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Abstract. We present MIDWRSeg, a simple semantic segmentation model based
on neural network architecture. For complex road scenes, a large receptive field
gathered at multiple scales is crucial for semantic segmentation tasks. Currently,
there is an urgent need for the CNN architecture to establish long-range dependen-
cies (large receptive fields) akin to the unique attention mechanism employed by
the Transformer architecture. However, the high complexity of the attention mech-
anism formed by the matrix operations of Query, Key and Value cannot be borne
by real-time semantic segmentation models. Therefore, a Multi-Scale Convolutional
Attention (MSCA) block is constructed using inexpensive convolution operations
to form long distance dependencies. In this method, the model adopts a Simple
Inverted Residual (SIR) block for feature extraction in the initial encoding stage.
After downsampling, the feature maps with reduced resolution undergo a sequence
of stacked MSCA blocks, resulting in the formation of multi-scale long-range depen-
dencies. Finally, in order to further enrich the size of the adaptive receptive field, an
Internal Depth Wise Residual (IDWR) block is introduced. In the decoding stage,
a simple decoder similar to FCN is used to alleviate computational consumption.
Our method has formed a competitive advantage with existing real-time semantic
segmentation models for encoder-decoder on Cityscapes and CamVid datasets. Our
MIDWRSeg achieves 74.2% mIoU at a speed of 88.9 FPS at Cityscapes test and
achieves 76.8% mIoU at a speed of 95.2 FPS at CamVid test.
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1 INTRODUCTION

Semantic segmentation essentially involves classifying pixels. Unlike image classi-
fication, it poses enormous challenges as a pixel-intensive task. This basic task is
a prerequisite for achieving autonomous driving and virtual reality. When faced
with complex road scenes populated by people, cars, trees, and other elements, the
manual extraction of features often seems inadequate. Fortunately, with the devel-
opment of hardware, computing power has rapidly improved, and neural networks
that extract features in a black-box manner have regained their vitality once again.
This has freed us from the inconvenience of manually extracting features.

Figure 1. A comparison of speed-accuracy trade-off on Cityscapes test set

The creative model of fully convolutional neural networks (FCN) [1] has signif-
icantly advanced the fundamental task of semantic segmentation. However, FCN
heavily relies on classification networks, merely converting the final fully connected
layer into a 1 × 1 convolution. This adjustment causes the feature maps obtained
in the final three stages to be excessively small. To address this, interpolation is
employed to resize them back to the original image dimensions. Unfortunately, this
process often leads to the loss of crucial spatial information. The DeepLab [2, 3, 4]
series proposes dilated convolution to maintain the size of feature maps in sub-
sequent stages, while also obtaining a considerable receptive field. However, im-
proper setting of the dilation rate results in gridding artifacts in the predicted
image. The model proposed by U-Net [5] for medical images performs upsam-
pling step by step in decoding stages and then concatenates the features from
the the preceding encoding stage along the channel dimension. By fully utiliz-
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ing multi-scale features in each stage, the final segmentation result exhibits sig-
nificantly improved accuracy. However, this multi-stage feature fusion comes with
a significant computational cost. Based on the excellent works mentioned above,
it is evident that global receptive fields and multi-scale feature learning are cru-
cial for semantic segmentation. The question then arises: how can we effectively
capture the global receptive field? Inspired by the self attention mechanism in
the Transformer [6] architecture, its remarkable capability in globally modeling se-
quences in natural language processing is noteworthy. However, the high complex-
ity of the attention mechanism, arising from matrix operations involving Query,
Key, and Value, poses a significant computational burden. The Vision Transformer
(ViT) [7] is the first to apply the Transformer architecture to computer vision tasks.
It achieves this by dividing the input image into 16×16 patches, which are then
transformed into tokens via patch embedding operations, enabling self-attention
with manageable complexity. This work strongly demonstrates the practicality of
the self-attention mechanism in computer vision, yet its time complexity remains
prohibitive for real-time systems. This has prompted the exploration of inexpen-
sive convolutional attention mechanisms, among which SegNeXt [8] proposed the
Multi-Scale Convolutional Attention (MSCA) block to form multi-scale effective re-
ceptive fields. The design of our model integrates the MSCA block into the encoder
part.

