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Abstract. To solve the problem of time-consuming and low efficiency in manual
defect detection, this paper proposes a bonding defect detection algorithm based on
improved Single Shot MultiBox Detector (SSD). DenseNet is used to replace VGG
of the SSD algorithm to improve the detection effect of bonding defect. A novel
feature fusion network is designed, in which dilated convolution is used to reduce
the size of the low-level feature map, and it is fused with the high-level feature map,
and then the Convolutional Block Attention Module (CBAM) attention mechanism
is used to increase the ability to extract the features. Focal loss is used to control
the ratio of positive and negative samples for training and suppress easily separable
samples, so that the samples involved in training have better distribution and the
model has better detection performance. Then, the defect data set is constructed
and a comparison experiment is carried out. The results show that the mAP,
Precision, and Recall of the improved SSD network are increased to 75.9%, 77.3%,
and 75.6%, respectively, which can better identify bonding defect.

Keywords: SSD, defect detection, DenseNet, dilated convolution, CBAM, focal
loss

1 INTRODUCTION

The bonding structure is widely used in various industrial products because of its
high specific strength and modulus. However, defects such as debonding, cracking,
and delamination easily occur during in the bonding process, which destroys the
integrity of the bonding structure. The ability to properly identify these defects is
critical for optimizing production techniques and improving quality.

At present, X-ray is the most commonly used nondestructive testing method,
which can accurately reflect the location, shape, type, and size of defects by gray
images [1, 2]. When detecting bonding defects, it is necessary to determine whether
there are defects on X-ray images, and then determine the location and type of
defects. The defect detection algorithms mainly include traditional algorithms and
detection algorithms based on deep learning. There are many shortcomings in the
traditional detection process due to the influence of human factors, and it is in-
creasingly unable to meet the needs of industrial automation and intelligent devel-
opment [3]. Deep learning can learn and recognize the features of the input image
independently, which solves the inconvenience of manually extracting features, and
better results are achieved. Using the target detection algorithm based on deep
learning, the localization and classification of defects can be realized at the same
time, which is mainly divided into two categories. One is the two-stage target detec-
tion algorithm represented by R-CNN [4], Fast R-CNN [5], and Faster R-CNN [6].
The other is a one-stage target detection algorithm represented by YOLO [7] and
SSD. Specifically, the two-stage algorithm first generates candidate regions on the
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image, and then performs classification and regression on each candidate region in
turn. The one-stage algorithm directly completes the localization and classification
of all targets on the whole image, omitting the operation of generating candidate
regions. Among them, SSD (Single Shot Multibox Detector) is one of the current
mainstream object detection frameworks. SSD was originally proposed by Wei Liu
at the 14th European Conference on Computer Vision (ECCV) in 2016 [8], and has
become another one-stage object detection algorithm after YOLO. SSD not only
draws on the anchor mechanism and feature pyramid structure of Faster R-CNN,
but also inherits the regression idea of YOLO [9].

SSD algorithm achieves a better detection effect while taking into account the
detection speed, but there are some problems:

1. The backbone network is shallow and the feature extraction is insufficient.

2. The low-level feature layer has poor semantic information and the high-level has
poor location information; both resulting in insufficient accuracy.

3. The cross-entropy loss does not pay attention to challenging samples, which
affects the detection effect.

In order to solve the above problems, this paper takes the defects of debonding,
cracking, and delamination as the research objects, and proposes an improved SSD
defect detection algorithm. DenseNet is used as the backbone network, and dilated
convolution and CBAM are used to fuse shallow and deep features, which greatly
enhances the feature extraction and expression ability of the network. In addition,
focal loss is introduced to enhance the learning ability of the network and further
improve the model detection effect.

The rest of the paper is organized as follows. Section 2 briefly describes im-
proved SSD network. Section 3 presents the loss function of improved SSD network.
Section 4 conducts experiments and evaluates the performance of the improved SSD.
Section 5 concludes the paper.

