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Abstract. The present smart city concept drives academics and urban planners
to give residents modern, secure, and sustainable infrastructure as well as a fair
level of living. CCTV footage has been employed to improve public safety and
wellbeing to fill this demand recognising unusual occurrences. Despite scientific
advances, it is challenging and time-consuming to monitor video systems inside of
buildings. While cloud computing is unable to support a variety of dispersed IoT
setups like wireless sensor networks, local services fall far short of meeting storage
requirements. New strategies based on AI and deep learning are gradually replac-
ing conventional computer vision techniques. Modern hardware and software are
installed in large data centres, enabling them to process enormous amounts of data.
To give cloudlets, fog computing, and multi-access edge computing with intelligent
privacy protection for video data while it is being kept, we combine three sepa-
rate edge computing techniques into a hierarchical edge computing architecture.
Then, we offer a straightforward but secure solution. In this study, we look at
the creation of a CCTV encryption method that combines RBFN with the Triple
Data Encryption Standard (DES) to identify anomalies in intelligent video surveil-
lance. The purpose of this study was to encourage the usage of an algorithm based
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on RBFN-TDES that provides authenticated encryption rather than the original
Data Encryption Standard (DES) method. Because the goal of this investigation
was to figure out how the original DES algorithm was cracked, it was unavoidable
that hackers would succeed. The suggested technique the security requirements for
different encryption properties are also examined and analysed by RBFN-TDES.
Finally, the comparison findings between the proposed system and existing systems
are presented, along with an examination of each’s security characteristics and per-
formance metrics. Our proposed RBFN-TDES model is efficient enough to be used
for securing CCTV pictures in a distributed computing environment. To evaluate
the effectiveness of our approach, we run large experiments on benchmarks con-
structed on top of the EPFL dataset. Comparing our strategy to state-of-the-art
techniques tested over the datasets, we find a 97.21% increase in accuracy.

Keywords: Triple Data Encryption Standard (TDES), Internet of Things, artifi-
cial intelligence, edge computing, deep learning, Radial Basis Function Networks
(RBFN)

1 INTRODUCTION

Video surveillance systems are common on city streets and roads, in businesses,
neighbourhoods, bank branches, train stations, airports, and other public places,
and they are becoming more and more important for public safety. Through the
video surveillance system, suspicious people, places, and things can be found in time
and closely watched, making it much less likely that criminal damage will happen.
The police can learn about criminals from surveillance videos and find out where
vehicles and people they think are involved are. The surveillance video can be used
as objective court evidence during the interrogation phase of a case investigation.
After criminal science and technology, action technology, and network investigation
technology, video surveillance is now the fourth most important area of investigation
technology. It is one of the most important parts of building a safe and smart
city. In 2015, “several opinions on strengthening the networking application of
public security video monitoring construction” were put forward by the Ministry of
Public Security, the Ministry of Science and Technology, and nine other ministries
and commissions. And they said that building a network for public security video
surveillance helps keep the country safe and keep society stable. It also helps stop
and punish violent terrorist crimes in the new situation. It is great significance to
improve how cities and towns are run and to come up with new ways to run the
social governance system.

Digital images are used in many ways, such as medical imaging, remote sensing,
and private conferencing, because technology has improved. These pictures may
have private or sensitive information on them [1]. When these images are sent over
public networks, they could be changed or accessed without permission. Leaking
sensitive information could cause problems with the military, national security, and
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personal freedom. Also, when people want to share images over a public network,
they need their privacy to be protected. So, images need to be protected from
different security threats [2].

When large crowds gather, a camera system with early warning capabilities could
detect potentially dangerous situations before they occur. Many crimes have been
prevented by surveillance cameras, and they will continue to do so. Security cameras
should always be installed in our personal areas. A surveillance camera system
discourages vandalism and theft. It is extremely difficult to steal when cameras are
always recording [3]. As a result, the thief is apprehended quite frequently. The thief
will be recorded on video before or during the heist. Intruders who are caught on
camera can be positively identified by police. The police can use surveillance cameras
to both prevent criminal activity and quickly gather evidence to solve crimes. The
installation of a CCTV system has the potential to reduce people’s perceptions of
the level of safety in public spaces while increasing their time spent there. CCTV
camera installation will not only reduce crime rates but will also help with data
collection, facility management, medical aid, and police investigations [4].

Modern centralised video processing systems store and process video data col-
lected from the camera network [5]. Because the operator or central console only
sees a few alerts or video clips, it is not necessary for them to pay close attention
to how the surveillance system is working. Numerous research studies [6, 7] have
proposed distributed video-surveillance systems based on this concept, which has
recently gained popularity due to advancements in IoT and compute power at the
edge nodes. As a result, the system’s brains are dispersed across a large number of
nodes, each of which may be equipped with a camera and some sort of processing
system. These processing systems perform repetitive tasks and provide the results
to the operator, relieving the latter of some of their responsibilities.

Because of the recent rapid advancement and widespread use of electronic tech-
nology, major urban areas now have far more modern technology. Many cities
around the world are currently using ICTs to make their cities safer for their citi-
zens and enhance the quality of the services they provide by leveraging the Internet
of Things (IoT) [8, 9]. Mobile cameras mounted on manned or unmanned aerial
and ground vehicles are frequently used for surveillance, in addition to stationary
closed-circuit television (CCTV) cameras [10, 11]. Aeroplanes, satellites, unmanned
aerial vehicles, human-driven ground patrol cars, and unmanned ground vehicles
are all included in this broad category. First responders, government organizations,
and private security service providers can gather a lot of audio-visual data about
a lot of people without their knowledge or consent due to the pervasive and flexi-
ble use of CCTV cameras in public spaces such as streets, city corners, stores, and
marketplaces [12, 13].

By 2021, there will most likely be more than a billion fixed security cameras
in use worldwide, both in urban and suburban areas [14]. These closed-circuit
television cameras serve as the system’s “eyes and ears”, and they frequently use
a public network to transmit all of the data they generate and collect on a large num-
ber of people to remote video analytics and surveillance operation centers. These
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nodes could be located in outlying areas. Because of the built-in vulnerabilities in
the network design, the possibility of someone’s right to privacy being infringed is
increased, and this is one of the most essential concerns. The TCP/IP network
architecture, which is widely used on today’s Internet, is vulnerable to a multitude
of threats since it was designed without proper security considerations. That is why
the architecture was designed. Regardless, it is regarded as one of the most creative
breakthroughs of the twentieth century [15]. Any monitoring system implementa-
tion that fails to address the aforementioned issues risks infringing on the privacy
of users. Most modern virtual security systems are built on cloud or fog comput-
ing infrastructure. Video analytics can be performed in data centres with massive
amounts of processing capacity located in the cloud, using cloud computing prin-
ciples. Regardless, the network through which the raw video feeds are transmitted
can be attacked and stolen. There are several scenarios in which this can occur.
In general, using the fog computing or cloud computing paradigm raises the risk of
privacy infringement.