In the final stage of encoding, we integrate the Depth-Wise Residual (DWR)
block from DWRSeg [9]. The feature maps are divided channel-wise, followed by
the application of dilated convolutions with different ratios to further fuse features
across scales.

Our motivation for adopting the MSCA and DWR blocks stems from the fact
that most current segmentation models are simply derived from existing classifi-
cation models, such as VGG [10] and ResNet [11], by discarding the final clas-
sification layer and using the features from each stage to perform segmentation
through a decoding process similar to FCN. However, due to the simple stacking
of similar modules, the overall feature extraction capability of these models is lim-
ited.

Taking ResNet18 as an example, it starts with a 7 × 7 convolution layer with
a stride of 2 and padding of 3, followed by two stacked BasicBlocks in each of the four
stages. These stages are identical and do not have distinct responsibilities, such as
maintaining spatial information in the first stage, capturing multi-scale information
in the second and third stages, and acquiring contextual information in the fourth
stage. Even when a spatial pyramid pooling block is added in the final stage to
aggregate contextual information, there is still a significant sawtooth effect along
the segmentation boundaries, resulting in inaccurate segmentation. See Figure 2 for
illustration.

The contributions made in this article are as follows:

1. In the initial encoding stage, a Simple Inverted Residual (SIR) block is used
for noise reduction, which facilitates the effective formation of long-distance
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Figure 2. FCN based on ResNet18. On the left, there is no use of a spatial pyramid module
to aggregate contextual information, resulting in poor boundary segmentation. On the
right, a spatial pyramid module is used to aggregate contextual information. However,
due to the weak feature extraction capability of the backbone, a severe sawtooth effect is
produced.

dependencies in the subsequent MSCA blocks. Both of them jointly employ
inexpensive convolution operations to achieve efficient receptive fields.

2. We introduce the Internal Depth-wise Residual (IDWR) block by incorporating
internal residual connections into the DWR block. The IDWR block leverages
a relatively rich multi-scale receptive field. Owing to the high efficiency of fea-
ture extraction in the early stages, the context aggregation module is excluded,
thereby reducing the model’s parameter size and indirectly enhancing inference
speed.

3. Our model clarifies the responsibilities of each stage. The first stage maintains
a larger feature map to retain more spatial information. The second and third
stages rely on three-branch asymmetric convolution to adapt to different seg-
mentation target sizes. The fourth stage relies on the IDWR block to achieve
the aggregation of context information, making the target boundary segmenta-
tion accurate. A strong encoder we implemented is a prerequisite for successful
semantic segmentation. Please refer to Figure 1. Our MIDWRSeg achieves an
mIoU of 74.2% at a speed of 88.9 FPS on the Cityscapes test and an mIoU of
76.8% at a speed of 95.2 FPS on the CamVid test.

2 RELATED WORK

2.1 Attention Mechanism and Large Convolutional Kernel

Vision Transformer (Vit) [7] successfully utilizes self attention mechanism through
patch embedding operation and achieves impressive results in image classification
tasks. However, Transformers based on global attention mechanisms generally re-
quire a large amount of computation. Swin Transformer [12] proposes a self at-
tention mechanism that includes sliding windows, which can introduce the local
characteristics of CNN and save computation. In the semantic segmentation task,
SeaFormer [13] follows a similar encoding approach as Vit [7]. However, it has intro-
duced three distinct decoding methods: Naive Upsampling, Progressive Upsampling,
and Multi Level Feature Aggregation. The segmentation accuracy has been greatly
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improved, but the number of model parameters has also increased significantly. The
deployment of lightweight models remains challenging, resulting in the development
of lightweight convolutional attention modules that employ simplified convolutional
structures. Typical works in the field of attention modules include SE (Squeeze and
Excitation attention) [14], CBAM (Convolutional Block Attention Module) [15], and
CA (Coordinate Attention) [16]. These modules can be seamlessly integrated into
various convolutional architectures.

