
Computing and Informatics, Vol. 43, 2024, 1285–1319, doi: 10.31577/cai 2024 6 1285

KNOWLEDGE ACQUISITION APPROACHES
FOR VIRTUAL MACHINE MIGRATION
IN CLOUD COMPUTING

Francisco Javier Maldonado Carrascosa∗,
Antonio Jiménez Sánchez, Doraid Seddiki,
Sebastián Garćıa Galán, Manuel Valverde Ibáñez,
Tomasz Marciniak

University of Jaén, Telecommunication Engineering Department
Av. de la Universidad S/N, 23700, Linares
Jaén, Spain
e-mail: fjmaldon@ujaen.es

Abstract. In recent years, the utilization of Cloud computing services has sig-
nificantly increased, placing a heightened demand on the workload, computational
infrastructure, storage, and communication networks managed by datacenters. This
surge has prompted researchers to enhance Cloud performance, focusing on min-
imizing execution time and computational costs. To address this challenge, effi-
cient scheduling strategies involve the allocation of Cloud workload across different
datacenters through the migration of virtual machines. This article examines and
compares three methodologies to tackle this issue: one based on an Adaptive Neuro-
Fuzzy Inference System, another utilizing a Swarm Fuzzy System, and a third one
employing a Genetic Algorithm. The study evaluates their effectiveness for workflow
scheduling using a CloudSim-based simulator in terms of makespan and computa-
tional costs. Results reveal that the neuro-fuzzy system outperforms the fuzzy and
genetic systems regarding makespan in Montage and CyberShake environments. It
demonstrates a computational cost advantage, achieving reductions of 7.01% and
6.33% for KASIA and 10.74% and 8.86% for Pittsburgh in Montage and Cyber-
Shake, respectively. Furthermore, it surpasses the KASIA system by 50% and
Pittsburgh by 37.5% in terms of the number of rule base evaluations.

Keywords: Fuzzy rule-based systems, swarm fuzzy systems, ANFIS, cloud com-
puting, virtual machine migration, follow the renewable

∗ Corresponding author

https://doi.org/10.31577/cai_2024_6_1285

1286 F. Maldonado, A. Jiménez, D. Seddiki, S. Galán, M. Valverde, T. Marciniak

Mathematics Subject Classification 2010: 03B52, 68M10, 68M20, 68T05,
68T30, 68T37

1 INTRODUCTION

Fuzzy Rule-Based Systems (FRBS) are gaining attention in Cloud computing for
large-scale scheduling due to their capability to manage uncertain information in
highly dynamic systems. This paper examines the benefits of using fuzzy systems
as schedulers to enhance allocation processes, with a focus on improving makespan
and efficiently distributing workloads across multiple datacenters [1]. By emulat-
ing human-like reasoning, FRBS offer promising approaches to address uncertainty
challenges in Cloud computing environments.

In this context, fuzzy systems serve as expert systems by integrating expert
knowledge into their Knowledge Bases (KBs) [2]. Their effectiveness relies heav-
ily on the quality of knowledge representation within their KBs. However, these
systems face limitations in generating new knowledge or improving performance
for complex and challenging problems. To address this, automated methods for
knowledge generation in FRBSs have emerged, focusing on self-learning strategies
like genetic approaches. The Michigan approach [3] treats rule encoding as indi-
viduals, while the Pittsburgh approach [4] sees the Rule Base (RB) as individuals.
Recently, particle swarm optimization (PSO)-based strategies have been used [5, 6].
Notably, Knowledge Acquisition with a Swarm Intelligence Approach (KASIA) [7]
and Knowledge Acquisition with Rules as Particles (KARP) [8] outperform genetic
strategies in certain scenarios. This study introduces a new comparison of these
techniques in a novel scenario.

Nowadays, cloud computing services are widely adopted across diverse domains
due to their multidisciplinary nature. However, the proliferation of digital services
has significantly increased datacenter workloads, making efficient scheduling crucial
for minimizing computational costs. In this sense, integrating Artificial Intelligence
(AI) techniques has emerged as a promising approach to improve cloud performance.
As discussed earlier, various AI techniques, as demonstrated in [9], have been exten-
sively studied in different fields. Therefore, given that cloud computing schedulers
rely on the quality of KBs and the learning process, evaluating the effectiveness of
these strategies in terms of total execution time and computational effort is essential.