Without the assistance of a human operator, modern intelligent video surveil-
lance systems are capable of detecting and responding to potentially dangerous
anomalies. Data is collected at this stage using sight sensors installed in the mon-
itored area. The raw visual data must be pre-processed before features can be
extracted [16]. The data gathered in this manner is fed into a modelling system
that employs a learning technique to mimic the behaviours of prospective suspects
while they are being observed and determine whether any of those behaviours are
abnormal. A variety of machine learning techniques make use of cloud computing to
analyse and store data for anomaly detection. Because network delays are unavoid-
able, cloud computing consumes a lot of bandwidth and slows response times [17, 18].
The nature of video surveillance, which is a time-sensitive application, necessitates
reduced latency. Cloud computing and computation at the edge of the network
are both parts of the best real-time intelligent video surveillance solution that is
currently available [19].

The Triple Data Encryption Method (TDES) is a block cypher that employs
symmetric keys and encrypts each data block three times with the DES cypher.
Because of recent advances in cryptanalysis and computer capacity, the Data En-
cryption Standard’s (DES) 56-bits key is no longer considered secure. In 2016, the
DES and 3DES algorithms were discovered to have a severe security issue, which
was made public via CVE-2016-2183. Because of the insufficient key size that these
algorithms’ CVE, DES, and 3DES display, NIST has deprecated CVE, DES, and
3DES for new applications as of 2017 and will do so for all applications by the end
of 2023. It was replaced by the more reliable and secure AES algorithm. Although
government and industry standards use the abbreviations TDES (Triple DES) and
TDEA (Triple Data Encryption Algorithm), the majority of suppliers, customers,
and cryptographers have used the word 3DES since RFC 1851 first introduced the
notion. RBFN can yield universal approximations. RBFN is commonly used in
the areas of regression, classification, pattern recognition, and time series forecast-
ing [20, 21]. RBFNs have a small impact on the environment, can approximate any
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continuous network, and can handle a lot of background noise. They are also better
at approximating the world as a whole.

We look at how integrating the Triple Data Encryption Standard (DES) with
radial basis function networks can result in a safe CCTV solution for intelligent
video surveillance anomaly detection. In response to the original Data Encryption
Standard (DES) algorithm being readily cracked by hackers, this study sought to
advocate upgrading to an RBFN-TDES-based approach that permits authenticated
encryption. In order for an encryption system to be secure, the suggested RBFN-
TDES technique investigates and analyses the need for specific encryption features.
Finally, we give the findings of a comparison between the proposed system and
current systems, assessing each’s security features and performance metrics. Our
RBFN-TDES model is good enough to be used to protect CCTV images in a cloud-
based network.

Images contain very sensitive and confidential information. Because images play
an important role in many applications such as military communication, remote
sensing, and medical imaging, it is critical to protect sensitive and proprietary in-
formation from unauthorised use and modification. Encryption is one of the greatest
approaches for accomplishing this goal among information hiding methods. Many
picture encryption techniques have been developed in recent years by researchers.
To improve security, they employ several picture encryptions concepts. The main
contributions of this paper are summarized as follows:

1. This paper created a revolutionary complete analysis framework for surveillance
footage. It boosts the efficiency and accuracy of video analysis by combining
object detection, keyframe selection, and super-resolution algorithms.

2. This research presented a Triple Data Encryption Standard (DES) with Radial
Basis Function Networks (RBFN) for smart video surveillance anomaly detection
to distinguish video objects in real time.

3. This paper suggested an RBFN-DES strategy that extensively incorporates the
advantages of pixel space and feature space to improve the resolution of surveil-
lance video identification objects.

The rest of the paper follows this format, and then we will look at some data.
Section 2 examines the literature survey. Section 3 then delves deeper into the
proposed architecture and present algorithms. Following that, the key outcomes
of the tests are reported in Section 4 of the work, and Section 5 summarises the
conclusion of the paper and potential future directions.

2 LITERATURE SURVEY

Barman et al. [22] proposed DNA-based ECC-based IoT encryption. The plain
text characters are mapped to DNA genome sequences. The plain text is en-
crypted by selecting genome sequences at random from a large pool of publicly
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available ones. Decryption requires the same DNA genome sequences as encryp-
tion. Thus, the sender and recipient must use the same sequences to encrypt and
decrypt plain text. Encrypted delivery employs the same cypher text as plain text
encryption.

A computer vision-based crowd catastrophe avoidance system explores crowd
scene analysis [23]. These include the system’s goal and the number of cameras.
Other crowd analysis approaches, in addition to crowd disaster analysis, include
calculations for forensic crowd analysis, people counting, crowd density estimation,
person re-identification, and crowd evacuation. The benchmarked datasets are sum-
marised below.

Yogameena and Nagananthini [24] introduced machine learning and ECC for
IoT security. The authors screened the data gathering to optimise transmission
and communicate just accurate data to minimise processing (d). P is an elliptical
curve point, and d is a secret random number. The plan’s clean data transmission
restriction increased IoT performance.

When IntegerDigits [n, b] is less than 1, the encoding algorithms of Das and Giri
[25] produce numerical values by accumulating weight n with base b. The first tech-
nique encodes dynamic integer values in base b. The maximum number permitted
is 65 536. IntegerDigits [192 bits, 65 bytes, and 536 bytes] = 11 are obtained using
their method. There are more than 11 categories that are based on b when it falls
below 65 536. The authors did not provide a risk-free bit reduction approach for
reducing ASCII table mapping. When b is not dynamic, the combing group of the
second algorithm is the number of p digits in the variable IntegerDigits [n, b]. The
authors’ method yields 1.581 + 11 = 6, and neither method yields a large number
of categories. Computing will get increasingly challenging. The method was open
to CPA because the system’s encoding and mapping sections did not change plain
text characters after applying ASCII table values.

The design of Arceda et al.’s three-phase system [25] includes face detection,
normalisation, and violent situation recognition. Horn-Schunck and ViF are used
to detect violent scenes. The optical flow algorithm is the technical term for this
type of technology that examines area of the skin first, then examine each region
separately.

Wang et al.’s [26] solution to the drawbacks of traditional, centrally managed
data collection is to provide privacy protection to all users by utilising an algorithm-
based method for achieving differential privacy. Wang and colleagues created a sys-
tem to strike To strike a balance between user privacy, data integrity in Internet
of Things devices, and computational cost, a distributed ledger and edge comput-
ing are combined in a proposed enhanced strategy with a balanced truth-finding
approach. The design of the scheme made this possible.