2 IMPROVED SSD NETWORK

The SSD network consists of three parts: backbone network, feature extraction
network, and detection network. Figure 1 shows the structure of the SSD network.
The backbone network is modified on the basis of VGG16 [10] by replacing the last
two fully-connected layers FC6 and FC7 with convolutional layers Conv6 and Conv7,
and then adding four groups of convolutional layers: Conv8, Conv9, Conv10, and
Conv11. Then, the feature maps of Conv4 3 and Conv7 are combined with those of
Conv8 2, Conv9 2, Conv10 2, and Conv11 2 to form a multi-scale feature extraction
network. Finally, the detection network is used to output category confidences and
location information, then all the calculation results are combined to calculate the
loss.
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Figure 1. Model structure of SSD

2.1 Replacing the Backbone Network

The SSD algorithm is limited by the network depth of VGG-16. Related studies have
shown that features can be enriched by increasing the number of network layers and
the recognition accuracy improves with the deepening of network depth. Compared
with VGG-16, the ResNet-50 and DenseNet-121 are good choices. To verify the
performance of these two networks, the test is carried out on the ImageNet2012
dataset [11] and the results are shown in Table 1.

Model Accuracy (%) Size (M) FLOPS (109)

VGG-16 71.7 537 15.3
ResNet-50 73.1 87 3.6
DenseNet-121 74.3 32 1.9

Table 1. Comparison results of different network performance

As we can see from Table 1, among the above three models, DenseNet-121 has the
highest accuracy and the lowest size and FLOPS. Meanwhile, VGG-16 is composed
of several convolutional layers and pooling layers, which has a simple structure and
insufficient feature extraction. The idea of DenseNet-121 is basically the same as
that of ResNet-50, which is to intensively connect all the previous layers with the
later layers to realize feature reuse. However, ResNet-50 adds feature maps, while
DenseNet-121 concatenates feature maps of different channels. The former highlights
feature reuse, and the latter explores new features. Therefore, DenseNet-121 is used
to replace VGG-16 network.

DenseNet [12] was proposed in 2017 and borrowed from ResNet [13]. Figure 2
shows the DenseNet, the later layer can also make use of the information extracted
from the previous layer. At the same time, due to the reuse of features, each
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layer only needs fewer convolution kernels, which reduces the network parameters
to a certain extent and improves the network operation efficiency. In DenseNet,
the Dense Block module consists of 1× 1 convolution and 3× 3 convolution, which
1 × 1 convolution is used to reduce the dimension of the input feature map, and
the 3 × 3 convolution is used to extract features. The Transition layer structure is
adopted between the Dense Block modules, which includes 1 × 1 convolution and
2× 2 average pooling to gradually reduce the size of the feature map.

C
o

n
v

o
lu

ti
o

n Dense Block1

T
ra

n
si

ti
o

n

B
N

1

p
o
o

li
n

g

R
e
L

U

L
in

ea
r

In
p

u
t

Output

Dense Block2

T
ra

n
si

ti
o

n Dense Block3

Figure 2. The structure of DenseNet

Table 2 is the structure of the proposed algorithm. It is modified on the basis
of DenseNet, which strengthens the feature propagation and improves the repeated
utilization of features at each layer. The feature maps output by the six layers of
Dense block2, Dense block3, Conv5, Conv6-2, Conv7-2, and Conv8-2 are used for
prediction, and concentric prior boxes are set on each reference point of each feature
map.

Layers Output size SSD DenseNet

B
ac
k
b
on

e

Conv1 150× 150× 64 7× 7 conv, stride 2, padding 3
Pool1 75× 75× 64 3× 3 max pool, stride 2
Dense block1 75× 75× 256 [1× 1 conv, stride 1; 3× 3 conv, stride 1]× 6

Transition1
75× 75× 128 1× 1 conv, stride 1
38× 38× 128 2× 2 avg pool, stride 2, ceil mode = true

Dense block2 38× 38× 512 [1× 1 conv, stride 1; 3× 3 conv, stride 1]× 12

Transition2
38× 38× 256 1× 1 conv, stride 1
19× 19× 256 2× 2 avg pool, stride 2, ceil mode = true

