our proposed method, we used the dataset from the
BCI competition IV 2a [39]. This dataset uses 22 electrodes to collect the EEG
signals of 9 subjects. Experiments were recorded at a sampling rate of 250Hz, and
bandpass filtering was performed between 0.5Hz and 100Hz. During the exper-
iments, the subjects were instructed to perform one of the four following motor
imagery tasks: left hand, right hand, foot, or tongue. Each subject went through
two sessions on different days, and 72 trials were recorded for each class in each
session. Thus, for each subject, each class contained a total of 144 trial samples. In
this paper, only data from left and right-hand motor imagery were used.

For data preprocessing, we first performed band-pass filtering of 4–38Hz on
the acquired continuous EEG signals. Since this frequency range usually contains
the frequency components generated when the brain performs motor imagery tasks.
Then, we performed exponential moving average (EMA) to calculate the exponential
moving average and the corresponding variance within each electrode to normalize
the continuous EEG data. Finally, we cut out compute windows, i.e., the inputs
for the deep networks. Specifically, the timing scheme of the paradigm is shown in
Figure 3. We segmented EEG data of each trial starting 1–4 seconds from the arrow
cue (the blue period in Figure 3) since this is the phase where motor imagery is
performed and the data is of higher quality. Thus, the input of each trial contains
22 electrodes and 750 sampling points (250Hz ∗ 3 s).
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Figure 3. Timing scheme of the paradigm

4.2 Implementation Details

In our experiment, we separate 9 subjects into 8 source subjects providing training
data in the pre-training and meta-training stage, and one target subject providing
few-shot test samples for evaluating the trained model.

In the pre-training stage, the detailed architecture of our deep model is shown in
Figure 4. Note that the batch normalization, dropout layer, and activation functions
such as square, logarithmic that do not affect the output shape of each layer are not
shown in this figure. As mentioned above, the input of the network is 22 electrodes
with 750 sampling points, and the output is a 16-dimensional vector representing the
predicted probabilities of 16 categories (8 source subjects * 2 classes of MI tasks).
We use an SGD optimizer with a momentum of 0.9, and the learning rate is 0.000625.
We train 100 epochs with a batch size of 64 on a single Quadro RTX 5000 GPU.

In meta-training stage, we use the same optimizer settings and learning rate as
in the pre-training stage. And we train 30 epochs, each epoch contains 100 2-way
K-shot (K = 1, 5) tasks. In each task, we randomly select one source subject and
pick K labeled instances in each class as the support set and 15 instances in each
class as the query set. In meta-testing stage, we randomly constructed 200 2-way
K-shot (K = 1, 5) tasks from the data of the target subject, and take the average
result as the final few-shot learning accuracy rate.

5 RESULTS AND DISCUSSION

This section verifies the effectiveness of the proposed method on a real EEG dataset.
The results are compared with a baseline method and three typical methods. In
addition, we provide some extra results analyzed from multiple aspects.

5.1 Results

We compare the performance of our proposed approach (PTMB) with one baseline
method (the traditional classification method Regularized CSP, RCSP [40]), two
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Figure 4. The architecture of our deep model

meta-learning methods (RelationNet proposed in [24] and MAML proposed in [18]),
and one transfer learning method (Fine-tune, FT). To get a fair comparison, we
use the same data preprocessing process and ensure that all methods use the same
amount of data, that is, a small number of samples of the target subject and all data
of source subjects. Furthermore, for the latter three contrastive methods involving
deep learning, we use the same feature extraction network architecture to guarantee
comparability in performance. Four comparison the algorithms are introduced as
follows.

1. RCSP: This is a baseline approach. It is based on the classical CSP algorithm
framework and uses regularization parameters to linearly combine the class av-
erage covariance matrix of source and target subjects, so as to achieve effective
integration of the two kinds of data. See [40] for details. And then we feed the
extracted features to an SVM classifier.

2. RelationNet: This is a metric-based meta-learning algorithm. It uses the data
of source subjects to construct multiple few-shot tasks and performs few-shot
classification by learning the relation scores of query samples and support sam-
ples in the task through deep relation networks [24]. It differs from our method
in that it does not include a pre-training stage and uses different metric crite-
ria.

3. MAML: This is an initialization-based meta-learning algorithm. It aims to
train a good set of initialization parameters on a large set of few-shot tasks con-
structed from source subjects’ data. For each task, the model is first trained on
the support set and then tested on the query set. Finally, the sum of the test
errors in each task is used as the overall training error for training to obtain a set
of initialization parameters. It differs from our method in that it still needs to
be fine-tuned after training [18].

4. Fine-tune (FT): This is a transfer learning method. Unlike task-based meta-
learning, the fine-tuning process builds on models pre-trained on source data
and uses a relatively small amount of target data for iterative learning.
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All the above methods are applied to the dataset from the BCI competition IV
2a. Since many other algorithms [7, 8, 12] use at least 10 or more samples per class of
target objects and pay little attention to performance with fewer samples, we focus
on evaluating the performance of all algorithms under the settings ofK = 1 andK =
5. Specifically, 1 or 5 samples of each class in each subject were randomly selected
and performed 200 times in repetition. And the average classification accuracies for
all 9 subjects are listed in Tables 1 and 2.