Ajay and Rao [27] created a more effective and quick emotion recognition sys-
tem, a Binary Neural Network (BNN) fed by Local Binary Pattern (LBP) output.
To extract facial features for the BNN layer to successfully infer, LBP is set up as
a pre-processing step. The pre-processing technique uses the Viola-Jones (VJ) algo-
rithm to extract facial data from the image while obliterating extraneous background
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elements. Facial Expression 2013 (FER-2013) data collection is used to train the
LBP-BNN network. For the inference, the designed IP is synthesised as a bespoke
hardware accelerator or overlay, and an FPGA is used to implement it.

Parate et al. [28] proposed employing CPU-only edge devices for anomaly de-
tection in intelligent surveillance. The development of an object-level inference and
tracking modular framework. We used feature encoding and trajectory association
controlled by two complementary metrics to handle partial occlusions, posture de-
formations, and complicated sceneries. The components of an anomaly detection
framework have been made to function as efficiently as possible on edge devices that
just have CPUs (FPS).

Ullah et al. [29] looked at the problem of spotting unusual things in AIoT video
surveillance settings. They have come up with a two-stream deep neural network
for real-time analysis of surveillance data that can both spot oddities quickly and
in detail. In the first step, surveillance video is fed into a fine-tuned CNN model to
figure out if it is a normal or unusual event. This model is then used on IoT devices
with limited resources.

Zhao et al. [30] proposed an intelligent edge surveillance techniques (INES) tech-
nique for a certain IIoT application that is based on deep learning. First, a depth
wise separable convolutional strategy is used to build a lightweight deep neural net-
work, which reduces the amount of work that needs to be done on it. Second, we
use edge computing and cloud computing together to cut down on network traffic.
Wan et al. [31] suggest using edge computing for video pre-processing to get rid of
duplicate frames. This would let us move some or all the video processing tasks to
the edge, reducing the need for computing, storage, and network bandwidth in the
cloud centre and making video analyses more accurate. We present the magnitude
of motion detection based on spatio-temporal interest points (STIP) and the multi-
modal linear features combination, which splits a video into super frame segments
of interest to get rid of the redundancy in traffic video.

Chen et al. [32] propose a Distributed Intelligent Video Surveillance (DIVS)
system that uses Deep Learning (DL) algorithms and deploy it in an edge com-
puting environment. They build a multi-layer edge computing architecture and
a distributed DL training model for the DIVS system. The DIVS system can move
computing workloads from the network centre to the network edges to reduce the
huge amount of network communication overhead and provide accurate and lowla-
tency video analysis solutions.

In foggy surveillance environments, smoke detection is crucial for disaster man-
agement in industrial systems. Existing methods fall short when applied to foggy
videos due to clutter and unclear content challenges. Addressing this, the paper pro-
poses an energy-efficient smoke detection method using edge intelligence and deep
convolutional neural networks [33]. The method features a light-weight architec-
ture, meeting accuracy, running time, and deployment feasibility requirements for
industrial settings.

According to Hu et al. [34], MEC enables unique service scenarios that improve
user experience, network performance, meet stringent latency requirements, and fos-
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ter innovation. The researchers’ own studies supported these findings the significant
resource constraints that currently plague mobile devices. To do this, it is required
to enable resource-intensive apps to utilise cloud computing without experiencing
jitter, congestion, or outages. The increased time it takes for messages to arrive is
a significant barrier. When working with the restricted resources of a mobile de-
vice, edge computing is preferable to the cloud, which is more remote and has fewer
resources, because it is closer and has more of what is required.

Xie et al. [35] developed a novel, effective compressive data gathering method.
This approach employs these strategies to avoid traffic analysis and flow tracing,
to have untraceable message flows, and to have both secure message contents and
Homomorphic encryption is the most effective for collecting compressive data. Gu
et al. [36] developed a differential privacy mechanism to protect personal data dur-
ing location data mining to safeguard very often accessed location data or user
preferences of location through the distortion of accessing frequencies. The devel-
oped method for mining anonymous location data prioritizes privacy in location
data mining. Emphasizing the major contributions of these studies is crucial to
advancing the field of cloud computing-based privacy protection.

Hamdi et al. [37] deal with continuous deep one-class learning to detect anoma-
lies in UAV video streams. Deep CNN networks can extract more features, which
improves prediction accuracy. Encoders and decoders are employed in deep learn-
ing. Even though the exact methods for encoding and decoding vary from model
to model, the main benefit of these processes is that they allow you to learn how
typical input data is spread out and create a measure of anomaly. The comparative
analysis of various methods and the datasets are discussed in Table 1.

3 PROPOSED SYSTEM

In this paper, we look at the development of a secure CCTV approach that uses
the Triple Data Encryption Standard (DES) with Radial Basis Function Networks
(RBFN) for smart video surveillance anomaly detection. The goal of this research
was to propose that an RBFN-TDES-based approach that permits authenticated
encryption (AE) replace the Data Encryption Standard (DES) algorithm that has
failed. Figure 1 shows a block diagram of the RBFN-TDES.

3.1 Pre-Processing

In image processing, a feature is, in the simplest of terms, a meaningful piece of
information for determining the computational work associated with a particular
application. Features can be image-specific structures such as edges, points, ob-
jects, texture, etc. In complex situations, a single type of feature may not provide
adequate information about the image data, necessitating the extraction of two or
more features. Most colour object tracking systems utilise the HSI colour of the
item and are resistant to variations in lighting. Using RGB features improves the
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Refer-
ence

Author Method Features Learning Anomaly
criteria

Dataset Year

[27] Ajay
and
Rao

Hand-
crafted
Fea-
tures

Accuracy FPGA sys-
tem archi-
tecture us-
ing a binary
neural net-
work

Emotions
on the
face can
be identi-
fied

JAFFE 2021

[28] Parate
et al.

CNN Real-time
applica-
tions

Connection
of trajec-
tory and
extraction
of spatial-
temporal
features

Iden-
tifying
pedestri-
ans

UCSD
Ped1
UMN

2021

[29] Ullah
et al.

GAN Efficient
resource
adminis-
tration

L-CNN and
BD-LSTM
in videos

Crime
scene

Crime
scene

2021

[30] Zhao et
al.

DNN Reduce
network
occu-
pancy and
system
response
delay

Intelligent
Edge
Surveil-
lance

Cloud,
Deep
Learning,
Edge

Self de-
ployed

2020

[31] Wan et
al.