This study compares three methodologies, highlighting the paper’s contribution
to migrate virtual machines (VM) in cloud data centers (CDCs) through scheduling.
The techniques include KASIA, Adaptive Neuro-Fuzzy Inference System (ANFIS),
and Pittsburgh approaches. To enhance the learning acquisition process, the paper
introduces an ANFIS-based methodology, employing a Fuzzy Inference System (FIS)
implemented through adaptive networks [10]. ANFIS, an Artificial Neural Network
(ANN) that combines neural networks and fuzzy logic principles, has found applica-
tions in various fields such as audio/speech discrimination and cloud computing [11].

Smart Methods for VM Migration in Cloud Computing 1287

To overcome the physical and economical challenges of implementing a real
scenario, the study uses a simulator based on WorkflowSimDFVS to evaluate the
three methodologies [12]. Testing involves diverse scenarios with varying complexi-
ties using a simulator that combines CloudSim [13] and WorkflowSim [14] features
for efficient workload allocation across multiple datacenters. The cloud simulator
incorporates Pegasus workflow structures, like Montage or CyberShake, using real
workflow traces to replicate a cloud system [15]. Moreover, VM migration is included
to facilitate task distribution among CDCs.

1.1 Motivation and Contributions

In today’s ever-changing technological landscape, continuous innovation is vital for
achieving efficiency and resource conservation in various domains. In computing
systems and resource management, the critical goal is to optimize computational
cost, makespan, and energy usage [16] while minimizing environmental impact.

Reducing computational costs is essential in diverse fields such as cloud comput-
ing, data analysis, and scientific simulations, offering financial savings and progress
in resource-constrained environments like cloud, fog, edge, and IoT computing [17].
Efficient resource use, through improved algorithms, allocation, and parallel com-
puting, is crucial. Makespan, reflecting task completion time, is key, and intelligent
scheduling, using machine learning and real-time analysis, minimizes makespan,
enhancing overall system efficiency with consideration for task dependencies and
dynamic workloads [18]. Addressing energy consumption is imperative in comput-
ing [19], and employing energy-efficient techniques with renewable sources sustains
computing while reducing energy use. Achieving these goals involves exploring
emerging technologies such as cloud, fog, edge computing, AI, and quantum com-
puting [20]. Integrating these technologies produces innovative solutions for resource
optimization, driving advancements, unlocking potential in resource-constrained en-
vironments, and promoting sustainability. This document specifically aims to opti-
mize energy sustainability in CDCs using renewable energy.

In this paper, a significant contribution to the field of VM migration in CDCs
is made by introducing an innovative approach that leverages ANFIS within the
CloudSim simulator. The primary motivation of this research stems from the im-
perative need to enhance VM migration efficiency in the context of CDCs, where
resource optimization and computational cost reduction are paramount. The nov-
elty of this work lies in the application of ANFIS to VM migration, demonstrat-
ing superior performance when compared to existing strategies. Importantly, the
findings reveal that ANFIS achieves notable advantages, not only in terms of mi-
gration efficiency but also in configuration simplicity, requiring fewer parameters.
This streamlined configuration results in reduced computational costs and resource
consumption, making ANFIS an optimal strategy for VM migration in CDCs in
the proposed scenarios. Our comprehensive comparison establishes ANFIS as a ro-
bust and resource-efficient solution, thereby contributing to the ongoing discourse
on optimizing cloud infrastructure through intelligent VM migration strategies.

1288 F. Maldonado, A. Jiménez, D. Seddiki, S. Galán, M. Valverde, T. Marciniak

The structure of the paper is as follows: the background reviews previous rele-
vant work, providing a foundation. Section 3 discusses meta-scheduling systems and
the use of fuzzy reasoning in KASIA, Pittsburgh, and ANFIS. Section 4 evaluates
these systems in cloud computing meta-schedulers in terms of execution time and
computational cost. Finally, Section 5 draws conclusions.

2 BACKGROUND

In recent years, the surge in cloud computing services has been substantial, pro-
viding numerous computing resources over the Internet [21]. Recognized for their
crucial role in critical situations, these services have propelled job scheduling to
a prominent area of research. However, effective job scheduling demands evaluation
across various components, presenting challenges and potential failures within the
cloud computing system. Contributing factors include the use of VMs for managing
large-scale workloads and virtualizing cloud resources [22], VM migration addressing
resource inadequacies and optimizing host utilization [23], and inherent uncertainty
in the cloud environment. This uncertainty stems from the unpredictable nature of
incoming tasks and the limited information offered by service providers. Neverthe-
less, existing solutions heavily rely on models incorporating prior job and resource
information [24]. Recent focus on energy-efficient allocation and parallel scheduling
adds complexity to job scheduling, making it a critical issue for ensuring optimal
cloud performance.