Dense block3 19× 19× 1 024 [1× 1 conv, stride 1; 3× 3 conv, stride 1]× 24

Transition3
19× 19× 512 1× 1 conv, stride 1
10× 10× 512 2× 2 avg pool, stride 2, ceil mode = true

Dense block4 10× 10× 1 024 [1× 1 conv, stride 1; 3× 3 conv, stride 1]× 16

O
th
er
s

Conv5 10× 10× 512 1× 1 conv, stride 1
Conv6-1 10× 10× 128 1× 1 conv, stride 1
Conv6-2 5× 5× 256 3× 3 conv, stride 2
Conv7-1 5× 5× 128 1× 1 conv, stride 1
Conv7-2 3× 3× 256 3× 3 conv, stride 1
Conv8-1 3× 3× 128 1× 1 conv, stride 1
Conv8-2 1× 1× 256 3× 3 conv, stride 1

Table 2. Network structure of the improved algorithm
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2.2 Feature Fusion Network

It is well known that in convolutional neural networks, detail information is ben-
eficial for localization and semantic information is more suitable for classification
objects. Low-level feature maps in the SSD network have higher resolution and con-
tain more detail information, but they have less semantic information due to fewer
convolution operations. High-level feature maps have stronger semantic informa-
tion, but their resolution is low and their perception of details is poor. In the SSD
(DenseNet) network, the features before Dense block2 belong to shallow features,
and the features after Dense block2 belong to deep features. In Figure 3, the fea-
ture map output by Conv1 has obvious edge features, and the feature maps output
by Dense block1 and Dense block2 are close to the texture features. The feature
maps after Dense block3 are almost impossible to judge specific feature properties
by naked eye.

Figure 3. The feature maps of VGG (DenseNet)

After feature fusion, the shallow features with image detail information and
the deep features with semantic information are fused together, which can improve
the expression ability of the network. In this paper, a new feature fusion network
with CBAM attention mechanism is designed. The network first reduces the size
of the low-level feature map by downsampling operation, and then concatenates
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it with the high-level feature map to form a multi-channel feature map, and finally
passes through the CBAM attention mechanism. Common downsampling operations
include pooling and dilated convolution [14]. The reason why dilated convolution
is chosen instead of pooling is that information will be lost in the pooling process,
while dilated convolution can enlarge the receptive field without losing information,
so that the feature map can obtain more global information. Specifically, as shown
in Figure 4, the output feature map 75× 75× 256 of Dense block1 is downsampled
using dilated convolution (kernel size is 3 × 3, step size is 2, padding is 2, dilation
is 2), while the output feature map 38 × 38 × 512 of Dense block2 uses ordinary
convolution (kernel size is 3× 3, step size is 1, padding is 1), and then the obtained
two feature maps are concatenated after using ReLU [15] activation function. The
fusion strategy of the other layers is also similar.
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Figure 4. Detection flow chart of SSD model

Then, CBAM (Convolutional Block Attention Module) attention mechanism [16]
is added to the output feature map after feature fusion, which strengthens the im-
portant detail features and weakens the useless interference features. The structure
of CBAM is shown in Figure 5, it is composed of two parts: Channel Attention
Module (CAM) and Spatial Attention Module (SAM). CAM is used to focus on
what features are meaningful, while SAM is used to focus on where the meaningful
features come from. In CAM, the input feature map F (H×W ×C) is first operated
through global maximum pooling and global average pooling to generate two feature
maps (1 × 1 × C), which are then sent to the multi-layer perceptron (MPL). The
one-dimensional channel attention map Mc(F ) is obtained by adding pixel by pixel
and Sigmoid activation function, and Mc(F ) is multiplied by input feature map F
to obtain the channel attention adjusted feature map F1. In SAM, F1 is performed
through global maximum pooling and global average pooling to obtain a feature
map with channel number 2, it passes a 7 × 7 convolutional layer to reduce the
channel number to 1, and finally generates a spatial attention map Ms(F1) through
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a Sigmoid activation function, which is then multiplied with the feature graph F1.
Its mathematical expression is as follows [17]:

Mc(F ) = σ(MLP(AvgPool(F )) +MLP(MaxPool(F ))), (1)

Ms(F ) = σ(f 7×7[AvgPool(F );MaxPool(F )]), (2)

where, σ is the Sigmoid activation function.

the channel Attention mechanism the spatial Attention mechanism

the input 

feature map
the output feature map

max-pooling

mean-pooling MPLF
Mc(F)

max-pooling and 

mean-pooling

Conv

F1 Ms(F1)

Figure 5. The structure of CBAM

3 LOSS FUNCTION OF IMPROVED SSD

It is a regression process to generate the recognition box by SSD model, and a clas-
sification process to judge the category of the recognition box. The overall loss
function of SSD is represented by the weighted sum of localization loss (Lloc) and
confidence loss (Lconf ) in Equation (3) [18].

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x, l, g)), (3)

where, x represents the category matching information of the prediction box, and
the matching value is 1, otherwise, the value is 0; c is the predictive value of cate-
gory confidence; l is the position parameter of the prediction box; g is the position
parameter of the real box; N is the number of the prior box that matches the real
box; α is the weight coefficient and is set to 1.

3.1 Localization Loss Function

The localization loss is the smooth L1 loss between the prediction box and the real
box, which can be expressed as:

Lloc(x, l, g) =
N∑

i∈pos

∑
m∈box

xij
ksmoothL1(li

m − ĝmj ), (4)

smoothL1(x) =

{
0.5x2, if |x| < 1,

|x| − 0.5, otherwise.
(5)
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Where, xij
k = 1 means that the ith prediction box matches the jth real box

on category k, otherwise, xij
k = 0. xij

k > 1 means that there is more than one
prediction box matching the jth real box. box = (cx, cy, w, h) indicates the center
coordinates of the prediction box and its width and height. l is the transformation
relationship between the prediction box and the prior box, while g is the transfor-
mation relationship between the real box and the prior box. Since l is the encoded
value, it is necessary to encode the g to obtain ĝ. Where, di

cx, di
cy, di

w, di
h represent

the parameters of the prior box.

ĝcxj =
gj

cx−di
cx

di
w

ĝcyj =
gj

cy−di
cy

di
h

ĝwj = log
gj

w

di
w

ĝhj = log
gj

h

di
h

(6)

3.2 Confidence Loss Function

Intersection-over-Union (IoU) between the prior box and ground truth is used to
select the samples. The samples with the IoU greater than 0.5 and less than 0.5
are selected as positive and negative examples, respectively. If none IoU is greater
than 0.5, the sample with the maximum IoU is selected as the positive example.
The candidate regions generated with region growing are mostly negative examples,
so the quantity ratio between positive and negative examples is normally set to 1:3
to prevent the quantity imbalance between them [19]. SSD uses the cross-entropy
loss function to calculate the confidence loss, and all positive and negative samples
participate in the calculation. Cross-entropy loss is a commonly used loss function
in classification problems, which describes the distance between the real output and
the prediction output. The loss function can be expressed in Equation (7):

Lconf (x, c) = −
N∑

i∈pos

xij
p log(ĉpi )−

∑
i∈neg

log(ĉ0i ), (7)

ĉpi =
exp(ci

p)∑
p exp(ci

p)
, (8)

where, the former represents the loss of a certain category (excluding the back-
ground), and the latter represents the loss of the background. ĉpi is the probability
that the ith prediction box predicts category p. xij

p takes 1 to indicate that the ith

prior box matches the jth real box of category p, otherwise it takes 0.
In the calculation of cross-entropy loss, the sample selection mechanism is used

to effectively balance the number of positive and negative samples, but it does not
pay attention to hard samples (ĉpi ≤ 0.5). In this paper, the focal loss function is used
to solve this problem, which focuses more attention on hard samples and improves



Bonding Defect Detection 1441

the effectiveness of model training. The focal loss [20] function is as follows:

LFocalloss(x, c) = −
N∑

i∈pos

xij
p(1− ĉpi )

γ log(ĉpi )−
∑
i∈neg

(ĉpi )
γ log(ĉ0i ), (9)

where, γ ∈ [0, 5], which is used to adjust the down-weighted rate of easy samples.