Algorithm
Subjects Overall

sub1 sub2 sub3 sub4 sub5 sub6 sub7 sub8 sub9 Mean Std

RCSP 81.87 50.58 79.93 55.95 50.99 54.58 61.29 66.56 79.10 64.54 12.82
RelationNet 89.33 54.81 72.34 61.91 50.46 58.74 51.62 63.37 81.35 64.88 13.50
MAML 89.21 52.73 73.05 63.87 50.24 59.35 51.27 65.89 80.27 65.10 13.58
Fine-tune 89.84 51.87 80.39 61.47 52.49 55.14 54.22 67.72 80.15 65.92 14.31
PTMB 90.74 51.28 81.38 62.33 51.84 54.23 62.12 67.63 85.32 67.43 14.96

Table 1. Classification accuracies (%) of all subjects when only 1 trial per a class was
available for training from the target subject

Algorithm
Subjects Overall

sub1 sub2 sub3 sub4 sub5 sub6 sub7 sub8 sub9 Mean Std

RCSP 84.16 51.46 83.75 59.20 52.61 57.09 65.06 71.14 80.85 67.26 13.20
RelationNet 93.74 56.20 76.42 62.21 51.34 66.71 55.25 72.12 82.21 68.47 13.99
MAML 90.13 54.11 80.13 65.25 51.93 59.86 60.41 72.97 84.27 68.78 13.71
Fine-tune 93.21 52.14 82.22 61.52 53.31 61.68 56.39 73.23 86.67 68.93 15.37
PTMB 96.02 52.24 88.45 63.74 52.23 59.79 70.79 73.76 88.32 71.70 15.72

Table 2. Classification accuracies (%) of all subjects when only 5 trials per a class were
available for training from the target subject

When the target subject has only one training trial per a category (Table 1,
K = 1), the proposed PTMB algorithm combining pre-training and meta-learning
has the most significant improvement over the baseline method (significance level
α = 0.05, p value = 0.031 < 0.05), reaching 67.43%, a 2.89% improvement over the
baseline method. And it also outperformed the results of RelationNet, MAML, and
FT by an average of 2.55%, 2.33%, and 1.51%. Similarly, when the target subject
has only five training trials per a category (Table 2, K = 5), the proposed PTMB
algorithm is also significantly improved than the baseline method (significance level
α = 0.05, p value = 0.006 < 0.05). And it achieved the highest average result,
reaching 71.70%, which is 4.44%, 3.23%, 2.92%, and 2.77% higher than baseline,
RelationNet, MAML, and Fine-tune, respectively.
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5.2 The Effect of Choosing Good Subjects

Looking deeper in Table 1 and Table 2, we can observe that for those good subjects
(such as sub1, 3, and 9) which can achieve high accuracy even under the baseline
method, the proposed PTMB method that combines pre-training and meta-learning
tends to achieve optimal results among multiple comparison methods. While for the
remaining subjects with poor performance, the proposed method is inferior to the
comparative method in most cases.

From the following aspects thinking we can investigate its reason. First, the
high baseline accuracy of good subjects may indicate that their EEG data itself
is highly separable, and the pre-training stage that has a large number of samples
enables our deep learning model to learn basic features with strong discrimination.
What is more, the meta-learning stage makes our model adapt to few-shot tasks, so
it is better than other methods. While for the second point, our method has a lower
accuracy in bad subjects, which may indicate that in addition to the low separability
of their EEG data itself, some other bad subjects’ data makes the feature extracted
unobvious and ultimately result in unsatisfactory results. So, is it possible to use
only the data of good subjects to allow the model to learn more pure features and
thereby improve the accuracy of bad subjects? To verify this conjecture, we train
the model using good subjects 1, 3, 9 and compare the results with the model trained
in all other subjects.

The results of K = 5 are reported in Table 3, for the results changing more ob-
viously under this condition. It can be seen from the table that for the bad subjects
where EEG patterns are not obvious, choosing good subjects can improve the accu-
racy, it indicates that reducing the amount of data but improving the data quality
brings better results. While for the good subjects with high data separability, the
dropping performance may indicate that the reduction in data volume has a greater
impact than the improvement in data quality. Therefore, in general, data volume
and data quality are both important factors, but they have different effects due to
different types of subjects.

In addition, we also tested the performance of all algorithms under the condi-
tion of choosing good source subjects. Table 4 shows the classification accuracies
of 9 subjects of all algorithms when K = 5. Comparing it with Table 2, it can
be found that after the selection of good source subjects, the performance of dif-
ferent algorithms on different target subjects increases or decreases, but in general,
the proposed PTMB algorithm still achieves the highest average performance. As
a result, it reaches 73.13%, which is 7.73%, 4.40%, 3.89%, and 4.76% higher than
baseline, RelationNet, MAML, and Fine-tune, respectively.