Recently, some other works have reassessed the role of large convolutions, sug-
gesting that traditional convolutional architectures can obtain long-range depen-
dencies (large receptive fields) similar to attention mechanisms, provided that the
convolution kernel is large enough. RepLKNet [17] efficiently utilizes 31 × 31 con-
volutions through the use of short cuts, re-parameterization, and optimized low-
level depth-wise convolutions. On the other hand, SLaK [18] smoothly extends
the convolution kernel to 51 × 51 by utilizing two parallel, rectangular convolu-
tions instead of square large convolutions. The dynamic sparsity of the convolu-
tion kernel helps greatly improve the model capacity without increasing the model
size.

In order to combine the advantages of attention mechanism and large convolu-
tional kernels, the multi-scale convolutional attention module from SegNeXt [7] was
adopted in the subsequent encoding stage of our model, with kernel sizes of 7, 11,
and 21, respectively, to generate Q, K, and V to form attention and strengthen key
information.

2.2 Real-Time Encoder-Decoder Architecture

The SegNet [19], proposed by Badrinarayanan et al., adopts an encoder-decoder
structure and records the position index and value of the max pooling during each
encoding process. It is used to restore feature maps during upsampling to save
computational resources, thus achieving real-time requirements. ENet [20] still em-
ploys an encoder-decoder structure, characterized by its asymmetric design. In this
structure, the encoder part dominates, being significantly larger than the decoder
part, thus maintaining a compact model size and enhancing segmentation speed.
To further optimize its parameters and introduce more nonlinearity, asymmetric
convolution [21] is utilized, while dilated convolution is employed to expand the
receptive field. ERFNet [22] is similar to ENet [20] in that it also employs asym-
metric convolutions, decomposing all (3× 3) convolutions in the entire network into
(3 × 1) and (1 × 3) convolutions. LinkNet [23] shares a similar structure to Unet
[5], but requires fewer layers for feature extraction. During feature fusion, it adopts
element-wise addition instead of channel-wise addition as in Unet [5]. DABNet [24]
proposes a new Deep Asymmetric Bottleneck (DAB) module that effectively utilizes
asymmetric convolution and dilated convolution to construct bottleneck layers. The
DABNet, composed of DAB modules, generates sufficient receptive domains and
densely utilizes contextual information.
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2.3 Real-Time Multiple-Branches Architecture

To address the issue of tight coupling between spatial and channel information in the
encoder-decoder architecture, ICNet [25] employs a three-branch multi-resolution
encoding structure. It utilizes 1/4 of the original image resolution as the primary
means for extracting semantic information, while the full resolution (1/1) and half
resolution (1/2) images compensate for the loss of spatial information. ContextNet
[26] utilizes two branches to effectively extract spatial and contextual features, re-
ducing the redundancy of the branches. BiSeNet [27] is a dual-branch network that
operates with the input being the original image resolution. It features specially de-
signed spatial and contextual paths, incorporating a Feature Fusion Module (FFM)
and an Attention Refinement Module (ARM) for upsampling.

BiSeNetV2 [28] continues the dual branch structure of the v1 version, divided
into a Detail Branch and a Semantic Branch. For the Detail Branch, a VGG [10] like
network structure is still used for fast downsampling. The Semantic Branch runs
parallel to the Detail Branch and is primarily designed to capture advanced semantic
information. Due to the fact that detailed information can be supplemented by the
Detail Branch, the number of channels in the Semantic Branch is strictly controlled
by the parameter α to avoid redundancy.

STDCNet [29] employs Laplacian convolution on labels for the extraction of
fine edge features. By utilizing densely connected STDC blocks as its backbone,
the network eliminates redundant spatial paths, thereby compressing the model and
enhancing both segmentation speed and accuracy.

DDRNet [10] introduces a novel bilateral network as an efficient backbone for
real-time semantic segmentation. This network features deep dual resolution bran-
ches and multiple bilateral fusions. Additionally, a module has been devised to
acquire abundant contextual information by integrating feature aggregation with
pyramid pooling technology. Notably, when processing low-resolution feature maps,
it requires minimal additional inference time.

3 METHOD

In this section, we will describe the architecture of our entire model, MIDWRSeg.
The model maintains a mature and stable encoder-decoder architecture, which fa-
cilitates the reproduction of the entire model. We will first provide an overview of
the overall architecture, followed by a detailed introduction of the individual blocks
in the order of their appearance in the model.