The focal loss introduces a modulating factor (1− ĉpi )
γ to reduce the contribution

of easy samples (ĉpi>0.5) to the loss function, so that the model focuses more on
hard samples during training. For easy samples, the larger is ĉpi , the smaller is
(1− ĉpi )

γ. For hard samples, ĉpi is small, (1− ĉpi )
γ will be large, so that the network

tends to use such samples to update parameters. It can be seen from Figure 6, when
γ = 0, focal loss is equivalent to cross-entropy loss. Even the easy samples have
a high loss value, resulting in the high proportion of the loss value of easy samples
in the algorithm. when γ increased, the weight of hard samples in the input samples
increased, and γ = 2 is set in this paper. It showed that focal loss could balance
the ratio of positive and negative samples and easy and hard samples by ĉpi and γ,
so that the samples involved in training could be distributed more evenly and the
reliability of detection algorithm could be further improved.

Figure 6. The graph of −(1− ĉpi )
γlog(ĉpi )
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4 EXPERIMENT AND RESULT ANALYSIS

4.1 Generating Dataset

The dataset used in this experiment came from X-ray test samples of multi-layer
metal and non-metal bonded tubular specimens collected over the past two years.
The bonding structure defects of the sample mainly include: debonding, cracking,
and delamination [21], as shown in Figure 7. Among them, debonding refers to poor
bonding between layers, and it can be seen from the figure that there are obvious
black images between inner and outer layers. Cracking is the outer or inner layer
of cracking defects, the image is black dendritic. Delamination is the outer or inner
layers that are poorly bonded inside, showing multiple vertical stripes. The annota-
tion software called Make Sense [22] labels the images in the experiment according
to the defect information. Label boxes are added, and the corresponding label files
are generated for the areas with defects in images. Then, the dataset images are
randomly divided into two groups: 80% of the dataset is used for parameter learning
and network training, whereas the other 20% is used to test the generalization and
recognition ability of the model, and the two datasets do not intersect each other.

DelaminationDebonding Cracking

Figure 7. Defect images of adhesive structure

Images Labels Debonding Cracking Delamination

The training set 349 626 352 109 165
The test set 93 157 90 28 39
Total 442 783 442 137 204

Table 3. Defect numbers in the dataset

4.2 Experimental Environment

The detailed software and hardware configuration of the experiment are shown in
Table 4. The size of the input image was set to 300×300, and the stochastic gradient
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descent algorithm was used to iteratively optimize the network in the training pro-
cess. The momentum was set to 0.9, the batch size was 16, and the initial learning
rate was 0.0001. When the number of iterations was 80 000 and 100 000, the learning
rate was 0.00001 and 0.000001 respectively, and the total number of iterations was
set to 120 000.

Name Parameter

Software framework PyTorch
Programming language Python
System Ubuntu 18.04.5 LTS
GPU GeForce RTX 2080 Ti
CPU Intel(R) Xeon(R) CPU E5-2690 V3@2.60GHz

Table 4. Experimental settings

4.3 Generation of Prior Boxes

SSD sets a series of prior boxes with different scales or aspect ratios for each unit of
the feature map, and the detected target will adopt the prior boxes that are most
suitable for their shape for training.

With an increase of the number of network layers, the size of the feature map
decreases gradually, and the scale of the prior box increases linearly. The corre-
sponding calculation formula is as follows:

Sk = Smin +
Smax − Smin

m− 1
(k − 1), k ∈ [1,m], (10)

where, m is the number of feature maps and is set to 5 in this work (the first
feature map needs to be set separately, the scale factor is artificially set to 0.07).
Sk is the ratio of the prior box size to the image size; Smin and Smax represent the
minimum and maximum values of the ratio, respectively, and we find Smin = 0.15
and Smax = 0.87 to work better in our experiments.

