
Computing and Informatics, Vol. 43, 2024, 1397–1415, doi: 10.31577/cai 2024 6 1397

ENHANCING SEMANTIC WEB ENTITY MATCHING
PROCESS USING TRANSFORMER NEURAL
NETWORKS AND PRE-TRAINED LANGUAGE
MODELS

Mourad Jabrane, Abdelfattah Toulaoui, Imad Hafidi

Sultan Moulay Slimane University
Laboratory of Process Engineering, Computer Science and Mathematics
Bd Beni Amir, BP 77
Khouribga, Morocco
e-mail: mourad.jabrane@usms.ac.ma

Abstract. Entity matching (EM) is a critical yet complex component of data clean-
ing and integration. Recent advancements in EM have predominantly been driven
by deep learning (DL) methods. These methods primarily enhance data accu-
racy within structured data that adheres to a high-quality and well-defined schema.
However, these schema-centric DL strategies struggle with the semantic web’s linked
data, which tends to be voluminous, semi-structured, diverse, and often noisy. To
tackle this, we introduce a novel approach that is loosely schema-aware and lever-
ages cutting-edge developments in DL, specifically transformer neural networks and
pre-trained language models. We evaluated our approach on six datasets, including
two tabular and four RDF datasets from the semantic web. The findings demon-
strate the effectiveness of our model in managing the complexities of noisy and
varied data.

Keywords: Entity matching, record linkage, linked data, deep learning, trans-
former neural networks

1 INTRODUCTION

Entity matching (EM), also called duplicate detection or record linkage, was first
defined by Newcombe in 1959 [1]. The challenge is identifying effectively the du-
plicates that correspond to the identical real-world entity. In the context of Big

https://doi.org/10.31577/cai_2024_6_1397

1398 M. Jabrane, A. Toulaoui, I. Hafidi

Data, EM has gradually shifted toward noisy, large, semi-structured, and highly
heterogeneous data. Consequently, EM methods keep progressing and with each
EM problem that is solved with sufficient performance, more challenging prob-
lems arise. So, more advanced solutions will always be needed. Current state of
the art when it comes to EM in textual and tabular data uses methods based on
deep learning, due-to those methods offering a more powerful framework for han-
dling EM problem. The latest of these methods make use of the power of pre-
trained language and transformers models. These models bring a level of natu-
ral language processing, so that the framework can use the meaning of the text
to achieve the task, rather than just semantic similarity. In the previous genera-
tion, the domain of EM was confined to structured data, whereas in recent times,
it has extended to semi-structured and unstructured data, i.e., linked data (web
data), predominantly created by users. The current landscape of data exhibits
a high degree of schema noise and heterogeneity, which are characterized by loose
schema bindings with uncertain semantics, thereby posing unprecedented challenges
to data matching. For this type of data the current state-of-the-art EM methods
rarely make use of machine learning, let alone deep learning. The present scenario
is dominated by the prevalence of rule-based techniques and iterative algorithms,
which are hampered by inadequate scalability, substantially low time efficiency, and
lengthy execution times even for datasets comprising merely a few thousand enti-
ties.

For this reason, in this paper we propose an innovative, loosely schema-aware
approach based on recent advancements in deep learning to perform EM on linked
data. Particularly, transformer neural networks and pre-trained language mod-
els.

The summary of the contributions made by our work is presented as follows:
Firstly, we compared the performance of five deep learning models, including
DeepMatcher, HierMatcher, CorDEL, and DITTO on three pairs of datasets from
the author and product domains, namely Amazon-Google (dirty), Amazon-Walmart
(dirty), and Abt-Buy (textual). Secondly, we propose an innovative, loosely schema-
aware approach based on the DITTO model to handle linked data effectively.
Finally, we conducted an extensive evaluation of the proposed approach on six
datasets, which included two tabular datasets, namely Amazon-Google and Amazon-
Walmart, and four RDF datasets, namely SPIMBench, Person1, Person2, and Ana-
tomy.

This paper is organized as follows: Section 2 discusses the related work in the
areas of deep learning for EM. Section 3 explains our schema-aware approach to
handle linked data. Section 4 presents the experimental evaluation of our approach
and comparison to related work. Section 5 presents the findings of the study. Sec-
tion 6 provides a discussion about the results. Section 7 summarizes the key findings
and proposed some possible directions for future work.