3.1 Overall Architecture

Figure 3 shows the overall architecture of the MIDWRSeg. The entire model consists
of four stages in the encoding, with the Stem block and SIR block as the first stage,
completing denoising and primary feature extraction operations. In the second and
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Figure 3. The overview of MIDWRSeg on segmentation. The overall architecture of the
model employs an encoder-decoder structure. The first stage includes a Stem block and
a Simple Inverted Residual (SIR) block, designed to maintain spatial information. The
second, third stage involves Patch Embedding operations and the Muti-Scale Convolu-
tion Attention (MSCA) block, aimed at capturing multi-scale semantic information. The
fourth stage incorporates the Internal Depth-Wise Residual (IDWR) block, which utilizes
internal three-branch residual connections to acquire sufficient receptive fields and contex-
tual information. The entire decoding stage resembles FCN. H and W denote the height
and width of the feature map, while c represents the number of channels in the feature
map. N denotes the number of classes.

third stages, the MSCA block is used to form dependencies on long distances and
multi-scale features. In the fourth stage, the IDWR block is introduced to combine
richer receptive fields and form adaptive regions based on internal residuals. The
SegHead undergoes the conv1 and conv2 to the final number of classes N. The
detailed description of the model is shown in Table 1.

3.2 Stem Block

The Stem Block is depicted in Figure 4. Firstly, the 3-channel input image fin
will undergo a 3 × 3 convolution with a stride of 2 for preliminary feature extrac-
tion. Subsequently, the resulting feature map fstage1 will be processed through two
branches. The formula is described as follows:

fstage1 = Convs=2
k=3×3(fin). (1)

The fleft branch first relies on 1×1 convolution to further compress the number
of channels, thereby alleviating computational pressure, and then expands back to
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Stages Rate Channel Repeat

Image 1 3
Stem Block 1/4 64 1
SIR Block 1/8 64 8
MSCAN Block 1/16 64 3
MSCAN Block 1/32 128 5
IDWR Block 1/32 128 3
Decoder cat 1/8 384
Decoder conv1 1/8 128
Decoder conv2 1/8 N

Flops (G) 14.13
Params (M) 3.86

Table 1. Detailed MIDWRSeg architecture

Figure 4. Stem block

original number of channels through a 3× 3 convolution operation. The fleft can be
described as follows:

fleft = Convs=2
k=3×3(Convk=1×1(fstage1)). (2)

The fright branch utilizes max pooling to rapidly identify the maximum value as
the most representative feature, while concurrently carrying out preliminary noise
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reduction operations. The fright is computed as follows:

fright = MaxPoolings=2
k=3×3(fstage1). (3)

Finally, the fleft and fright branches stack the channels and then merge the
features through a final 3× 3 convolution. The final output feature map fout can be
described as follows:

fout = Cat(fleft + fright),

fout = Convk=3×3(fout).
(4)

3.3 Simple Inverted Residual Block

The Simple Inverted Residual (SIR) block is depicted in Figure 5. In the early
stages, the primary task is denoising and extracting primary features fin, therefore
the number of channels is increased by sixfold to combine multiple modes of features
fout. The feature map fout is computed as follows:

fout = Convk=1×1(Convk=3×3(fin)),

fout = fout + fin.
(5)

Figure 5. Simple Inverted Residual block (SIR)

Finally, to conserve computational resources, 1 × 1 convolution is utilized to
decrease the number of channels. To maintain stable gradient updates and prevent
model degradation, residual connection is added.
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3.4 OverlapPatchEmbed

In order for subsequent multi-scale conv attention to proceed smoothly, it is neces-
sary to divide the feature maps fin into patches of size 7. As shown in Figure 6.

Figure 6. An overview of PatchEmbed. The feature map is divided into 7 × 7 patches,
and the patches are formed into a sequence from left to right. Then, the Linear Project
of Flattened Patches operation is performed to merge the dimensions of H and W of the
feature map, and the last two dimensions are swapped to form a specific sequence-to-
sequence vector.