For the first feature map, the scale is 300 × 0.07 = 21. For the other five
feature maps, in order to facilitate the calculation, the scale ratio is first expanded
by 100 times, then:

δ =
[Smax × 100]− [Smin × 100]

m− 1
= 18. (11)

According to formula (10), there are:

Sk = Smin × 100 + δ(k − 1). (12)

In this way, Sk ∈ [15, 33, 51, 69, 87], the data in Sk is divided by 100 and then
multiplied by the size of the original map 300, and then the prior box size of the
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first feature map is synthesized, and the prior box size of the six feature maps can
be obtained as [21, 45, 99, 153, 207, 261]. For the last feature map, Smax size =
300 × 87+18

100
= 315. The aspect ratio of the prior boxes is generally set as αγ ∈

[1, 2, 3, 1/2, 1/3], but the prior boxes of 3 and 1/3 are not used when there are only
four prior boxes.

The main parameters are shown in Table 5.

Layer Out size Step Prior box num Min size Max size

Dense block2 38× 38 8 4 21 45
Dense block3 19× 19 16 6 45 99
Conv5 10× 10 32 6 99 153
Conv6-2 5× 5 64 6 153 207
Conv7-2 3× 3 100 4 207 261
Conv8-2 1× 1 300 4 261 315

Table 5. The main parameters of the SSD network model

The coordinate of the center point of the prior box is ( i+0.5
fk

, j+0.5
fk

), where fk is

the size of the kth feature map, i, j ∈ [0, fk), and the width and height of the prior
box are shown in Table 6.

Layer Prior box ratio Prior box size(width, height)

Dense block2 [1/2, 1, 2]
(21, 21), (21×

√
2, 21/

√
2),

(21/
√
2, 21×

√
2), (

√
21× 45,

√
21× 45)

Dense block3 [1/3, 1/2, 1, 2, 3]

(45, 45), (45×
√
2, 45/

√
2),

(45/
√
2, 45×

√
2), (45/

√
3, 45×

√
3),

(45×
√
3, 45/

√
3), (

√
45× 99,

√
45× 99)

Conv5 [1/3, 1/2, 1, 2, 3]

(99, 99), (99×
√
2, 99/

√
2),

(99/
√
2, 99×

√
2), (99/

√
3, 99×

√
3),

(99×
√
3, 99/

√
3), (

√
99× 153,

√
99× 153)

Conv6-2 [1/3, 1/2, 1, 2, 3]

(153, 153), (153×
√
2, 153/

√
2),

(153/
√
2, 153×

√
2), (153/

√
3, 153×

√
3),

(153×
√
3, 153/

√
3), (

√
153× 207,

√
153× 207)

Conv7-2 [1/2, 1, 2]
(207, 207), (207×

√
2, 207/

√
2),

(207/
√
2, 207×

√
2), (

√
207× 261,

√
207× 261)

Conv8-2 [1/2, 1, 2]
(261, 261), (261×

√
2, 261/

√
2),

(261/
√
2, 261×

√
2), (

√
261× 315,

√
261× 315)

Table 6. The size of prior box

4.4 Evaluation Indicators

In order to measure the robustness and accuracy of defect recognition, Precision,
Recall, Average Precision (AP), and Mean Average Precision (mAP) are employed
as the main evaluation indicators in this experiment.
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Precision and Recall are defined as follows, respectively:

Precision =
TP

TP + FP
, (13)

Recall =
TP

TP + FN
, (14)

where TP is the number of IoU¿0.5 between the predicted and truth boxes, FP
is the number of IoU¡0.5 between the predicted and truth boxes, and FN is the
number of missed real boxes.

AP is the area enclosed by the Precision-Recall curve and coordinate axes. The
mAP is the average of AP for different categories. Generally speaking, the higher
AP value indicates the better target detection. The AP can be calculated by Equa-
tion (15), where P (r) denotes the Precision-Recall curve.