CNN Reduced
band-
width,
security,
real-time

Motion
magnitude
for Intelli-
gent Edge
Surveil-
lance videos

Vehicle
anomaly

UA-DE-
TRAC,
crossroad
in Beijing
city

2022

[32] Chen et
al.

DNN Balances
compu-
tational
power,
workload

DIVS Vehicle
classifica-
tion

Self de-
ployed

2019

[33] Muha-
mmad
et al.

CNN Processing
requires
less mem-
ory

LCNN De-
tecting
smoke
during
hazy
surveil-
lance

Image-
Net

2019

Table 1.
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Figure 1. Proposed method of RBFN-TDES

classification accuracy of colour feature vectors, although these features are sensitive
to variations in lighting. Scale Invariant Feature Transform (SIFT) is employed to
retrieve local feature descriptors. SIFT is a robust local invariant feature descriptor
that was primarily created for grayscale images. Edge features are less responsive
to changes in illumination than colour descriptors. Texture features can also be
utilised, although at the cost of additional processing time and procedures. There
are other additional feature descriptors, such as biological properties, optical flow,
etc. Features are employed to distinguish between foreground and background ob-
jects. Preparing a video for further processing is known as “pre-processing”, and it
is the first step in the process. The video will need to go through pre-processing
before proceeding to the next step of processing. Pre-processing can help reduce
mistakes and noise that are introduced into photos because of reading and scanning
procedures, resulting in higher-quality photographs. Color correction, statistical
analysis, and the convolution method are all pre-processing procedures. The video
data would be ready for the next step, which would include dealing with challenging
video sequence processing challenges. This would be accomplished by video data
pre-processing.

3.2 Image Segmentation

Object detection is a computer vision system that identifies moving objects such as
humans, vehicles, animals, and birds. Detecting objects is one of the first steps in
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object tracking. Face detection and pedestrian detection represent the state of the
art in object detection. Object recognition in computer vision involves identifying
the target host. Combining the characteristics of an object with a model of the
object yields recognition. Several factors, including scene consistency, the quantity
of items in an image, and the likelihood of occlusion, influence the difficulty of
object detection. Segmentation is a computer vision technique that divides an image
into groups. These groups can all have the same colour pixels or border edges, as
well as a common shape such as a line, circle, ellipse, or polygon. A picture is
segmented when it is divided into groups based on traits that they share. Image
segmentation can be further subdivided into subcategories, such as thresholding,
edge detection, and region-based categorization. As a result of the segmentation
procedure, a collection of tagged pixels is produced.

3.3 Image Enhancement

In the science of computer vision, “image augmentation” refers to approaches used to
improve the quality of an image. Using a variety of image enhancement techniques,
images can be changed to better suit the tastes of the viewer.

3.4 Shape-Based Classification

Classification based on shape applies exclusively to the geometry of an object, not
its structural examination. Objects can be categorised based on the extracted re-
gions’geometry, such as boxes, blobs, etc., that contain motion. Measures the ac-
curacy and performance of the research of various shape characteristics. Zhao and
Nevatia presented a method for tracking humans in a crowded scene with occlusion
using human form models and camera models. A Bayesian framework and expan-
sion of the mean-shift tracking with the shape model provide a principled technique
to concurrently detect and track persons [38].

3.5 Motion-Based Classification

Classification based on motion helps reduce the dependency on the spatial prim-
itives of the objects and provides a strong classification approach. It does not
require established pattern templates but has difficulty identifying a stationary ob-
ject. Even though motion-based classification has a modest level of accuracy, it is
a computationally intensive method of classification. Johnsen and Tews suggested
a vision-based tracking and classification system for objects. It was capable of han-
dling occlusions and performed admirably across a variety of objects and weather
situations [39].
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3.6 Radial Basis Function Networks (RBFN)

Most modern techniques are typically very good in static situations. It is never-
theless difficult to detect motion during shifting conditions, such as those found in
landscapes. Due to the shifting intensities of the background and foreground pixels
and the difference between movable objects, the dynamic background is tedious.
This makes it difficult to tell them apart.

In this section, we will go through our cutting-edge, RBF artificial neural net-
work-based motion detection algorithm. This method separates the foreground from
the background activity and static background, preventing dynamic backgrounds
from being confused with moving objects in the scene. Figure 2 depicts an RBF
neural network with In one such layered structure, there are input, hidden, and
output layers. Even though it has some other benefits, its ability to approximate
and its speed of learning are two of its best features.

Figure 3 represents the fact that our method employs not one but two main
modules: one that generates various backdrops and another that scans the scene
for moving objects. The multibackground generation (MBG) module employs the
Euclidean distance to generate a probabilistic background model that the user can
modify that exists between each input pixel and the candidates for the reference
backgrounds that correspond to it. The hidden layer’s neural hubs are responsible
for communicating this data to the network. The addition of a hidden layer based
on the probabilistic background model has improved the RBF network design. This
model can represent the entire tonal range that each background pixel possesses.

Figure 2. Radial basis function neural network

When the MBG component is deployed, the proposed MOD component for
detecting moving objects is activated. This element must keep track of moving
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targets. The MOD module uses a block alarm method to extract objects from the
system to detect moving objects thoroughly and accurately. To accomplish this, two
strategies can be used. After the block alarm technique is done, which means that
the dynamic and static backdrop regions do not need to be explored any more, the
object extraction process is done.

Figure 3. Overview of the modules involved in the proposed method

3.6.1 Multi-Background Generation

In this stage, an HSV colour space similar to what the human visual system can
handle must be created for the input layer. The symbols will indicate colour data
(hue, saturation, and value) for every pixel in every incoming frame. It is possible
for the structure of a network to become overly complex, and performance can suffer
as a result of having too many neurons. Because of this, it is very important to have
a flexible probabilistic background model that can represent neurons that are not
visible.

Using each input pixel intensity value, a flexible probabilistic backdrop model
must be built.
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To determine whether an input pixel is near background intensity candidates,
we use the Euclidean distance of vectors in the HSV colour hexcone. This is a
hexadecimal distance. All that is required is a vector comparison. This conclusion
is reached by measuring the distance between pixels qi = (hi, si, vi) to pixel qj =
(hj, sj, vj) by

d(qi, qj) = ∥(visi cos(hj), visi sin(hj), sin(hi))− (vjsj cos(hj), vjsj sin(hj))∥22 . (1)

Using this metric allows one to avoid issues with hue periodicity as well as hue
instability for low saturation values.