Enhancing Semantic Web Entity Matching Process . . . 1399

2 RELATED WORK

2.1 DeepMatcher

One of the most important contributions to EM came with DeepMatcher [2]. Deep-
Matcher uses pre-trained word embedding to calculate the vector representations of
tokens in the entity, then aggregates those representations for each attribute to find
the vector representation of the entire attribute. Finally, the vector representations
are aggregated one last time to find entity representations, which are concatenated
and passed to the decision network which is composed of a two-layer MLP with resid-
ual connections and a softmax function at the end (Figure 1). The authors have
open-sourced their work as the deepmatcher Python package. The authors suggest
using GloVE or FastText for the word embedding, but FastText performed better in
their testing. They also suggest using simple averaging, RNNs, or Attention layers
for vector aggregation, with performance varying between data sets.

Figure 1. The general structure of DeepMatcher model

DeepMatcher was improved upon by DeepMatcher+ [3], which is used
as a benchmark for entity matching.

1400 M. Jabrane, A. Toulaoui, I. Hafidi

2.2 Auto-EM

Auto-EM [4] uses multiple models for entity matching: an attribute type detection
model, type-specific matchers, a general matcher, and a table-level matcher. The
authors also pre-trained 49 type-specific matchers using very large KBs so the models
can be fine-tuned for new types and specific tasks.

Figure 2. The general structure for Auto-EM model

The flow as described in Figure 2: Firstly, the attribute type detection model
is used to predict the type of each attribute from the table, these predictions are
then used to choose the correct model for type-specific matchers. The type-specific
matchers take two inputs of the same type (Person names, addresses, phone numbers,
movies, books, organizations, etc. . .) and output a similarity score. For attributes
that are of unknown types, a general matching model is used. Finally, the scores
are concatenated, and the table-level matcher is used to calculate the final matching
score.

All the type-specific matchers and the general matcher have the exact same archi-
tecture (Figure 3), and the difference between them stems from their training data.
The matchers use a hierarchical architecture. A character level BiGRU is used to
determine how the characters within the words are connected, and an character level
attention layer is used to align the characters between the attributes, and then the
representations of characters within the words are aggregated via a weighted sum.
Finally, the same process is used again on the word-level instead of on a character-
level to calculate the attribute representation. The final attribute representations
are concatenated and passed to an MLP to retrieve the final score.

This method offers a great deal of flexibility for entity matching. The paper also
provides a way to pre-train the classifier and matchers to reduce the training time
and data required for new tasks. However, it can only process tabular data, and the
schemata need to be aligned in order to use it.

Enhancing Semantic Web Entity Matching Process . . . 1401

Figure 3. The hirerarchical model used for attribute-level matching

2.3 HierMatcher

Researchers here [5] conceived a hierarchical matching model based on attention
layers (Figure 4). A hierarchical model passes the information through different
sub-models with different context information, each one extracts an aspect of the
information relative to the context.

The model starts by taking the attributes in the form of tokens, and a vector
representation for each token is calculated using a BiGRU RNN. The token repre-
sentations are aligned with the similar tokens in the opposite entity. With H2 the
matrix where each column is the representation of a token in the second entity, and
h1i the representation of the target token repeated to match the dimension of H2,
the similarity is calculated as follows:

C1i = h1i −H2,

G1i = HighwayNet(C1i),

v1i = softmax (wG1i + b),

where HighwayNet is a two layer MLP with residual connections, and w and b are
learnable parameters. The final output of this layer is the column of C1i whose index
has the highest value in v1i.

1402 M. Jabrane, A. Toulaoui, I. Hafidi

Figure 4. The architecture of the Hierarchical Matcher proposed in [5]

Next, the token representations for each attribute are aggregated via an attention
layer to get a single vector representation of each attribute, and the same is done
again to aggregate the attribute vectors for each entity. Finally, the two vectors are
concatenated and fed into a two-layer MLP with a ReLU activation for the first one,
and a Softmax activation to make the final decision.

This model is very flexible, and can handle heterogeneous data. It could also
theoretically be extended to handle data that is unstructured or does not have a fixed
schema. However, since it uses attention layers, it may require large amounts of data
to reach optimality. Another possible problem is that the model may be too simple
to handle more complex problems.