Various strategies, including classic techniques and AI methods, have success-
fully addressed the scheduling problem [21]. Classic approaches involve dynamic
methods like DHRA, Min-Min, FCFS, Round Robin, and Fussy Clustering, as
well as predictive techniques such as energy-aware resource provisioning frame-
works and AI-based algorithms like genetic fuzzy systems (GFS) [2]. Notably, the
Michigan and Pittsburgh approaches, utilizing FRBSs, excel in discovering near-
optimal solutions. Fuzzy systems, recognized for their adaptability, have become
prominent in scheduling research, proving effective in dynamic and uncertain sce-
narios [25]. FRBS systems find applications in various domains, including serving
as core algorithms for meta-scheduling in cloud computing simulations [1]. Fuzzy
sets, introduced by Zadeh [26], are a natural choice for modeling human reason-
ing in these systems, as evidenced in studies related to COVID-19 vaccine selec-
tion [27, 28].

In this context, rules are defined using if-then structures with fuzzy antecedents
and a consequent. Systems that use multiple inputs and a single output are called
Mamdani [29] or Sugeno [30] systems and have their own specific formulas. In these
formulations, an input variable, fuzzy sets associated with the input parameters
for each rule, fuzzy sets corresponding to the output variable and AND/OR used
as the connectives for antecedents are employed. The quality of RBs is crucial for
successful performance in FRBS and numerous studies have focused on evaluating
the quality of RBs to improve their overall performance.

Smart Methods for VM Migration in Cloud Computing 1289

The quality of expert knowledge in FRBSs is crucial, leading to the exploration
of new machine learning techniques. Reinforcement learning techniques optimize
or generate KBs in FRBS, combining classical engineering techniques’ accuracy and
interpretability with AI capabilities. This paper makes use of a swarm fuzzy system,
a concept from [8]. Swarm Intelligence (SI), a popular form of AI, is widely used
in various engineering applications, with PSO being an SI-based optimization tech-
nique leveraging social behavior of particles in a multidimensional search space [31].
This study considers the KASIA technique, adapting PSO to RB evolution, due to
its strong performance. Despite achievements, there is a need for new approaches of-
fering better performance and faster convergence in the learning process. Thus, this
study proposes comparing ANFIS, which uses neural networks to obtain RB, with
KASIA and Pittsburgh approaches in cloud computing task scheduling scenarios to
evaluate effectiveness.

2.1 Relevant and Related Works

KASIA, applying PSO to RB evolution, treats each RB as a particle in a swarm,
striving for optimal positioning. Initially introduced and extensively studied in [7],
KASIA outperformed conventional learning methods such as the Pittsburgh ap-
proach and Q-learning-based strategies, as well as other scheduling approaches
like EASY-backfilling or ESG+local periodical search, excelling in both compu-
tational efficiency and outcomes, particularly in convergence handling and sim-
plicity. Its success transcended to grid computing job scheduling, surpassing six
queue-based and scheduling traditional methodologies, specifically in the field of
meta-scheduling for job assignment in computer networks. In the realm of fuzzy
classifier systems, KASIA exhibited superior convergence rates and higher qual-
ity by reducing the number of control parameters in comparison to GFS [8]. On-
going research delves into KASIA’s application in cloud computing, with a focus
on sustainable practices in task scheduling and VM migration, highlighting its
versatility and adaptability and seeking more sustainable cloud computing prac-
tices.

The Pittsburgh genetic approach, rooted in natural evolution, is a notable
evolutionary computational technique gaining attention in computational intelli-
gence. Its efficacy in solving complex optimization problems is well-documented,
notably accelerating classification rule discovery using GPUs with extensive datasets
like hepatitis C, poker hands, and COVID-19 [32]. Researchers employ this ap-
proach in various contexts, including multi-objective genetic algorithms for fuzzy
classification rule mining, enhancing accuracy and interpretability through fitness
inheritance [33]. It also contributes to the development of genetic-based fuzzy
classifiers [34, 35]. Recent applications involve using the Pittsburgh genetic algo-
rithm for designing a genetic fuzzy tree-based node moving strategy in multi-modal
wireless sensor networks for target tracking [36]. Additionally, a novel algorithm
combines the Pittsburgh approach and the PSO algorithm for rule mining pur-
poses [37].