An empirical tolerance is used to determine whether an incoming pixel qt(x, y) is
one of the background candidates C(x, y)k, for some value k ∈ {1, n}. One possible
statement of this decision-making criterion is

qt(x, y) =

{
∈ C(x, y)k, if d(qt(x, y)), C(x, y)k ≤ ϵ,

/∈ C(x, y)k, otherwise.
(2)

Background candidates near the entering pixel qt(x, y) are represented by

C(x, y)′k = (1− β)C(x, y)k + βpt(x, y), (3)

where C(x, y)k, C(x, y)′k represent the initial and updated kth candidates at position
k(x, y), and β is a predefined parameter. The method used to create the background
in this case can be compared to an unsupervised learning process of the centres’
location in the RBF network.

3.6.2 Moving Object Detection

1. Three inputs, three outputs, and M hidden neurons are present in this RBF
network. The MBG module determines the number M of neurons and their
centres (C1, . . . , CM) in the hidden layer of the RBF network seen in Figure
2. The qt(x, y) entering pixel’s HSV components serve as the input vector once
structure has been established. H, S, and V stand in for them. After deter-
mining the basics, the function generates the output of each hidden neuron by
calculating Euclidean distances between the input vector and its centre coordi-
nates.

zi(q) = ϕ (∥p−Bi∥) , where i = 1, 2, . . . ,M. (4)

The basics function is Ci, which stands for the ith neuron’s center, the input
vector is p, and the hidden neurons’ number is M ∥q − Ci∥ is an Euclidean dis-
tance between p and Ci. Many other basic function types are frequently utilised
in a variety of settings. In our method, we use the Gaussian function, which is
by far the most popular type of basis function. The representative function is
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defined as follows:

ϕ (∥Q− Ci∥) = exq

(
−∥p− Ei∥2

2σ2

)
, (5)

what is the empirical tolerance of the Euclidean distance, as well as the defini-
tion of this tolerance. This is because the probabilistic model, which has been
updated to include additional background candidates, is correlated with a lower
value. Lower standard division values may result in a smoother Gaussian curve.
Long-term, this can prevent the output layer’s summation from becoming too
high, resulting in incorrect assessments of the dynamic background. As a result,
it has a proportional relationship based on our findings, the symbol experimen-
tally shown.

The Gaussian function is a good choice because it can be factorised and is also
localised for the purposes of our application. As the output value rises, the prob-
ability that an incoming pixel will be in the foreground also rises. The entering
frame is split into w and w blocks so that the moving and still backgrounds do
not get looked at too much.

δ =
∑
p∈µ

∑
i=1

ϕ (∥q −Bi∥) , (6)

where q is the number of different pixels in the relevant block, M represents the
number of hidden neurons, and resents the number of visible neurons. Setting
w to 4 equals four different pixels, which is the size of the block. When the esti-
mated sum of block I and block J exceeds a predefined threshold, block A(i, j)
is marked with a 0 to indicate that no pixels from moving objects are present.
This occurs when the total of blocks I and J surpasses the threshold. If not,
the label for block A(i, j) will be 1, which means that it has pixels that show
objects that are moving.

A(i, j) =

{
0, if δ ≥ S,

1, otherwise.
(7)

By setting S to 12, also known as the magic number, one can find blocks that
may contain movable objects. To summarize, candidates who are in the shadows
receive an update in the covert layer from

C(x, y)tk =

{
C(x, y)t−1

k , if pt(x, y) /∈ C(x, y)t−1
k ,

αpi(x, y) + (1− α)C(x, y)t−1
k , otherwise,

(8)

where C is a predetermined parameter and C(x, y)t−1
k , C(x, y) are the kth candi-

dates at position (x, y) of the previous and current flexible background models,
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respectively. The decision rule is established in order to find whether or not
qt(x, y) is a member of C(x, y)t−1

k .

2. Object Extraction Procedure.

Following the completion of the block alarm procedure, only blocks containing
moving objects are processed by the object extraction technique. This ensures
that no unnecessary tests are performed. In the final step of our method, the
layer produced by running an RBF network is used to calculate the mask for
binary motion detection. Our strategy will be complete once these steps are
completed. The output layer figures out a function by putting the data from
the hidden layer through a weighted linear combination.

F =
M∑
i=1

ωi (zi(q)) + ω0, (9)

ω0 is a fixed threshold, and zi is the value produced by the ith hidden neuron.
Once ωi has been initialized, the value 1 is used for testing. The binary motion
detection mask can then be made by doing the following:

D(x, y) =

{
1, if f(x, y) < 0,
0, otherwise.

(10)

The pixel in question is a component of a moving object if you label D(x, y)
with a 1, which is labelled 0, and is considered to be part of the background.
We will modify the weights for the processing of the incoming frame that comes
after the one we are currently processing once the procedures for that frame are
complete. Following the initial setting of each weight to 1, the weights are then
modified as follows:

ωt+1
i =

(
ωt
i + η, zi

)
· M

M + η ·
∑M

i=1 zi
. (11)

Both the number of hidden neurons and the rate at which they receive new
information are represented by the weight at frame M between the ith buried
neuron and the last layer. The connections between the output layer as well as
the hidden neurons close to the input vector are strengthened after the weights
are changed, whereas weak connections exist between the hidden neurons and
the output layer.

3.7 Triple-DES

Its key length is far longer than that of the vast majority of other encryption tech-
niques, which is advantageous. The Advanced Encryption Standard (AES) replaced
the Data Encryption Standard (DES). As a result, DES is currently regarded as
obsolete. We do this by using a single DES algorithm three times, along with three
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subkeys and key padding as needed. A key must now have a minimum length of
64 bits. The triple DES inclusion is easily applied because of its adaptability and
compatibility. Shown in Figure 4.

Figure 4. Block diagram for TDES

Triple DES encryption can take several forms, some of which are well-known:

• DES-EEE3, a variant of TDES encryption that employs three unique keys;

• 3TDES’s three operations: encryption, decryption, and encryption use three
distinct keys, similar to DES-EDE3.

• Decryption of DES-EEE2 and DES-EDE2 requires a special key.

Assume EK (I) is the DES encryption key used to encrypt I, and DK is the DES
decryption key used to decrypt I. Decryption is abbreviated as DK, whereas en-
cryption is abbreviated as EK. TDEA’s encryption and decryption processes can be
thought of as a compound operation that combines the encryption and decryption
algorithms used by DES. The steps are carried out in the order that they are listed.

The following is a description of the process used to encrypt TDEA data: The
following procedures must be followed to convert a 64-bit block I to a 64-bit block O:

O = EK3 (DK2 (EK1(I))) . (12)

TDEA decryption operation: a block I of 64-bit is transformed to a block O of 64-bit
which is characterized as follows:

O = DK1 (EK2 (DK3(I))) . (13)
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Algorithm 1 Three Keying Options

The standard outlines the various keying options for bundles that adhere to it.

a. Independent Keys K1, K2, and K3 of the First Keying Option.

b. Second Keying Option independent keys K1, K2, and key K3.

c. The Third Keying Options are K1, K2, and K3.