Using a stride of 4 to move these patches creates overlapping blocks. The over-
lapping blocks of encoded features are normalized along the batch size dimension
to obtain the final output fout. The operation of dividing patches can be easily
implemented using convolution, described as follows:

fout = BatchNorm(Convs=4
k=7×7(fin)). (6)

After the operation of dividing patches, in order to perform the convolutional
attention operation, we need to reshape the tensor from the previous shape of
(B,C,H,W ) by flattening the last two dimensions H and W to obtain the total
number of patches. After this step, the shape of the tensor changes to (B,C,H×W ).
Then, we transpose the last two dimensions to make it conform to the tensor shape
commonly used in natural language processing, which is (B, num patch, embed dim).
Here, num patch = H × W , and embed dim = C. The process of flattening and
transposing dimensions is described as follows:

fout = Transposedim=1,2(FlattenH,W (fout)). (7)

3.5 Multi-Scale Convolution Attention Block

The Multi Scale Convolution Attention (MSCA) Block is shown in Figure 7. Fol-
lowing the process of feature extraction and noise reduction in the preceding stage,
the MSCA module proposed in SegNext [8] is employed to establish long-range de-
pendencies.
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Figure 7. Multi-scale convolution attention

The attention mechanism formed by this module effectively strengthens seman-
tic information. And for the situation where there are many slender targets such
as street lights, railings, people, and tall buildings on the road, using the pair of
asymmetric convolutions combined is appropriate. It is worth noting that the con-
volution kernel sizes of the three branches are 1× 7, 1× 11, and 1× 21, respectively.
The convolution attention can be described by the formula as follows:

Att = Convk=1×1

(
3∑

i=0

Scalek(DWConv(F ))

)
, k = 5, 7, 11, 21,

Out = Att⊗ F.

(8)

F denotes the input feature map. DWConv denotes Depth-Wise Conv. Scalek
denotes the size of the Conv kernel, and ⊗ denotes element-wise multiplication of
the feature maps. Perhaps it will surprise you to learn why such a large convolution
kernel is used. Studies such as RepLKNet [17] and SLaK [18] have found that large
kernel convolutions can achieve more effective receptive fields, which are crucial for
ensuring correct segmentation by the model.

A stage of MSCA, which corresponds one-to-one with the traditional attention
mechanism, is shown in Figure 8.

The feature map fin undergoes a 1 × 1 convolution, followed by the GELU
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Figure 8. A stage of MSCA

activation function. The GELU activation function formula is as follows:

GELU(x) = 0.5x

(
1 + tanh

(√
2

π

(
x+ 0.044715x3

)))
. (9)

Subsequently, it traverses the MSCA block and then undergoes another 1 × 1
convolution, which replaces the traditional combination of BatchNorm and Atten-
tion. The fstage1 is computed as follows:

fstage1 = GELU(Convk=1×1(fin)),

fstage1 = Convk=1×1(MSCAN(fstage1)) + fin.
(10)

Subsequently, the feature map fstage2 undergoes a 1 × 1 convolution, followed
by a Depth-Wise convolution with a kernel size of 3. Immediately after, it passes
through a GELU activation function and another 1×1 convolution. This corresponds
to the original BatchNorm and Feedforward Neural Network (FFN) operations. The
fstage2 is computed as follows:

fstage2 = DWConvk=3×3(Convk=1×1(fstage1)),

fstage2 = Convk=1×1(GELU(fstage2)) + fstage2.
(11)
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3.6 Internal Depth-Wise Residual Block

The Depth-Wise Residual module is shown in Figure 9. Firstly, the feature map
fin undergoes a 3× 3 convolution to extract regional information. Then, to capture
multi-scale receptive fields, a three-branch dilated convolution is employed with
dilation rates of 1, 3, and 5, respectively. The fstage1 is computed as follows:

f = Convk=3×3(fin),

f1 = DWConvk=3×3(f),

f2 = DWConvd=3
k=3×3(f), (12)

f3 = DWConvd=5
k=3×3(f),

fstage1 = Cat(f1 + f2 + f3),

fout = fstage1 + fin. (13)