2.4 CorDEL

CorDEL [6] was proposed as a model to do entity matching on systems without
using too much in term of resources. It uses a simple process to separate tokens
into tokens unique to each entity (Figure 5), and tokens common between them in
a LIM (Local Interaction Module). Given t1j and t2j the tokens have an attribute j
in the first and second entities, respectively.

sj = t1j ∩ t2j,

u1j = t1j \ s,

u2j = t2j \ s.

Enhancing Semantic Web Entity Matching Process . . . 1403

Figure 5. The architecture of the CorDEL model

After the LIM, CorDEL passes the tokens to a pre-trained embedding layer,
which calculates the representative vectors for each token. Both sets of tokens
(sj and u1j ∪ u2j) are passed to their own sequence processing model (ψj and ϕj,
respectively). The intuition being that ψj can calculate the evidence of similarity
between the two attributes, while ϕj can calculate the evidence of dissimilarity.
Finally, the two evidence vectors are concatenated and passed to the model Ω,
which takes all the outputs from the attribute level comparisons and outputs a single
similarity score y.

One thing to take into consideration is that the model needs a hyper-parameter
in the form of an aggregation for the sequence processing model. The paper suggests
using either the sum of vectors or an RNN, depending on the target system.

The model is very simple yet powerful, and can handle heterogeneous data very
well. However, it needs aligned schemata to function, which is not always optimal.
The model also cannot handle unstructured data.

2.5 DITTO

DITTO [7] is an entity matching model that makes use of pre-trained language mod-
els to process textual data. The paper was published simultaneously with another
paper [8] that had the same idea. The model uses a pre-trained language model

1404 M. Jabrane, A. Toulaoui, I. Hafidi

(specifically BERT or its derivatives), and converts the entities to match into a text
sequence. The text sequence is then fed into the language model, and the first
output vector is taken as the input of a binary classification layer.

Figure 6. The architecture for the DITTO model with data augmentation

The authors [7] suggest serializing the data into the format:

[START]

[COL]col11[VAL]value11[COL]col12[VAL]value12...

[SEP]

[COL]col21[VAL]value21[COL]col22[VAL]value22....

[END]

Which gives the model the clear structure of the attributes in the entities. This
is desirable if the attribute names encode useful information for the entity as a whole.

The authors also defined a process for data augmentation that could be option-
ally used to help the model generalize. Augmented data is processed the same way
during training of the model, and the result vector is interpolated with the original
vector before the classification layer.

The model makes use of the latest technologies in NLP, and it offers a serializa-
tion that can make use of the attribute names as part of the decision process. One
of this model’s strong points is its use of pre-trained model, which can cut down on
training time and required data set size.

2.6 Comparison

2.6.1 Training Time

The DL-based approaches consistently outperform a number of recognized bench-
mark datasets [9]. Despite their great performance, they are very inefficient with
time, taking hours of training even for datasets containing a few thousand entities [8],
and require specialized hardware to run large models efficiently.

The relevant approaches attempt to reduce the complexity of the learned mod-
els, which are highly dependent on the parameters which must be refined during

Enhancing Semantic Web Entity Matching Process . . . 1405

training. Still, the majority of DL models contain a substantial number of pa-
rameters: over 22 million for the hybrid model of Deep-Matcher, over 700 000 for
DeepMatcher-SIF and CorDel-Sum, and over 50 000 for CorDel-Attention [6]. Addi-
tionally, special attention should be taken to constructing stable, resilient, and hence
dependable models, such that different training runs produce negligible changes in
performance [6].

DITTO is the only model that cuts down on training time and required labeled
data set size by using pre-trained language models.

2.6.2 Performance

For performance evaluation of the methods described above, we use three pairs of
datasets from the author and the product domains. The three datasets cover two
types of EM problems (textual and dirty).

• Amazon-Google (dirty): e-commerce datasets include product entities, described
with the following four common attributes: product name, product description,
manufacturer, and price. The provided ground truth contains 8 442 (7 142 neg-
ative and 1 300 positive) correspondences between Amazon and Google product
entities.

• Amazon-Walmart (dirty): contains product information along the Amazon and
Walmart electronics product catalogues. The common attributes are: title,
category, brand, modelno, price. The provided ground truth contains 10 242
(9 280 negative and 962 positive) correspondences between the Amazon and
Walmart product entities.

• Abt-Buy (textual): benchmark e-commerce datasets, contain textual attributes.
A ground truth of 7 164 (6 067 negative and 1 097 positive) correspondences be-
tween product entities of the two datasets. The common attributes are: product
name, product description and product price.