Begin

1. Option 1, the preferred option employs three mutually independent keys
(K1 ̸= K2 ̸= K3 ̸= K1). It gives key space of 3× 56 = 168 bit.

2. Option 2 employs two mutually independent keys and third key that is the same
as the first key (K1 ̸= K2 and K3 = K1). This gives key space of 2× 56 = 112
bit.

3. Option 3 is a key bundle of three identical keys (K1 = K2 = K3). This option
is equivalent to DES Algorithm.

End

When the time required to decrypt data using the TDEA mode of operation
equals the time required to decrypt data using the single DES mode, we say that
the two modes are backwardly consistent with one another.

1. Any plaintext that has been encrypted and calculated using the single DES
mode of operation can be decoded using the TDEA mode of operation.

2. Because the TDEAmode of operation is equal to a single DES mode of operation,
any one can be used to correctly decrypt plaintext encrypted by TDEA.

When Keying Option 3 is turned on, all four modes are available, and they all work
with the same single DES modes of operation (ECB, CBC, CFB, and OFB) in the
same way.

4 RESULT AND DISCUSSION

4.1 Experimental Setup

This system evaluation was performed using the Ecole Polytechnique F’ederale de
Lausanne (EPFL) in Switzerland EPFL dataset. The dataset’s characteristics that
point to a genuine setting include repetition, dense crowds of people, and changes in
lighting. The EPFL dataset was recorded in the EPFL Rolex Learning Center using
three static HD cameras. Unlike most of the existing multi-camera datasets, the
cameras’ fields of view are overlapping. Each camera has a resolution of 1 920×1 080
pixels and during the acquisition a frame rate of 60 frames per second was used. The
first scene in this data set is set in a laboratory, in a large room with four people
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who overlap and move in front of and behind the camera, shifting their positions
in the image. The office setting is the second scene in this data set, it is a smaller
space with two people who frequently cross paths and move around the frame. In
the second case, eight students are crammed into a small hallway at a university.
The camera is positioned at various distances from the subjects, and the lighting
varies from clip to clip. Many of the images overlap.

4.2 Performance Metric

A variety of performance measures were used to evaluate classifier performance. The
most basic and extensively used criterion for classifier evaluation is accuracy.

Accuracy =
TP + TN

TP + TN + FP + FN
, (14)

where TP is the number of samples correctly classified as positive, TN is the number
of samples correctly classified as negative, FN and FP represent the amount of
samples that were incorrectly labelled as positive or negative. Precision is defined
as the proportion of positive samples to all samples classified as positive.

Precision =
TP

TP + FP
. (15)

The percentage of correctly labelled positively recognised samples in comparison to
all positively identified samples is known as “recall”.

Recall =
TP

TP + FN
. (16)

The F1-measure shows how important it is to find a good balance between recall
and precision.

It is common practise to use the F1-score as a classification evaluation measure
since it provides a value that finds a balance between accuracy and recall in a single
value. The F1-score is calculated by weighting recall and precision and averaging
them.

F1-Score = 2∗
precision ∗ recall
precision + recall

. (17)

The receiver operating characteristic curve is created by drawing a line from the
percentage of correct diagnoses to the total number of false positives. The statistical
term “area under the curve” refers to a specific type of data analysis, which ranges
from zero to one and frequently surpasses 0.5.

Encryption time. Because the strength of an encryption algorithm has a negative
association with the amount of time required for the encoding process, a method
is considered more successful when it takes less time to complete the encoding
process. This criterion can be evaluated in two ways:
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Calculate the encryption time based on the size of the input (100, 200, 300, 400,
and 500 kB).

After analysing the encryption time based on the input by variable-count char-
acters, we compute the time it takes to encrypt and decode the data.

Deciphering a process requires less time than decrypting a process, as proven.
The results demonstrated this, indicating that the length of time required to
encrypt a file may increase linearly as the number of characters or file size
increases. This shows that the proposed work is much easier to do in terms of
computation than was thought before.

The suggested technology encrypts plain text quicker than previous strategies
such as single-shot multibox detection (MobileNet-SSD), you only look once
(YOLO-v3), CNN, DNN, and LSTM.

Decryption time. This demonstrates how long it takes to decrypt and reassemble
the data using the cypher text as input. The amount of time required before
success is referred to as the “temporal complexity” of the decrypting algorithm.
The following formula can be used to calculate how long it takes to decrypt
data.

Time consumed = end time − start time. (18)

The suggested approach requires significantly less time to decode than previous
encryption methods. So, the model shown can be used and is helpful for making
sure that communication is secure.

Power consumption. This section investigates how much energy the embedded
system consumes. The system can monitor its own power consumption and
achieve its goal using an external power source. A device called the UpSquared2
that draws electricity from a 5-volt input voltage has been used to study how
current consumption changes over time. Another study looked at how the VPU
affected energy consumption. As a result, the node’s consumption has been
tracked in a variety of scenarios, including when it is idle, when the algorithm
is running exclusively on the CPU, and when both the CPU and the VPU are
in use.

4.2.1 Precision

Table 2 and Figure 5 show the results of a comparison of precision of the RBFN-
TDES methodology to that of other existing approaches. The graph shows how
the machine learning strategy resulted in increased precision. For example, with
node 100, the precision value is 90.37% for RBFN-TDES, whereas the MobileNet-
SSD, YOLO-v3, CNN, DNN, and LSTM models have obtained precision of 72.67%,
77.45%, 81.45%, 84.91%, and 87.13%, respectively. The maximum performance of
the RBFN-TDES model was successfully demonstrated using a diverse set of nodes.
Similarly, under the 600 nodes, the precision value of RBFN-TDES is 92.77%, while
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No.
of Nodes

MobileNet-SSD YOLO-v3 CNN DNN LSTM RBFN-TDES

100 72.67 77.45 81.45 84.91 87.13 90.37

200 73.14 78.18 81.53 84.12 87.34 91.22

300 73.23 77.34 80.89 84.22 88.12 92.98

400 74.18 80.33 82.98 85.66 89.34 91.45

500 75.23 80.56 82.18 86.19 88.22 93.88

600 76.56 81.13 83.28 85.19 89.65 92.77

Table 2. Precision analysis for RBFN-TDES method with existing systems

Figure 5. Precision analysis for RBFN-TDES method and existing systems

it is 76.56%, 81.13%, 83.28%, 85.19%, and 89.65% for MobileNet-SSD, YOLO-v3,
CNN, DNN and LSTM models, respectively.