Figure 9. Depth-Wise Residual Module

Finally, the number of channels is adjusted through a 1 × 1 convolution, and
then added to the original input through residual connections. The fout is computed
according Equation (13). However, the regional information obtained through the
3 × 3 convolution is not fully utilized. To make better use of the receptive field
information from this stage, internal residual connections are employed to leverage
the information from the previous stage during the application of dilated convolution
convolutions across the three branches. This is illustrated in Figure 10. The fstage1
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can be redescribed as:

f1 = DWConvk=3×3(f) + f,

f2 = DWConvd=3
k=3×3(f) + f,

f3 = DWConvd=5
k=3×3(f) + f,

fstage1 = Cat(f1 + f2 + f3).

(14)

The improvement can be attributed to the fact that short connections enable
the model to explicitly combine multiple models with varying receptive field sizes
(small and large receptive fields accumulate consecutively). This approach enhances
the model’s performance within a larger receptive field while maintaining its ability
to capture fine-grained features. And the activation function used after the three-
branch dilated convolution is ELU. The ELU activation function is described as
follows:

ELU(x) =

ex − 1, if x < 0,

x, if x ≥ 0.

Figure 10. Internal Depth-Wise Residual Module
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4 EXPERIMENT

4.1 Dataset

CamVid (Cambridge Driving Labeled Video Database) [30, 31] is the first driving
dataset. It comprises over 700 finely annotated road scene images and is divided
into training, validation, and testing sets. 32 and 11 categories is used separately
for the experiment. They are roads, traffic signs, cars, sky, pedestrian walkways,
utility poles, walls, pedestrians, buildings, and bicycles. The dataset consists of
367 training sets, 101 validation sets, and 233 testing sets.

The Cityscapes dataset [32] is an openly available dataset used in computer
vision, and it has been widely utilized to provide data support for understanding
and analyzing cities. The dataset is also divided into training, validation, and testing
sets. Among them, there are 2 975 training sets, 500 validation sets, and 1 525 testing
sets. Although the dataset comprises 30 semantic categories, most optimal models
consider only 19 categories for experimentation. Our training and evaluation for
this experiment also adhered to the use of these 19 categories.

4.2 Implementation Details

Our model implementation uses the PyTorch framework version 1.13.1 and CUDA
version 11.7.

We employed the AdamW [33] optimization method in our training procedure
for the Cityscapes dataset. We set the batch size to 8, the weight decay to 2e−4, the
momentum to 0.9, and the initial learning rate to 0.009. It should be noted that
the loss function we use is a cross-entropy loss function with Online Hard Example
Mining (OHEM), which is utilized to learn from difficult samples and indirectly
enhance the model’s ability.

We use the SGD [34] optimization method. We set the batch size to 12, the
weight decay to 0.0005, the momentum to 0.9, and the initial learning rate to 0.001
in the training procedure of the CamVid dataset. The loss function uses a cross
entropy loss function with weight, where weight is used to handle classes imbalance
issues in road scenes [35, 36, 37].

In terms of data augmentation, random mirror flipping and random scaling with
ratios of 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0 are employed. For the CamVid dataset,
the input size is cropped to 720 × 960. Similarly, for the Cityscapes dataset, the
input size is cropped to 512× 1 024.

4.3 Ablation on MSCA Module

In this section, we conducted a series of ablation experiments to verify the effective-
ness of our MIDWRSeg. We conduct ablation experiments on the MSCAN mod-
ule and IDWR module respectively. In addition, we also investigate the stacking
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depth of MSCAN modules. All ablation experiments are conducted on the CamVid
dataset.

Kernel Size FPS mIoU

{7, 11, 15} 83 69.62
{7, 15, 17} 87.6 66.4
{7, 15, 25} 76.7 69.49
{7, 17, 19} 83.2 70.48
{7, 17, 21} 75.6 69.72
{7, 11, 21} 88.9 71.09

Table 2. The experiment results about kernel size of MSCAN

Our model primarily relies on the large-scale convolution kernel employed by the
MSCAN module for extracting deep semantic features. Subsequently, it implements
attention mechanism operations to capture long-range dependencies (large receptive
fields). In the first part, we explore the effect of the three different kernel sizes in
the MSCAN module on feature extraction. In the second part, we investigate the
impact of varying the depth of MSCAN stacking on the model’s performance.