We take the best case results in the case where the model has multiple variations.
Table 1 presents the results of the models performance in terms of F1 score.

Amazon-Google Amazon-Walmart Abt-Buy

DeepMatcher+ 70.7 53.8 63.8
HierMatcher 74.9 68.5 –
CorDEL 70.2 51.2 64.9
DITTO 75.58 85.69 89.33

Table 1. The performance of the methods on three datasets

We noticed that DITTO has the highest performance across the board. This
is due to the fact that its base model (BERT) has a good generalization of natural
language.

1406 M. Jabrane, A. Toulaoui, I. Hafidi

3 PROPOSED APPROACH

This section will discuss the proposed new serialization scheme to handle the se-
mantic web’s linked data. We will also discuss the datasets used for testing. This
was done on the model with varying amounts of data to get an idea on the absolute
minimum required to get an acceptable score. This section also introduces a few
possible modifications to improve and stabilize the performance of the model in low
data circumstances.

3.1 The Base Model

DITTO offers a powerful and efficient solution for entity matching tasks that can
help improve the quality of data integration and cleaning processes by:

• Improved accuracy: By using pre-trained language models to generate embed-
ding for entities, DITTO can improve the accuracy of entity matching tasks
compared to traditional methods. Pre-trained language models have been shown
to be effective at capturing semantic and contextual information in text, which
can help identify matching entities even when there are variations in spelling,
word order, or phrasing.

• Time and cost savings: By automating the entity matching process, DITTO
can save time and reduce the costs associated with manual data cleaning and
integration. This can be particularly valuable for organizations that deal with
large and diverse datasets that require frequent updates and maintenance.

• Scalability: DITTO is a scalable solution that can handle large volumes of data
and can be deployed in distributed environments. It can also be integrated with
existing data pipelines and workflows to support real-time data processing and
analytics.

• Flexibility: DITTO is a flexible framework that can be customized with different
pre-trained language models, embedding methods, and matching algorithms.

Evaluating the degree of semantic similarity between two profiles in linked data
is a difficult problem in the field of entity matching. Improved performance was
achieved by approaches based on language models such as T5 [10], XLNet [11],
ERNIE 2.0 [12], ALBERT [13], RoBERTa [14], TinyBERT [15], however these
approaches either require high computational resources (T5, XLNet, ERNIE, AL-
BERT, RoBERTa) or have low performance (TinyBERT). Hence, we opted to use
DistilBERT as the base language model for our approach. DistilBERT has been
distilled using the Knowledge Distillation method [16] to compress the knowledge
contained in a large model into a smaller deep learning model, by having the original
model act as a teacher for the new one. DistilBERT was trained using the BERT
model as a teacher, and provides a similar degree of language generalization to the
original BERT model, while having a much smaller number of parameters (and

Enhancing Semantic Web Entity Matching Process . . . 1407

therefore lower computational cost). Hence, DistilBERT provides smaller down-
load size and faster training and inference times (practically provides 97% of the
performance of BERT, while only taking 40% of the size and being 60% faster [17]).

To make this model compatible with our target, we change the serialization
scheme for input items to handle the semantic web’s linked data.

3.2 Serialization Scheme

The proposed serialization scheme is described below:

• Put the token [PROP] and the suffix of each predicate URI as the column name,
followed by the token [VAL] and value of the property for each literal property.

• For each resource, put the token [NEI] apply the same serialization to the prop-
erties of each neighbor and concatenate it to the serialization.

• Optionally, prepend the suffix of the URI ID of the item, this is beneficial if the
URI contains useful information.

3.2.1 Example

PERSON

ht tp : / /example .com/

d a m i a n

ht tp : / /example .com/

document_b . rd f

rdfs :seeAlso
Damian

S t e e r

n a m e

H O U S E

ht tp : / /example .com/

damian_house

r e s i d e n t
a d d r e s s

1 3 7

Cranbrook

Road

Bris tol

n u m b e r

s t r e e t

ci ty

Figure 7. A simple linked data graph (RDF item) as an example

Take the linked data graph in figure 7 (RDF Format), it will be serialized as
follows:

damian_house

[NEI] address

[VAL] address1

1408 M. Jabrane, A. Toulaoui, I. Hafidi

[PROP] number [VAL] 137

[PROP] street [VAL] Cranbrook Road

[PROP] city [VAL] Bristol

[NEI] resident

[VAL] damian

[PROP] name [VAL] Damian Steer

This serialization takes into account how some resources will have pertinent
information nested under several levels of relations, like the address in the previous
example.