4.2.2 Recall

The results of comparing the RBFN-TDES methodology to other existing metho-
dologies with recall are shown in Figure 6 and Table 3. The graphic shows how
implementing the machine-learning strategy enhanced recall performance. For ex-
ample, with node 100, the recall value is 88.12% for RBFN-TDES, whereas the
MobileNet-SSD, YOLO-v3, CNN, DNN, and LSTM models have obtained recalls
of 61.78%, 66.12%, 72.76%, 78.45%, and 84.55%. The maximum performance of
the RBFN-TDES model was demonstrated successfully with a diverse set of nodes.
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No.
of Nodes

MobileNet-SSD YOLO-v3 CNN DNN LSTM RBFN-TDES

100 61.78 66.12 72.76 78.45 84.55 88.12

200 62.98 65.46 71.87 78.34 85.12 90.13

300 62.45 66.34 74.12 80.12 84.78 91.45

400 63.19 69.22 75.66 81.33 85.77 91.43

500 64.98 70.21 76.32 82.67 86.12 92.34

600 65.92 71.43 77.18 83.56 87.33 93.19

Table 3. Recall analysis for RBFN-TDES method and existing systems

Figure 6. Recall analysis for RBFN-TDES method and existing systems

Similarly, under 600 nodes, the recall value of RBFN-TDES is 93.19%, while it
is 65.92%, 71.43%, 77.18%, 83.56%, and 87.33% for MobileNet-SSD, YOLO-v3,
CNN, DNN, and LSTM models, respectively.

4.2.3 F-Score

Figure 7 and Table 4 show a comparison of the RBFN-TDES methodology to other
existing methodologies using F-score analysis. The data in the figure shows that
using machine learning resulted in superior performance, as measured by the F-
score. For example, with node 100, the F-score value is 92.67% for RBFN-TDES,
whereas the MobileNet-SSD, YOLO-v3, CNN, DNN, and LSTM models have ob-
tained F-scores of 81.89%, 85.34%, 83.34%, 87.12%, and 89.66%. The maximum
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No.
of Nodes

MobileNet-SSD YOLO-v3 CNN DNN LSTM RBFN-TDES

100 81.89 85.34 83.34 87.12 89.66 92.67

200 81.43 85.67 83.89 87.56 89.34 93.87

300 80.34 85.12 83.45 87.34 90.45 93.15

400 81.66 85.45 83.12 88.11 91.12 94.66

500 80.97 86.89 82.45 89.45 91.56 95.78

600 81.67 86.12 83.13 89.56 91.33 96.12

Table 4. F-Score analysis for RBFN-TDES method and existing systems

Figure 7. F-Score analysis for RBFN-TDES method and existing systems

performance of the RBFN-TDES model was demonstrated successfully using a di-
verse set of nodes. Similarly, under 600 nodes, the F-score value of RBFN-TDES is
96.12%, while it is 81.67%, 86.12%, 83.13%, 89.56%, and 91.33% for MobileNet-
SSD, YOLO-v3, CNN, DNN, and LSTM models, respectively.

4.2.4 Encryption Time

Table 5 and Figure 8 show an analysis of how long it takes to encrypt data using
the RBFN-TDES method in comparison to other methods. The nodes clearly show
that the RBFN-TDES method has outperformed the other techniques in all aspects.
For example, with 100 nodes, the RBFN-TDES method has taken only 2.678 sec to
encrypt, while the other existing techniques like MobileNet-SSD, YOLO-v3, CNN,
DNN, and LSTM have an encryption time of 13.521 sec, 11.871 sec, 8.567 sec,
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No.
of Nodes

MobileNet-SSD YOLO-v3 CNN DNN LSTM RBFN-TDES

100 13.521 11.871 8.567 7.457 5.123 2.678

200 13.521 11.432 9.345 7.234 5.786 2.543

300 14.987 11.321 9.765 7.876 5.234 3.896

400 14.123 12.987 9.327 7.669 6.126 3.112

500 15.987 12.567 9.984 8.154 6.345 3.987

600 15.478 12.532 10.378 8.987 6.987 4.654

Table 5. Encryption time analysis for RBFN-TDES method and existing systems

Figure 8. Encryption time analysis for RBFN-TDES method and existing systems

7.457 sec, and 5.123 sec, respectively. Similarly, for 600 nodes, the RBFN-TDES
method has an encryption time of 4.654 sec, while the other existing techniques
like MobileNet-SSD, YOLO-v3, CNN, DNN, and LSTM have 15.478 sec, 12.532 sec,
10.378 sec, 8.987 sec, and 6.987 sec of encryption time, respectively.

4.2.5 Decryption Time

Table 6 and Figure 9 show a comparison of the RBFN-TDES method’s decryption
time with that of other currently used methods. The nodes clearly demonstrate that
the RBFN-TDES method has outperformed the other techniques in all aspects. For
example, with 100 nodes, the RBFN-TDES method has taken only 3.567 sec to
decrypt, while the other existing techniques like MobileNet-SSD, YOLO-v3, CNN,
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No.
of Nodes

MobileNet-SSD YOLO-v3 CNN DNN LSTM RBFN-TDES

100 12.542 9.876 8.567 6.897 5.213 3.567

200 12.678 9.459 8.321 7.432 5.345 3.674

300 13.876 10.213 8.689 6.167 4.456 3.321

400 14.786 10.987 8.765 6.987 5.245 3.987

500 14.672 11.785 9.456 7.457 5.987 3.187

600 16.553 11.932 9.987 7.326 6.145 4.321

Table 6. Decryption time analysis for RBFN-TDES method and existing systems

Figure 9. Decryption time analysis for RBFN-TDES method and existing systems

DNN, and LSTM have a decryption time of 12.542 sec, 9.876 sec, 8.567 sec, 6.897 sec,
and 5.213 sec, respectively. Similarly, for 600 nodes, the RBFN-TDES method has
a decryption time of 4.321 sec, while the other existing techniques like MobileNet-
SSD, YOLO-v3, CNN, DNN, and LSTM have 16.553 sec, 11.932 sec, 9.987 sec, 7.326
sec, and 6.145 sec of decryption time, respectively.