1290 F. Maldonado, A. Jiménez, D. Seddiki, S. Galán, M. Valverde, T. Marciniak

ANFIS proves effective in diverse fields, estimating unknown characteristics in
applications such as fluid flow, where it predicts missing velocity vectors using par-
ticle image velocimetry [38]. In healthcare, ANFIS detects breast cancer through
mammography image classification and early detection of cardiovascular diseases
via heartbeat sound classification [39, 40]. Its versatility extends to modern areas
like smart homes and cloud computing, stabilizing clusters in cognitive radio net-
works for enhanced stability [41]. ANFIS optimizes the response time of a PID
controller in an Eddy Current Dynamometer [42] and aids in hybrid multi-objective
optimization for tapping center machines [43]. In smart homes, an ANFIS-based
model significantly reduces processing time for risk estimation in the IoT risk-based
control framework [44]. ANFIS excels in computer state evaluation, analyzing CPU
usage and computer part behavior [11]. It further contributes to an urban environ-
mental noise monitoring system in smart cities [45]. ANFIS, with its fusion of neural
networks and fuzzy logic, emerges as a vital tool for addressing complex problems
in technologies like cloud computing [46, 47, 48, 49].

3 PROPOSED META-SCHEDULERS

This section presents the fuzzy reasoning-based systems employed in the proposed
meta-schedulers. These systems are used to classify jobs and assign them to dif-
ferent CDCs, allowing two stages of scheduling: the central scheduler assigns jobs
to the datacenters, and the datacenters further distribute the jobs among their
computing machines. Initially, the meta-scheduler is presented as a FRBS sys-
tem, which is suitable for classification based on previous literature. Additionally,
a neuro-fuzzy system is considered, benefiting of an ANN for classification pur-
poses.

The goal of rule-based meta-schedulers is to assign a set of tasks to various
CDCs within a virtual organization. Each datacenter comprises multiple computing
machines and local schedulers responsible for the efficient distribution of tasks among
these machines. Specifically, this study evaluates schedule performance from a global
system perspective, focusing on makespan.

In this context, the proposed meta-schedulers use fuzzy reasoning to process the
available information within the system, with the aim of obtaining a more complete
understanding of the environment. Considering that the scheduling process can
benefit from certain cloud features, in this work several variables are taken into
account in this work to describe the actual cloud conditions. The characteristics of
each data center are influenced by the current state of the resources and how their
performance evolves over time. The scheduler goal is to improve the efficiency of
cloud systems in terms of makespan, which serves as the performance metric during
the learning process.

The next step is to define fuzzy sets for the system variables and learn their re-
lationships within the fuzzy rules. Each rule, denoted as Ri, consists of antecedents
and a consequent. The antecedents represent the rule activation, while the con-

Smart Methods for VM Migration in Cloud Computing 1291

sequent indicates the output contribution towards the selection of the datacenter
DCj. The rules use Mamdani or Sugeno encoding, which can be expressed by the
following formulation:

Ri = IF xi is Ai,1 AND/OR . . . xn is Ai,n THEN y is Bi, (1)

where (xi, . . . , xn) represent the input features, while Ai,n and Bi denote the re-
spective fuzzy sets for feature xm and output of rule i. It is noteworthy that the
knowledge is encoded in a RB, which consists of a set that comprises all the fuzzy
rules that follow the aforementioned structure.

3.1 Knowledge Acquisition with a Swarm Intelligence Approach

In this subsection, Figure 1 illustrates the organization of the KASIA meta-sche-
duler, where the reasoning stage is indicated by the KB and its composition plays
a crucial role in ensuring the successful performance of the scheduler. The entire
structure is organized as follows:

Figure 1. FRBS-based meta-scheduling system

Cloud system: This system is composed of multiple datacenters that contain lo-
cal schedulers and computing machines. It generates the information to be
processed by the scheduler.

Fuzzy Rule-Based Scheduling System: This stage involves the processing of
inputs by the scheduler using fuzzy rules. Within this stage, several steps are
performed to obtain the output and select the optimal datacenter for task exe-
cution. These steps include:

Fuzzification: This process considers the inherent uncertainty of crisp input
values and transforms them into fuzzy sets that incorporate the environmen-
tal conditions.