To investigate the impact of different convolution sizes on model performance
within the three branches of the MSCAN module, we selected three numbers from
the set {7, 9, 11, 13, 15, 17, 19, 21}. All ablation experiments were conducted by
stacking eight layers of MSCAN modules. The specific convolution kernel sizes
for the three branches of MSCAN are detailed in Table 2.

It should be noted that, in order to ensure experimental fairness, the influence
of the IDWR module in the fourth stage of IDWRSeg has been excluded. Following
an ablation experiment on the MSCAN convolution kernel size, it is observed that
a larger difference between convolution kernel sizes is more beneficial for the model.
But it can have an impact on large objects that suddenly appear in the four corners.
Nonetheless, in this regard, a slight difference in the size of convolutional kernels
can alleviate this situation. For further details, please refer to the last image in the
bottom right corner of Figure 11, which depicts the car in the bottom left corner.

The next step involves conducting a depth ablation experiment on the MSCAN
block, which will be performed on the CamVid dataset. In this experiment, the
second and third stages of the model will be configured with different numbers of
MSCAN blocks. The specific experimental results are presented in Table 3.

Stage2 Stage3 FPS mIoU

3 5 88.9 71.09
4 5 62.11 72.32
5 6 65.69 72.94
3 9 61.49 72.98
4 9 56.37 73.42

Table 3. The experiment results about depths of MSCAN
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Figure 11. Visualize the differences in convolutional kernel size in MSCAN Modules.
From left to right are the original image, ground truth, kernel size {7, 11, 21}, {7, 17, 19},
{7, 15, 17}.

4.4 Ablation on IDWR Module

In order to facilitate rapid validation of ablation experiments in the future, some cat-
egories of the original CamVid dataset have been merged, reducing the total number
of categories from 32 to 11. The ablation experiments on the IDWR module are
still conducted on the CamVid dataset, with a 2:1:1 ratio determined as the optimal
configuration for the number of channels. This aspect has been previously explored
in DWRSeg [9] and will not be repeated here. Instead, this section delves into the
depth of ablation experiments and examines the influence of residual connections on
accuracy. For detailed results, please refer to Table 4.

4.5 Comparisons with Other Works

We present a comparison between our MIDWRSeg and state-of-the-art real-time
semantic segmentation methods. Our method is tested on a single RTX3060 GPU
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Stage4 Connection FPS mIoU

3 77.95 73.2
3 ✓ 80.20 73.6
4 79.73 73.29
4 ✓ 83.22 73.91
5 79.83 73.8
5 ✓ 81.66 73.97
6 80.24 73.88
6 ✓ 76.9 73.90

Table 4. The experiment results about depths of IDWR

with an image resolution of 512 × 1 024 on the Cityscapes dataset. The resolution
on the CamVid dataset is 720 × 960. We test the speed without employing any
acceleration strategy and only use fine data to train the model.

Before comparing the performance of different models, it is necessary to briefly
introduce the metrics that will be used. Mean Intersection over Union (mIoU):
This is a commonly used standard metric in semantic segmentation, which calcu-
lates the average of the Intersection over Union (IoU) for each category. Frames
Per Second (FPS): FPS denotes to the number of frames transmitted per sec-
ond.

First, Table 5 shows a comparison of our model with other models on the
CamVid dataset. In the experiment on the CamVid dataset, pre-trained weights
from the Cityscapes dataset are used.

Method mIoU ↑ FPS ↑
ICNet [25] 67.1 34.5
DFANet [38] 64.7 120
STDC1 [29] 73.0 197.6
STDC2 [29] 73.9 152.2
BiSeNetV2 [28] 76.7 124.5

ours 76.8 88.7

Table 5. Comparisons with other state-of-the-art methods on CamVid

Second, Table 6 demonstrates a comparison of our model with other models
on the Cityscapes dataset, all of which adopt an encoder-decoder structure. And
another metric, FLOPs, denotes the number of floating point operations, which can
be used to measure the complexity of a model.

Third, Table 7 demonstrates a comparison of our model with other multi-branch
structure models, using the same evaluation metrics as before.