AP =

∫ 1

0

P (r)dr, (15)

mAP =
1

|C|
. (16)

4.5 Result Analysis

To test the performance of the improved SSD, corresponding experiments were set
for each improvement point of the algorithm, and the Precision, Recall, and mAP
of the algorithm before and after the improvement are quantitatively analyzed.

4.5.1 A Comparison of the Underlying Backbone Networks

In this experiment, VGG-16 and DenseNet were respectively used as a backbone
network. The experimental results are shown in Figure 8. For the model using
DenseNet, the network structure is relatively more complex and the extracted fea-
tures are more representational, so the detection effect is better. The mAP, Recall,
and Precision are increased by 9.6%, 8.7%, and 9.3%, respectively.

4.5.2 Evaluating Feature Fusion

Based on the backbone network of DenseNet, the feature fusion module is added,
and Figure 9 shows its experimental results. The feature fusion module can effec-
tively improve the Precision of the model and keep the mAP and Recall similar to
the original model. It shows that the information gaps between different feature
maps can be effectively filled through feature fusion and attention mechanism, and
the primary and secondary information between different positions and channels of
feature maps can be selectively activated or suppressed, which effectively improves
the detection precision of defects.
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Figure 8. Performance comparison of different backbone network

Figure 9. Performance comparison of feature fusion module

4.5.3 Evaluating Loss Function

Before and after adopting the improved strategy, the variation curve of the loss
function is shown in Figure 10, where the horizontal coordinate represents the num-
ber of iterations and the vertical coordinate represents the loss value. It can be
seen from the figure that with the increase of the number of iterations, the im-
proved loss curve gradually decreases until it becomes stable. Compared with SSD
(DenseNet), the localization loss in SSD (DenseNet) + focalloss remains almost the
same, and the classification loss decreases significantly. Meanwhile, the convergence
speed of SSD (DenseNet) + feature fusion is faster than that of SSD (DenseNet).
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The training loss of SSD (DenseNet) converges around 4, and the convergence of
SSD (DenseNet)+feature fusion+focalloss is around 3. After improvement, the con-
vergence performance of the algorithm is obviously better than that of the original
algorithm.

The trained network is used for target detection of defect images, and the results
are shown in Table 7. It can be seen that the improved algorithm has significantly
improved the target detection performance.

a) SSD (DenseNet) b) SSD (DenseNet) + feature fusion

c) SSD (DenseNet) + focalloss d) SSD (DenseNet) + feature fusion+
focalloss

Figure 10. Results of loss function

4.5.4 Comparative Experiment for Improvement Points

In this section, three improvement points of SSD algorithm are compared. Experi-
ment 1: Only the feature extraction network of SSD algorithm is improved, and the
VGG-16 network is replaced with the DenseNet network structure. Experiment 2:
On the basis of the original SSD algorithm, only the feature fusion network is added.
Experiment 3: Only the loss function of SSD algorithm is improved, and the focal-
loss function replaces the original confidence loss function. The bonding structure
defect data set was used to test the above experiments, and the comparison results
are shown in Table 8.
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Models
AP (%) mAP

(%)
Recall
(%)

Precision
(%)

Debonding Cracking
Delami-
nation

SSD + DenseNet 63.6 71.4 89.1 74.7 76.9 70.4
SSD + DenseNet
+ feature fusion

69.7 62.5 87.9 73.4 71 73.8

SSD + DenseNet
+ focalloss

69.2 62 86.1 72.4 68.1 76.3

SSD + DenseNet
+ feature fusion
+ focalloss

69.1 68.2 90.5 75.9 75.6 77.3

Table 7. The results of the ablation experiment

mAP (%) Recall (%) Precision (%)

Original SSD 65.1 68.2 61.1
Experiment 1 74.7 76.9 70.4
Experiment 2 64.5 72.1 62.8
Experiment 3 69.9 70.7 68.1

Table 8. Comparative experiment for improvement points

The mAP, Recall, and Precision of Experiment 1 have been significantly im-
proved, which shows that using DenseNet as the feature extraction network can
significantly improve the feature extraction ability, and then improve the detection
accuracy of the model. In Experiment 2, after adding the feature fusion network, the
Recall has been improved, and the mAP and Precision remain basically unchanged.
In Experiment 3, the detection effect of the model with the introduction of focalloss
function is better than that without the focalloss function, which shows that the
focalloss function can balance the sample distribution, thereby improving the de-
tection effect of the model. The improvement effect of Experiment 1 is significantly
better than that of Experiment 2 and Experiment 3, and it can be inferred that the
improvement of the feature extraction network plays a major role in improving the
performance of target detection.