1292 F. Maldonado, A. Jiménez, D. Seddiki, S. Galán, M. Valverde, T. Marciniak

Fuzzy engine: For each fuzzy rule, the input fuzzy sets of the antecedent are
transformed into an output fuzzy set.

Defuzzification: The output set of each rule is aggregated into an overall out-
put fuzzy set, and a crisp value y is determined for the entire RB.

Input Features: These variables represent the characteristics of the meta-schedu-
ler that influence the selection of the optimal datacenter. These features will be
discussed in Section 4, along with the output variable.

Rule Base: An RB consists of if-then rules that express fuzzy control statements
related to the linguistic values of system variables. The inference engine uses
the RB to make decisions during the reasoning process. An example of a RB
will be presented in the results section.

The fuzzification and defuzzification stages use membership functions to facili-
tate decision-making in the scheduling process. In this study, Gaussian functions are
employed to define fuzzy sets due to their efficiency and simplicity. The formulation
of the Gaussian function is as follows:

µXm
i =

1√
2πσ2Xm

i

exp

(
−(z − τXm

i)2

2σ2Xm
i

)
, {z ∈ R, z ≤ 1}, (2)

where τXm
i and σXm

i denote the mean and the standard deviation, respectively, the
variable z represents the independent variable that describes the feature and m
corresponds to the current feature. The selection of Gaussian functions is motivated
by the advantageous properties they possess. First, their inherent differentiability
and smoothness make Gaussian functions advantageous in optimization algorithms,
promoting stable learning and convergence. Second, their mathematical simplicity,
characterized by only a few parameters, facilitates implementation and analysis.
Third, the universal approximation property enables Gaussian functions to adeptly
capture intricate data relationships. Fourth, their symmetry and peak localization
contribute to accurate modeling of fuzzy sets. Fifth, the non-zero membership
across the entire range ensures comprehensive coverage of the universe of discourse.
Sixth, the statistical interpretation and connection to normal distributions provide
a valuable probabilistic perspective. Seventh, computational efficiency, including
separability, enhances performance in large-scale or real-time applications. Lastly,
the intuitive interpretability of Gaussian function parameters facilitates practical
tuning and understanding. Together, these factors underscore the suitability of
Gaussian membership functions for this research, aligning with the work’s goal of
effective and versatile fuzzy inference. In a fuzzy system, each value of a system
variable is associated with a membership degree related to a fuzzy set. Typically,
normalized values ranging from 0 (complete exclusion of the variable) to 1 (full
membership of the variable) are assigned, with intermediate values indicating partial
membership in the set.

Smart Methods for VM Migration in Cloud Computing 1293

In KASIA, fuzzy RBs are treated as knowledge individuals that undergo eval-
uation and evolution using SI. Specifically, KASIA adopts the PSO algorithm as
the basis for acquiring fuzzy RBs. Then, the system operates based on the social
behavior exhibited by interacting individuals within a swarm. The standard proce-
dure begins with the generation of an RB swarm comprising several particles. Each
particle, represented by a matrix P , consist of multiple rows corresponding to indi-
vidual fuzzy rules within their respective RB particle. A particle P is composed of
antecedents, consequents, and connectives. Every rule follows the Mamdani coding
and is made up of the previous antecedents, consequents, and connectives. Parti-
cle initialization involves assigning a velocity (V) to each particle, resulting in rule
modifications at each step of the algorithm. Next, the process proceeds to determine
the best position for each particle as an individual and for the entire swarm. In this
sense, KASIA evaluation is equivalent to the evaluation of an RB. As stated in [7],
there are some restrictions for the algorithm variables that are considered.

Once the variables are defined and evaluated, the algorithm velocity and position
of the particles must be updated based on both individual and social experiences.
The velocity update considers the inertia of the particle ω, the best RB obtained
by the particle (PB), and the best position found by the swarm (GB). The velocity
update is formulated as:

V (t+ 1) = ωV (t) + (c1r1)(P
B(t)− P (t)) + (c2r2)(G

B(t)− P (t)), (3)

where c1 and c2 are weight factors that remain constant and represents the compet-
itive and cooperative social factors, respectively, and r1 and r2 are random numbers
within the interval [0, 1]. The update of the particle’s position is formulated as
follows:

P (t+ 1) = P (t) + V (t+ 1). (4)

The KASIA algorithm presented in Algorithm 1 is a metaheuristic optimization
algorithm that uses a swarm of particles to solve a given problem. It starts by
initializing the swarm with random positions and velocities. The algorithm then
iteratively updates the particle positions and velocities, evaluating their fitness based
on a predefined objective function, in this case, the makespan. The best positions
found by the particles are stored as the global best and particle best. After a certain
number of iterations, the algorithm returns the global best position, which represents
the best solution found. Overall, KASIA combines the exploration of the search
space by updating particle positions and exploitation of promising regions to find
an optimal or near-optimal solution.