To account for variations in the structure of datasets, we propose a three-level
this serialization scheme:

Shallow: Only serialize the literal properties of the item in question, ignoring all
of its neighbors;

Medium: Serialize the literal properties of the item and the URIs of its direct
neighbors;

Deep: Serialize the literal properties of the item along with the literal properties
of its direct neighbors.

3.3 Training Modifications

3.3.1 Label Smoothing

Label Smoothing is a technique to reduce over-fitting in DL. It adds a small degree of
randomness to each target label y, by applying the following simple transformation:

y′ = (1− a)y + a× r.

With r sampled uniformly from [0, 1], and a a parameter chosen by the user,
a is commonly chosen to be a small number, with the interval [0.05, 0.2] being the
most commonly used interval to not disturb the values of y too much.

Then, y′ is used as the target label instead of y. This ensures that the model
does not fit the expected results exactly during training, because that could lead to
over-fitting.

In this model, the value of a = 0.1 gave the best results.

3.3.2 Linear Learning Rate

During training, the model was given a number of ‘Warm-up Steps’, those are steps
where the learning rate goes from 0 to the Target learning rate linearly (Figure 8).
After that, the learning rate is slowly decreased linearly over the period of training.

Changing the learning rate like this gives the parameters of the model the chance
to fall into their respective optimal ranges before the learning rate reaches a large
value. If we start with the learning rate at its starting value directly, it could lead
to some of the parameters overshooting.

Enhancing Semantic Web Entity Matching Process . . . 1409

0 100 200 300 400 500 600

0

1

2

3

4

5
1e−5

Figure 8. Warm-up steps of 100

3.3.3 Model Initialization

To ensure that the model learns optimally, the weights of the classifier layer were
initialized using Kaiming normal. Kaiming normal [18] is a method for sampling
weights from a distribution that is conceived to ensure that, given inputs sampled
from a normal distribution, the layer will produce outputs that follow a normal
distribution N (0, 1). Kaiming normal has been tested in practice and was proven
to improve the convergence time of deep learning models. The weights are sampled
in Kaiming normal following a normal distribution with a mean of 0 and a standard

deviation of
√

2
D

– i.e. N
(
0,
√

2
D

)
– with D being the dimension of the inputs.

4 EXPERIMENTAL EVALUATION

The model was trained on Kaggle, with GPU acceleration. At the time of writing,
Kaggle offers a Tesla P100 with 16GB of GPU RAM. As previously mentioned, the
code was written in Python 3, and was run on Kaggle’s Jupyter notebook interface.

The implementation uses PyTorch version 1.11.0, which is the long-term-support
version as of the time of writing. Additionally, to access the library of pre-trained
language models, the code makes use of HugginFace Transformers version 4.18.0
which is used to download and run pre-trained models that were shared by other
base language modeler people and groups.

1410 M. Jabrane, A. Toulaoui, I. Hafidi

4.1 Training

As proposed in the original paper [7], the model was trained for 20 epochs. The
learning rate was set to 2×10−5 which is the recommended rate for transfer learning
using language transformers. The training was done using a batch size of 32.

Depending on the size of the dataset, the training took 2 to 3 hours using all
fractions of the datasets.

4.2 Datasets

Six datasets were used to test the model, two tabular datasets and four RDF
datasets:

• Amazon-Google [19] and Amazon-Walmart, which had been discussed previ-
ously.

• SPIMBench is part of AOEI-2021, it provides two graphs that represent cre-
ative works. The first graph contains the original works, and the second one
is the same graph, but with schema and content transformations applied. This
synthetic dataset can be seen as a test to investigate if the model can handle
corrupted data.

• Person1 and Person2 are two RDF datasets from AOEI-2010. The datasets
contain entity matching tasks, they each contain two graphs representing people
and need to match the people in the two graphs. Each dataset has two RDF
files representing the two graphs, and a third RDF file representing the ground
truths for the matching task.

• Anatomy is a dataset from AOEI-2021. It represents a real world task of match-
ing the anatomy of mice to the human anatomy represented as a knowledge
graph.