Finally, we conducted visualizations on the Cityscapes test set. There are four
columns in total, arranged in the order of original images and segmentation results.
Since the official website does not provide the actual labels for segmentation, we
are unable to display the labels. The segmentation results in the first two rows
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Method Input Size
Parameters

(M) ↓
FLOPs
(G)

FPS ↑ Platform
mIoU
(%) ↑

ENet [20] 512× 1 024 0.36 4.4 100.2 RTX3090 58.3
SegNet [19] 360× 640 29.5 286 53 RTX3090 55.8
ESPNet [39] 512× 1 024 0.36 3.5 320 RTX3090 60.3
SQNet [40] 1 024× 2 048 16.3 576.4 6.1 RTX3090 59.6
CGNet [41] 1 024× 2 048 0.49 28 108 RTX3090 64.8
DABNet [24] 512× 1 024 0.76 27.7 191 RTX3090 70.1
DeepLabV2 [3] 512× 1 024 4 457 1 RTX2080Ti 70.4
ESNet [42] 512× 1 024 1.66 24.4 53 RTX3090 70.7
DFANet [38] 512× 1 024 4.8 2.1 120 RTX3080 67.1
LedNet [43] 512× 1 024 0.94 – 87 RTX3090 70.6
DWRSeg [9] 512× 1 024 3.53 16.42 256.2 RTX3080 73.1
EBUNet [44] 512× 1 024 1.57 24.13 152 RTX3090 73.4
TopFormer [45] 512× 1 024 5.1 – 95.7 RTX2080Ti 70.0
SeaFormer [13] 512× 1 024 8.6 – 45.2 RTX2080Ti 72.2
AFFormer [46] 512× 1 024 3.0 – 49.5 RTX2080Ti 73.5

ours 512× 1 024 3.86 14.12 88.9 RTX3060 74.2

Table 6. Comparison with state-of-the-art encoder-decoder semantic segmentation meth-
ods on Cityscapes test set

Method Input Size
Parameters

(M) ↓
FLOPs
(G)

FPS ↑ Platform
mIoU
(%) ↑

ICNet [25] 1 024× 2 048 26.5 28.3 15.4 RTX3090 70.6
ContextNet [26] 1 024× 2 048 0.85 7.2 121 RTX3090 66.1
BiseNetV1 [27] 768× 1536 5.8 14.8 105 TitanXP 68.4
BiseNetV2 [28] 512× 1 024 – – 156 GTX1080Ti 72.4
STDC1 [29] 512× 1 024 9.97 0.81 250.4 RTX3060 71.9
STDC2 [29] 512× 1 024 14 1.45 188.6 RTX3060 73.4
DDRNet [10] 1 024× 2 048 5.7 36.3 108.8 GTX1080Ti 77.8
PIDNet [47] 1 024× 2 048 7.6 46.3 100.8 RTX3090 78.8
SCTNet [48] 512× 1 024 4.6 – 160.3 RTX2080Ti 72.8

ours 512× 1 024 3.86 14.12 88.9 RTX3060 74.2

Table 7. Comparison with state-of-the-art multi-branch semantic segmentation methods
on Cityscapes test set

are relatively good, while there are some larger flaws in the last two rows. The
visualization results are shown in Figure 12.

5 CONCLUSION

Through ablative experiments on the MSCAN and IDWR blocks, it can be observed
that multi-scale feature extraction and effective receptive field extraction are crucial.
The adoption of MSCAN, which forms long-range dependencies through inexpensive
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Figure 12. Visualization of the Cityscapes tests. The first and second row predictions are
good results. There is a significant deviation in the predicted results of the rows three or
four.

convolutions, proves to be effective. Our method has formed a competitive advan-
tage with existing real-time semantic segmentation models for encoder-decoder on
Cityscapes and CamVid datasets. Our MIDWRSeg achieves mIoU of 74.2% at
a speed of 88.9 FPS at Cityscapes test and achieves mIoU of 76.8% at a speed of
95.2 FPS at CamVid test. With a model parameter size of 3.86M, this lightweight
structure provides convenience for deployment on memory-constrained embedded
devices.
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