3.2 Pittsburgh Approach

The Pittsburgh genetic approach integrates evolutionary principles, fuzzy reasoning,
and a population-based framework to effectively optimize complex problems such as
task scheduling in cloud computing. In this approach, the genetic system employs
a set of entire RBs as chromosomes. Consequently, each genetic individual represents

1294 F. Maldonado, A. Jiménez, D. Seddiki, S. Galán, M. Valverde, T. Marciniak

Algorithm 1 KASIA algorithm

1: Swarm Inizialization: NParticles, NRules, NIter, InertialWeight ω, c1 and c2
factors.

2: Random setting of RB-Swarm Position P .
3: Random setting of velocity V .
4: Position and velocity constraints.
5: Initialize GB and PB.
6: while NIter do
7: while NParticles do
8: Update P .
9: Apply constraints to P .

10: Evaluate fitness (makespan).
11: Particles++.
12: end while
13: Update GB.
14: while NParticles do
15: Update PB.
16: Update V .
17: Apply constraints to V .
18: Particles++.
19: end while
20: iter++.
21: end while
22: Return: GB

a complete RB and a population of RBs evolves by applying genetic operators. At
the end of the optimization process, the best RB is selected to be used by the Fuzzy
System. The general schema of the Pittsburgh approach is illustrated in Figure 2.
In each generation, all RBs within the population undergo evaluation within the
operating environment of the Fuzzy System. This evaluation is facilitated by the
Evaluation System, which determines the quality of each RB based on the fitness
value obtained within the environment being optimized. Following the ranking of
RBs based on their quality, those with higher rankings are crossed, resulting in
the derivation of new RBs within the RB discovery system. Additionally, these
higher-ranked RBs are subject to mutations. Simultaneously, the least favorable RBs
within the generation are replaced by the newly derived RBs and the replacement
ratio is determined by the replacement rate. Following this approach, RBs with
improved fitness in terms of the selected criteria are obtained across generations,
which ultimately leads to the selection of the best RB to serve as the RB of the
Fuzzy System in the final generation.

As previously mentioned, the rule-discovery and RB-discovery components in
these machine learning techniques rely on genetic algorithms. However, in this
study, these components are based on SI. In this approach, the RB serves as the

Smart Methods for VM Migration in Cloud Computing 1295

Figure 2. Pittsburgh Fuzzy Meta-Scheduler

individual within the genetic system, encoding a complete RB and operating within
a population of Fuzzy RBs. The organization of the prototype for this approach can
be summarized as follows:

Performance System: When employing this approach, the GFS evolves popula-
tions of RBs, and the fitness function, specifically the makespan, is computed
for each individual. Consequently, the cooperation between the fuzzy rules com-
prising the RB is evaluated, allowing for efficient evolution of the population to
identify the RB with the most effective fuzzy rule cooperation.

Rule-Base Discovery System: Following the usual genetic approach, four ge-
netic operators are considered for the generation of new rules:

Selection: To ensure that the best RBs are not eliminated or replaced, elitism
is chosen as the selection mechanism. Consequently, within the selection pro-
cess, a number of parents, fewer than the initial number of RBs, are selected.
After undergoing crossover and mutation, the new population replaces the
least suitable RBs from the original set.

Crossover and Random Mutation: In this approach, standard two-point
crossover is applied, allowing the number of rules in each child individual to
deviate from their parents’ original values. This introduces further variabil-
ity in the cooperative behavior of the rules. Random mutation is employed to
maintain genetic diversity, explore the search space and increase the chances
of finding optimal or near-optimal solutions to the given problem.

Replacement: This work uses full replacement, in which the offspring com-
pletely replaces the parent population, ensuring a fresh start for each gen-
eration. This approach allows for a more radical exploration of the search

1296 F. Maldonado, A. Jiménez, D. Seddiki, S. Galán, M. Valverde, T. Marciniak

space since all individuals are replaced simultaneously, potentially leading to
faster convergence towards better solutions. However, it also eliminates the
possibility of preserving good solutions from the previous generation. Full
replacement is commonly used in simple genetic algorithms and can be ef-
fective when the population size is small or when the search space is highly
dynamic, requiring frequent exploration of new areas.