The negative pairs for training and testing were generated using a blocking
algorithm, specifically token blocking, which groups together items that have the
same tokens (continuous alphanumeric strings) in their properties or the properties
of their neighbors. This was done to avoid having too many trivial negative pairs in
the training process. For our purposes, we take the pairs that exist in the smallest
blocks while discarding the large blocks which have very common, and therefore less
useful, tokens such as ”www” which exists in all URIs. For each dataset we take
negative pairs to aim for at least a 1 to 7 ratio of positive to negative pairs. We use
a train/test split of 70%/30%.

For all datasets, the model was tested using 10%, 25%, 50%, 80%, and 100% of
the training data, respectively. This will allow us to test the model’s ability to adapt
to applications with limited labeled data, and its ability to achieve an acceptable
results in those cases.

Enhancing Semantic Web Entity Matching Process . . . 1411

Dataset # Items #Positives Type

Amazon-Google 11 460 1 167 Tabular
Amazon-Walmart 10 242 962 Tabular
SPIMBench 2 885 299 RDF
Person1 3 000 500 RDF
Person2 3 200 400 RDF
Anatomy 6 048 1 516 RDF

Table 2. Properties of the datasets used in testing

5 RESULTS

The model yielded the results shown in Table 3. As expected, the larger the training
data, the better the model performs. These results are different from the results
stated in the paper, this could be due to a combination of factors, one possible factor
is that the training data does not have the same split as the data used in the original
article. Part of the difference could be partially attributed to the modifications made
to the training process.

10% 25% 50% 80% 100%

Amazon-Google 43.72 63.56 71.03 71.73 73.83
Amazon-Walmart 33.33 50.98 69.05 91.33 91.67

Table 3. F-scores of the model applied to tabular data

With RDF data, we get the results shown in Table 4. The level indicates the
serialization level we chose for each dataset, it could be shallow, medium or deep.

Our approach was trained using different fractions of the input datasets. The
model was tested with 10%, 25%, 50%, 80%, and 100% of the training data to
test the model’s behavior with different amounts of training data.

Datasets

Person 1 Person 2 SPIMBench Anatomy
Level deep deep medium deep

MinoanER 1.0 0.8888 1.0 0.0705
DT10% 1.0 0.9296 0.9176 0.7690
DT25% 1.0 0.9515 0.9663 0.8444
DT50% 1.0 0.9770 0.9780 0.9017
DT80% 1.0 1.0 0.9945 0.9079
DT100% 1.0 1.0 1.0 0.9259

Table 4. F1-scores of the model applied to RDF data compared to MinoanER

The plot in Figure 9 shows the results for each dataset.

1412 M. Jabrane, A. Toulaoui, I. Hafidi

Person 1 Person 2 SPIMBench Ana omy
Da ase

0.0

0.2

0.4

0.6

0.8

1.0

F 1
-s

co
re

Me hod
MinoanER
DT 10%
DT 25%
DT 50%
DT 80%
DT 100%

Figure 9. A plot comparing the performance of our method to MinoanER

6 DISCUSSION

We observe an increase in the performance of our method with more training data,
which is advantageous for datasets that already have a number of labeled pairs, as
that would yield better results.

For simple datasets, MinoanER performs reasonably well, yielding a perfect score
on Person 1 and SPIMBench, but slightly less than our method on Person 2. Where
MinoanER struggles is on the Anatomy dataset, which is a much more difficult task.

Our approach consistently performs the same as MinoanER or better when pro-
vided enough training data, the performance gap is especially clear on the Anatomy
dataset which represents a real world case that requires a certain level of knowledge
of anatomical structures to perform the matching. This could prove useful for other
real world cases with domain-specific language models.

7 CONCLUSION AND FUTURE WORK

Entity matching is one of the most researched areas of data science. It can vastly
improve data quality for many applications and create more useful data. In recent
years, many approaches have been proposed for entity matching on linked data, but
not many of them utilise the power of deep learning and pretrained language models.

In this work, deep learning has proven to be a powerful tool for handling linked
data, exceeding state-of-the-art performance on entity matching. And it is still
especially underutilized in this type of data, which has proven to be a great resource
for knowledge storage and distribution.

Enhancing Semantic Web Entity Matching Process . . . 1413

In future works it may be beneficial to make use of deep learning to either
improve the current state-of-the-art performance in other applications relating to
linked data and entity resolution. In which case, entity matching could also serve as
the entry point for using deep learning to reason on the basis of linked data, which
is still under-explored at the moment. Another possible direction is using Active
Learning to further improve the model and minimize its data requirements while
improving its performance.