We also performed paired t-tests for significance analysis on the performance
of different algorithms under this condition, and the results are shown in Table 5.
It can be observed from the table that the paired t-test p-value results of the pro-
posed PTMB algorithm relative to all other comparison algorithms are all less than
0.05, thus indicating that the proposed algorithm significantly outperforms all other
algorithms.
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Subject Not choose Choose good subjects

sub2 52.24 55.43
sub4 63.74 69.27
sub5 52.23 55.82
sub6 59.79 64.89
sub7 70.79 76.97
sub8 73.76 78.19

Mean 62.09 66.76

Subject Not choose Choose good subjects

sub1 96.02 93.14
sub3 88.45 80.37
sub9 88.32 84.09

Mean 90.93 85.87

Table 3. Under the condition of K = 5, classification accuracies (%) of choosing good
subjects and not choosing good subjects. Subjects are divided into bad subjects (6 of
them, shown at the top of the table) and good subjects (3 of them, shown at the bottom
of the table, trained using good subjects excludes the data from themselves).

Algorithm
Subjects Overall

sub1 sub2 sub3 sub4 sub5 sub6 sub7 sub8 sub9 Mean Std

RCSP 81.87 50.71 79.96 60.86 51.95 58.31 61.54 62.69 80.73 65.40 12.29
RelationNet 88.03 57.35 77.17 60.92 54.16 64.39 64.05 71.53 80.97 68.73 11.43
MAML 89.43 54.28 82.39 68.17 50.89 59.27 66.32 70.16 82.29 69.24 13.33
Fine-tune 85.37 53.46 78.29 61.96 53.28 61.43 63.07 71.98 86.48 68.37 12.73
PTMB 93.14 55.43 80.37 69.27 55.82 64.89 76.97 78.19 84.09 73.13 12.79

Table 4. Under the condition of selecting good source subjects, classification accuracies
(%) of all subjects of all different algorithms when K = 5

5.3 The Importance of Pre-Training

Choosing good subjects or not can affect the results, which makes us realize the
importance of pre-training. So, we train our PTMB model from scratch and com-
pare it with the one with pre-training. The results are shown in Table 6. From the

Methods contrast p-value

PTMB vs. RCSP 0.003
PTMB vs. RelationNet 0.018
PTMB vs. MAML 0.017
PTMB vs. Fine-tune 0.016

Table 5. Under the condition of selecting good source subjects (K = 5), the p-value under
the paired t-test (significance level α = 0.05) of different algorithms
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table, we observe that the proposed PTMB with pre-training achieves higher accu-
racies when compared to PTMB trained from scratch. Our results indicate that the
combination of pre-training and meta-learning can effectively improve performance.
One potential reason is that pre-trained classifiers can provide extra transferability
from source subjects to the target subject in the meta-learning stage.

Training Scheme Mean Acc.

1-shot
From scratch 64.68
Pre-training 67.43

5-shot
From scratch 68.55
Pre-training 71.70

Table 6. Mean classification accuracies (%) of nine subjects under two different training
schemes

5.4 The Effect of Choosing Different Metrics

In addition to the importance of pre-training, the choice of different metrics will also
affect the results. Therefore, we choose two of the most commonly used distance
measures, Euclidean distance and cosine similarity, to conduct experiments. The
results are shown in Table 7. It can be observed from the table that the average
accuracy using cosine similarity is slightly higher than that using Euclidean dis-
tance. But overall, the difference is not significant, which indicates that these two
metrics have less influence than subject selection and pre-training in the proposed
framework. In future work, other different metrics can be tried to further improve
the accuracy of the proposed algorithm.

Metrics Mean Acc.

1-shot
Euclidean 66.21
Cosine Similarity 67.43

5-shot
Euclidean 71.31
Cosine Similarity 71.70

Table 7. Mean classification accuracies (%) of nine subjects under two different metrics

6 CONCLUSIONS

In this paper, we present a novel few-shot learning method that performs well on
target subjects even with limited samples by taking the strengths of both classifica-
tion pre-training and meta-learning. The model mainly contains two stages: First,
pre-training a deep network using the data from source subjects to obtain the fea-
ture encoder. Second, meta-updating the model parameters by performing auxiliary
few-shot tasks to enable the model to generalize better on new few-shot tasks from
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target subjects. Validated using a public dataset from the international BCI com-
petition, the results show that our model outperforms the baseline method, early
meta-learning frameworks, and fine-tune in transfer learning. Moreover, we explore
the effect of choosing good subjects and find that the performance depends on both
data volume and data quality, suggesting that both factors are noteworthy in fu-
ture research. In addition, the experiments demonstrate that the pre-training phase
is crucial for the model to achieve good performance. And the effect of choosing
different metrics is also explored. The study is most significant for the rehabilita-
tive potential of BCIs, because the disabled people with poor motor imagination
characteristics can use healthy typical subjects’ data to improve their classification
performance.

To sum up, our studies show that the proposed approach is an effective method
in classifying MI-based EEG signals, especially in the case of lacking the data of
target subjects. It shows the great potential to design key technologies in the field
of rehabilitation.
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