Algorithm 2 Pittsburgh algorithm

1: Inizialization: N Population, N Rules, N Iter, Crossover Rate,
2: Mutation Rate Init, Selection Rate, Replacement Rate.
3: Random setting of RB Population P .
4: Initialize GB.
5: while N Iter do
6: Update Mutation Prob with Mutation Prob = Mutation Rate Init ∗

exp
(−5t
N iter

)
7: while N Particles do
8: Evaluate fitness (makespan).
9: Particles++.

10: end while
11: Update GB.
12: while N Particles·Replacement Rate do
13: Generate Q offspring:
14: Apply crossover to P .
15: Apply mutation to Q.
16: Apply constraints to Q.
17: end while
18: Update part of P with Q.
19: iter++.
20: end while
21: Return: GB

The Pittsburgh algorithm iteratively evolves a population of individuals by ap-
plying crossover and mutation operations to generate offspring. It evaluates the
fitness of individuals, updates the global best solution and replaces a portion of
the population with the offspring. The algorithm aims to find an optimal or near-
optimal solution for the given optimization problem by iteratively improving the
population over multiple iterations.

3.3 Adaptive Neuro-Fuzzy Inference System

ANFIS is based on the aforementioned fuzzy-based structures but incorporates adap-
tive networks. An adaptive network is composed of interconnected nodes and direc-
tional links, where the outputs of the nodes depend on their respective parameters.

Smart Methods for VM Migration in Cloud Computing 1297

The network consists of multiple adaptive nodes and learning rules control the ad-
justment of these parameters to minimize an error measure. In the case of ANFIS,
a hybrid learning rule is employed, combining the gradient descent-backpropagation
method with the least squares estimate (LSE), thereby enhancing the learning pro-
cess and determining the optimal parameters. This decision is motivated by the
fact that relying solely on the gradient descent method could lead to slow perfor-
mance and potential convergence to local minimum, which may negatively impact
the overall performance of ANFIS.

Figure 3. ANFIS architecture

To simplify the description, a simple ANFIS architecture can be represented with
two inputs, x and y, and one output, z. The RB is designed to incorporate Takagi
and Sugeno-type fuzzy if-then rules. In this particular scenario, the fuzzy reasoning
category depicted in Figure 4 corresponds to the ANFIS architecture illustrated in
Figure 3.

Figure 4. Equivalent fuzzy reasoning

As described below, nodes within the ANFIS architecture are organized into
distinct layers as in [50, 51], each serving a specific function:

Layer 1: In the fuzzification layer of the ANFIS, neurons represent fuzzy sets, and
the generation of fuzzy clusters from input data is facilitated through the uti-

1298 F. Maldonado, A. Jiménez, D. Seddiki, S. Galán, M. Valverde, T. Marciniak

lization of membership functions. These functions, including triangular, trape-
zoidal, bell, Gaussian, sigmoidal, among others, play a crucial role in determining
the membership values in this layer. The shape of these membership functions
is defined during ANFIS training, guided by a set of antecedent parameters
(ai, bi, ci). The output of a node in this layer corresponds to the membership
degrees associated with each employed membership function. Notably, this layer
is characterized by input membership functions, each distinguished by its set of
premise parameters, predominantly triangular or bell-shaped. In the specific
context of our work, Gaussian functions are applied, underlining their relevance
in capturing the inherent complexities of the data for enhanced fuzzification
in the ANFIS model. Each node i is a square node with the following node
function:

O1
i = µAi

(x). (5)

Layer 2: In the second layer, referred to as the product or rule layer, the represen-
tation of the firing strength of rules takes center stage. Each node within this
layer serves as an indicator of the intensity of a specific rule. The layer plays
a pivotal role in determining the firing strengths associated with each rule, lever-
aging the membership values acquired in the preceding fuzzy layer. Here, every
node remains fixed, and its output is a direct reflection of the incoming signals.
The operation predominantly employed in this layer is the AND fuzzy operation,
contributing to the integration and evaluation of the combined rule strengths
within the ANFIS framework. The output of this layer is the below function:

O2
i = wi = µAi

(x) · µBi
(y). (6)