REFERENCES

[1] Newcombe, H.B.—Kennedy, J.M.—Axford, S. J.—James, A. P.: Automatic
Linkage of Vital Records: Computers Can Be Used to Extract “Follow-Up” Statis-
tics of Families from Files of Routine Records. Science, Vol. 130, 1959, No. 3381,
pp. 954–959, doi: 10.1126/science.130.3381.954.

[2] Mudgal, S.—Li, H.—Rekatsinas, T.—Doan, A.—Park, Y.—
Krishnan, G.—Deep, R.—Arcaute, E.—Raghavendra, V.: Deep Learning
for Entity Matching: A Design Space Exploration. Proceedings of the 2018 Interna-
tional Conference on Management of Data (SIGMOD ’18), ACM, 2018, pp. 19–34,
doi: 10.1145/3183713.3196926.

[3] Kasai, J.—Qian, K.—Gurajada, S.—Li, Y.—Popa, L.: Low-Resource Deep
Entity Resolution with Transfer and Active Learning. In: Korhonen, A., Traum, D.,
Màrquez, L. (Eds.): Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics (ACL 2019). 2019, pp. 5851–5861, doi: 10.18653/v1/P19-
1586.

[4] Zhao, C.—He, Y.: Auto-EM: End-to-End Fuzzy Entity-Matching Using Pre-
Trained Deep Models and Transfer Learning. The World Wide Web Conference
(WWW’19), ACM, 2019, pp. 2413–2424, doi: 10.1145/3308558.3313578.

[5] Saisubramanian, S.—Kamar, E.—Zilberstein, S.: A Multi-Objective Ap-
proach to Mitigate Negative Side Effects. In: Bessiere, C. (Ed.): Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-
20). 2020, pp. 354–361, doi: 10.24963/ijcai.2020/50.

[6] Wang, Z.—Sisman, B.—Wei, H.—Dong, X. L.—Ji, S.: CorDEL: A Contrastive
Deep Learning Approach for Entity Linkage. 2020 IEEE International Conference on
Data Mining (ICDM), 2020, pp. 1322–1327, doi: 10.1109/ICDM50108.2020.00171.

[7] Li, Y.—Li, J.—Suhara, Y.—Doan, A.—Tan, W.C.: Effective Entity Matching
with Transformers. The VLDB Journal, Vol. 32, 2023, No. 6, pp. 1215–1235, doi:
10.1007/s00778-023-00779-z.

[8] Brunner, U.—Stockinger, K.: Entity Matching with Transformer Architectures
– A Step Forward in Data Integration. 23rd International Conference on Extending
Database Technology (EDBT 2020), 2020, pp. 463–473, doi: 10.21256/zhaw-19637.

[9] Li, Y.—Li, J.—Suhara, Y.—Doan, A.—Tan, W.C.: Deep Entity Matching
with Pre-Trained Language Models. Proceedings of the VLDB Endowment, Vol. 14,
2020, No. 1, pp. 50–60, doi: 10.14778/3421424.3421431.

https://doi.org/10.1126/science.130.3381.954
https://doi.org/10.1145/3183713.3196926
https://doi.org/10.18653/v1/P19-1586
https://doi.org/10.18653/v1/P19-1586
https://doi.org/10.1145/3308558.3313578
https://doi.org/10.24963/ijcai.2020/50
https://doi.org/10.1109/ICDM50108.2020.00171
https://doi.org/10.1007/s00778-023-00779-z
https://doi.org/10.21256/zhaw-19637
https://doi.org/10.14778/3421424.3421431

1414 M. Jabrane, A. Toulaoui, I. Hafidi

[10] Raffel, C.—Shazeer, N.—Roberts, A.—Lee, K.—Narang, S.—
Matena, M.—Zhou, Y.—Li, W.—Liu, P. J.: Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning
Research, Vol. 21, 2020, Art. No. 140, http://jmlr.org/papers/v21/20-074.html.

[11] Yang, Z.—Dai, Z.—Yang, Y.—Carbonell, J.—Salakhutdinov, R.—
Le, Q.V.: XLNet: Generalized Autoregressive Pretraining for Language Under-
standing. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E.,
Garnett, R. (Eds.): Advances in Neural Information Processing Systems 32 (NeurIPS
2019). Curran Associates Inc., 2019, pp. 5753–5763, doi: 10.48550/arXiv.1906.08237.