4.2.6 Execution Time

Table 7 and Figure 10 show a comparison of the execution time of the RBFN-TDES
technique with existing methods. The data clearly shows that the RBFN-TDES
method has outperformed the other techniques in all aspects. For example, with
100 nodes, the RBFN-TDES method has taken only 2.543 sec to execute, while the
other existing techniques like MobileNet-SSD, YOLO-v3, CNN, DNN, and LSTM
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No.
of Nodes

MobileNet-SSD YOLO-v3 CNN DNN LSTM RBFN-TDES

100 9.123 8.456 7.345 5.987 4.542 2.543

200 9.456 8.564 7.567 5.235 4.198 2.654

300 9.732 8.125 7.134 5.675 4.678 2.987

400 9.321 8.478 6.987 5.876 4.321 3.132

500 9.416 8.652 7.456 6.124 4.987 3.987

600 9.441 8.473 7.786 6.543 5.234 3.176

Table 7. Execution time analysis for RBFN-TDES method and existing systems

Figure 10. Execution time analysis for RBFN-TDES method and existing systems

have an execution time of 9.123 sec, 8.456 sec, 7.345 sec, 5.987 sec, and 4.542 sec,
respectively. Similarly, for 600 nodes, the RBFN-TDES method has an execution
time of 3.176 sec, while the other existing techniques like MobileNet-SSD, YOLO-
v3, CNN, DNN, and LSTM have 9.441 sec, 8.473 sec, 7.786 sec, 6.543 sec, and 5.234
sec of execution time, respectively.

4.2.7 Power Consumption

No.
of Nodes

MobileNet-SSD YOLO-v3 CNN DNN LSTM RBFN-TDES

100 49.34 51.66 43.98 37.12 31.86 25.19

200 48.12 52.87 44.87 38.56 32.87 26.77

300 47.87 53.98 45.23 39.12 33.12 27.23

400 49.23 54.21 46.98 40.56 34.87 28.54

500 49.32 55.98 47.12 41.87 35.55 29.11

600 51.21 56.13 48.34 42.12 36.23 30.87

Table 8. Power consumption analysis for RBFN-TDES method and existing systems
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Figure 11. Power consumption analysis for RBFN-TDES method and existing systems

The outcomes of the study when comparing the power usage of the RBFN-
TDES strategy to alternative ways is provided in Table 8 and Figure 11. The data
results conclusively reveal that the RBFN-TDES approach is superior to the other
strategies in every regard. For example, with 100 nodes, the RBFN-TDES method
has consumed only 25.19 mW of power, while the other existing techniques like
MobileNet-SSD, YOLO-v3, CNN, DNN, and LSTM have a power consumption of
49.34 mW, 51.66 mW, 43.98 mW, 37.12 mW, and 31.86 mW, respectively. Similarly,
for 600 nodes, the RBFN-TDES method has a power consumption of 30.87 mW,
while the other existing techniques like MobileNet-SSD, YOLO-v3, CNN, DNN, and
LSTM have 51.21 mW, 56.13 mW, 48.34 mW, 42.12 mW, and 36.23 mW of power
consumption, respectively.

4.2.8 Accuracy

Figure 12 and Table 9 show the results of an investigation that compares the accuracy
of the RBFN-TDES method to that of other methods already in use. The graph
depicts how the machine learning strategy improved accuracy. For example, with
node 100, the accuracy value is 92.56% for RBFN-TDES, whereas the MobileNet-
SSD, YOLO-v3, CNN, DNN, and LSTM models have obtained accuracy of 58.34%,
70.45%, 64.89%, 82.88%, and 76.566%, respectively. The maximum performance of
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No.
of Nodes

MobileNet-SSD YOLO-v3 CNN DNN LSTM RBFN-TDES

100 58.34 70.45 64.89 82.88 76.56 92.56

200 59.37 71.22 65.13 83.12 77.13 93.67

300 60.12 72.67 66.87 84.55 78.45 94.45

400 61.67 73.98 67.34 85.66 79.32 95.23

500 62.33 74.55 68.19 86.12 80.67 96.87

600 63.44 75.12 69.32 87.43 81.33 97.21

Table 9. Accuracy analysis for RBFN-TDES method and existing systems

Figure 12. Accuracy analysis for RBFN-TDES method and existing systems

the RBFN-TDES model was demonstrated successfully with a diverse set of nodes.
Similarly, under the 600 nodes, the accuracy value of RBFN-TDES is 97.21%, while
it is 63.44%, 75.12%, 69.32%, 87.43%, and 81.33% for MobileNet-SSD, YOLO-v3,
CNN, DNN, and LSTM models, respectively.

4.2.9 Training Testing Validation

Figure 13 shows the result during the training phase, the model is exposed to a
dataset of CCTV footage images, which are encrypted by the Triple DES technique
used in the RBFN training process. The graph depicts how the model changes over
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Figure 13. Training testing validation for RBFN-TDES method and existing systems

iterations, with the x-axis representing training epochs and the y-axis a relevant
performance indicator, such as encryption correctness. The validation set, which
consists of previously unseen data, evaluates the model’s generalization skills, guar-
anteeing that it can properly encrypt new photos. The testing set then assesses
the model’s overall performance and ability to protect CCTV footage images be-
yond the training zone. The graph shows the model’s convergence during training,
its resistance to overfitting, and its effectiveness in protecting the confidentiality of
CCTV data throughout the testing and validation stages.

5 CONCLUSIONS

The authors present a mobile video surveillance device with edge-based AI RBFN
processing in this paper. This system is capable of reliably and robustly detecting
and tracking people. In this paper, we look at the development of a secure CCTV
approach that uses the Triple Data Encryption Standard (DES) with Radial Basis
Function Networks (RBFN). The goal of intelligent video surveillance is to detect
anomalies. The goal of this research was to propose that the original Data Encryp-
tion Standard (DES) algorithm be replaced with a method based on RBFN-TDES
that allows for authenticated encryption. The purpose of this study was to see how
easily hackers could defeat the original DES algorithm. The proposed approach,
RBFN-TDES, also examines and investigates the security requirements that spe-
cific encryption properties must satisfy. As the topic’s conclusion, the results of
a comparison between the suggested system and the current systems are presented,
along with an examination of each’s security characteristics and performance met-
rics. Our proposed RBFN-TDES model is efficient enough to be used for securing
CCTV pictures in a distributed computing environment. In this method, existing
models such as MobileNet-SSD, YOLO-v3, CNN, DNN, and LSTM are used to
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discover that the models have little impact on predictive performance. Based on
the results of experiments using video data, snatching incidents could be identified
with 97.21% accuracy. These experiments took place in four different scenes, each
with a different movement direction and either involving or not involving snatching.
The proposed scheme will be tested in a variety of settings by the authors in future
research. They want TPM-based protection for mobile agents. Modify the cloud
computing architecture monitoring plan to improve dynamic security properties.
When combined with policy-based management, the strategy can increase cloud
computing security even further. More security features in unfamiliar environments
may be required for the study. This may satisfy the requirements.
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