4.5.5 Horizontal Contrast Experiment

In order to further verify the detection performance of the improved algorithm in
this paper, the SSD, YOLOv5s, and the improved SSD algorithm proposed in this
paper were compared under the same experimental environment and defect data set.

It can be seen from Table 9 that the detection effect of the proposed algorithm
is the best, followed by YOLOv5, and the original SSD is the worst. Compared
with the original SSD algorithm, the mAP, Precision, and Recall of the proposed
algorithm are increased by 10.8%, 7.4%, and 16.2%, respectively. On the whole,
the proposed algorithm is better than that of YOLOv5s, and its mAP, Precision,
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Models mAP (%) Recall (%) Precision (%) FLOPs/G

YOLOv5s 70.1 74.5 69.1 16.4
Original SSD 65.1 68.2 61.1 30.54
Algorithm of this paper 75.9 75.6 77.3 11.23

Table 9. Detection results of different algorithms

and Recall are increased by 5.8%, 1.1%, and 8.2%, respectively, which verifies
the effectiveness of the proposed algorithm. However, in terms of the FLOPs, the
algorithm of this paper is only about 1/3 of SSD and lower than YOLOv5s. The
comparison of results adequately illustrated the superiority of the algorithm of this
paper.

4.5.6 Visual Analysis of Detection Effect

The partial detection results of SSD algorithm for bonding defects are shown in
Table 10. On the left are manually marked defects, and in the middle are the
detection results of the original SSD, and on the right are the detection results of
the improved SSD algorithm. It is obvious that the detection effect of the original
SSD is bad, and the missed detection and false detection are serious. The improved
SSD algorithm can detect more targets without any false detection at all.

5 CONCLUSIONS

This paper has presented a defect detection method based on an improved SSD
algorithm. DenseNet is used as the basic feature extraction network, and the di-
lated convolution and CBAM attention modules are used to fuse the feature maps
of each layer, which improves the feature reuse rate and further enhances the de-
tection accuracy. The focal classification loss is introduced into the loss function of
the algorithm to realize the balanced distribution of samples in the algorithm and
improve the reliability of the model. The above improvements improve the mAP,
Recall, and Precision of the model to different degrees, but the effect of improving
the feature extraction network is the most obvious. The experiment results show
that the mAP, Precision, and Recall of the improved SSD network are increased
to 75.9%, 77.3%, and 75.6%, respectively. Compared with the original SSD al-
gorithm, the mAP, Precision, and Recall of the proposed algorithm are increased
by 10.8%, 7.4%, and 16.2%, respectively. The comparison experiments show that
the optimized SSD algorithm has a better recognition effect than the original SSD
algorithm.

In practical industrial production, the use of deep learning often faces the prob-
lem of a small amount of raw data and the unbalanced distribution of defect samples
in the data set. To expand the defect image by deep convolutional generative ad-
versarial network (DCGAN), not only the amount of data can be increased, but
also the diversity of images can be increased, and the generalization ability of the



1450 H. Gao, Y. Jin, M. Li, Y. Chen, J. Zang, X. Fan

Image Manual annotation SSD Algorithm of this paper

Image 1

delamination

debongding

Image 2

cracking

debongding

Image 3

delamination

debongding

Image 4

cracking

Image 5 cracking

Image 6

cracking

delamination

Image 7

delamination

debongding

Table 10. A comparison of detection effects
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trained model can be better improved. On this basis, it is worthwhile to improve the
Precision and Recall of the model which is the direction of further in-depth research.
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