[12] Sun, Y.—Wang, S.—Li, Y.—Feng, S.—Tian, H.—Wu, H.—Wang, H.:
ERNIE 2.0: A Continual Pre-Training Framework for Language Understanding. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, No. 5,
pp. 8968–8975, doi: 10.1609/aaai.v34i05.6428.

[13] Lan, Z.—Chen, M.—Goodman, S.—Gimpel, K.—Sharma, P.—Soricut, R.:
ALBERT: A Lite BERT for Self-Supervised Learning of Language Representations.
8th International Conference on Learning Representations (ICLR 2020), 2019, doi:
10.48550/arXiv.1909.11942.

[14] Liu, Y.—Ott, M.—Goyal, N.—Du, J.—Joshi, M.—Chen, D.—Levy, O.—
Lewis, M.—Zettlemoyer, L.—Stoyanov, V.: RoBERTa: A Robustly Opti-
mized BERT Pretraining Approach. CoRR, 2019, doi: 10.48550/arXiv.1907.11692.

[15] Jiao, X.—Yin, Y.—Shang, L.—Jiang, X.—Chen, X.—Li, L.—Wang, F.—
Liu, Q.: TinyBERT: Distilling BERT for Natural Language Understanding. CoRR,
2019, doi: 10.48550/arXiv.1909.10351.

[16] Hinton, G.—Vinyals, O.—Dean, J.: Distilling the Knowledge in a Neural Net-
work. CoRR, 2015, doi: 10.48550/arXiv.1503.02531.

[17] Sanh, V.—Debut, L.—Chaumond, J.—Wolf, T.: DistilBERT, A Distilled
Version of BERT: Smaller, Faster, Cheaper and Lighter. CoRR, 2019, doi:
10.48550/arXiv.1910.01108.

[18] He, K.—Zhang, X.—Ren, S.—Sun, J.: Delving Deep into Rectifiers: Sur-
passing Human-Level Performance on ImageNet Classification. 2015 IEEE In-
ternational Conference on Computer Vision (ICCV), 2015, pp. 1026–1034, doi:
10.1109/ICCV.2015.123.

[19] Köpcke, H.—Thor, A.—Rahm, E.: Evaluation of Entity Resolution Approaches
on Real-World Match Problems. Proceedings of the VLDB Endowment, Vol. 3, 2010,
No. 1-2, pp. 484–493, doi: 10.14778/1920841.1920904.

http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.48550/arXiv.1906.08237
https://doi.org/10.1609/aaai.v34i05.6428
https://doi.org/10.48550/arXiv.1909.11942
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.1909.10351
https://doi.org/10.48550/arXiv.1503.02531
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.14778/1920841.1920904

Enhancing Semantic Web Entity Matching Process . . . 1415

Mourad Jabrane is a Ph.D. candidate and Adjunct Profes-
sor at the National School of Applied Sciences (ENSA), Sultan
Moulay Slimane University, Khouribga, Morocco. He earned his
State Engineer degree in software engineering from the same in-
stitution in 2021. His research is focused on addressing complex
problems in the areas of entity resolution, big data, data mining,
optimization, and machine learning. His work aims to contribute
to both the theoretical and applied advancements in these fields,
with a particular emphasis on developing novel solutions to data-
centric challenges in real-world applications.

Abdelfattah Toulaoui is a Ph.D. candidate at the National
School of Applied Sciences (ENSA), Khouribga, Sultan Moulay
Slimane University, Morocco. He earned his Master’s degree in
Big Data and decision support from the same institution in 2022.
His research focuses on cutting-edge areas such as efficient deep
learning, computer vision, and language modeling. He is particu-
larly dedicated to exploring innovative approaches that enhance
the applicability and efficiency of machine learning models in
real-world scenarios. His work aims to bridge the gap between
theoretical advancements and practical applications, especially

in the development of resource-efficient deep learning techniques.

Imad Hafidi is Professor at the National School of Applied Science (ENSA) in Khouribga,
Morocco. He is the Head of the Department of Mathematics and Computer Engineering
and serves as the Director of the Laboratory of Process Engineering, Computer Science,
and Mathematics (LIPIM) at ENSA, Khouribga. His current research focuses on several
cutting-edge areas, including big data, data mining, machine learning, frequent itemsets
mining, heuristics, sentiment analysis, entity resolution, anomaly detection, and emotion
recognition. His work contributes to advancements in both theoretical and applied aspects
of these domains.