Layer 3: In the subsequent layer, aptly named the normalization layer, the output
of each node takes the form of normalized firing strengths. This nomenclature
is attributed to the computation of the proportion of the firing strength related
to a specific rule in relation to the total firing strengths. The layer consists of
non-adaptable nodes, each playing a crucial role in the normalization process.
At the jth node within the network, the firing strengths undergo normalization
by determining the proportion of the firing strengths at that particular node
concerning the collective firing strengths of all rules. This normalization layer
is pivotal in refining the outputs from the preceding layer, ensuring that the
ANFIS model accounts for the relative contributions of individual rules in the
decision-making process. The output of this layer is:

O3
i = wi =

wi

w1 + w2

. (7)

Layer 4: In this designated layer, recognized as the defuzzification layer, the focus
shifts to the evaluation of output membership functions and their associated
parameters, termed as consequent parameters. This layer plays a pivotal role

Smart Methods for VM Migration in Cloud Computing 1299

in assessing the output of each rule, achieved through the multiplication of nor-
malized firing strengths by a linear polynomial. The set of coefficients within
this polynomial, denoted as pi, qi, ri, encapsulates the consequential parameters
essential for training the ANFIS approach. The defuzzification layer acts as
a critical bridge between the normalized rule strengths and the ultimate output
of the ANFIS model, providing a mechanism for translating fuzzy logic eval-
uations into crisp, actionable results through the manipulation of consequent
parameters. The output fruit of the defuzzification is:

O4
i = wi · fi = wi · (pix+ qiy + ri). (8)

Layer 5: In the final stage, denoted as layer 5 or the output layer, the ANFIS model
culminates in the computation of the ultimate output. This layer features a sin-
gular non-adaptable node tasked with the responsibility of receiving outputs
from the preceding defuzzification layer and aggregating them. The calculation
of the final output involves a straightforward addition of all incoming signals,
synthesizing the refined information processed throughout the ANFIS network.
This output layer serves as the conclusive phase of the model, consolidating the
refined rule evaluations into a cohesive and comprehensive result that encapsu-
lates the informed decision or prediction generated by the ANFIS framework.
The output of the ANFIS is the following:

O5
i =

∑
i

wi · fi =
∑

i wi · fi∑
i wi

. (9)

The output of layer 5 can be viewed as a Sugeno FIS model which performs the
KB computation and is subsequently defuzzified to produce a crisp output repre-
senting the selection of the proper datacenter. It is noteworthy that Sugeno output
membership functions are linear. The ANFIS Sugeno model, depicted in Figure 5,
illustrates how ANFIS processes input features and generates an output, similar to
a FIS. Therefore, the model depicted in the figure replaces the fuzzy meta-scheduler
in the global system, effectively functioning as a FIS. As a result, the adaptive net-
work in ANFIS exhibits functional equivalence to FISs. In light of this, this paper
aims to compare KASIA, Pittsburgh and ANFIS in terms of makespan for task
classification in a meta-scheduling environment within cloud computing.

The ANFIS algorithm iteratively optimizes a FIS by generating an initial FIS,
performing forward and backward propagation, updating the FIS parameters, and
minimizing the error through the LSE estimation. It evaluates the fitness of the
solution (makespan), updates the global best solution, and continues the iterations
to improve the FIS. The algorithm aims to find an optimal or near-optimal solution
for the given problem by iteratively refining the FIS over multiple iterations.

1300 F. Maldonado, A. Jiménez, D. Seddiki, S. Galán, M. Valverde, T. Marciniak

Figure 5. ANFIS meta-scheduler

Algorithm 3 ANFIS algorithm

Inizialization: N Rules, N Iter, N epochs.
Random setting of RB Population P .
Initialize GB.
while N Iter do

Generate Initial FIS.
Perform forward propagation.
Perform backward propagation.
Update P parameters using back-propagation method.
Apply LSE to minimize error and update the membership function parameters.
Evaluate fitness (makespan).
Obtain Output FIS.
Update GB.

end while
Return: GB

4 EXPERIMENTAL RESULTS

Given the need to evaluate the state of cloud computing and the challenges associ-
ated with conducting large-scale deployments in the real world, the use of simulators
that can compute data and address social problems has been proposed. To evaluate
the effectiveness of the proposed methodologies, a series of experiments were carried
out using various meta-schedulers based on fuzzy reasoning for cloud computing.
For this, a simulator that incorporates CloudSim and WorkflowSim features was
used, allowing the use of real traces of existing installations. The simulator used
in this study, as described in [12], incorporates Dynamic Voltage Frequency Scaling
(DVFS), a prominent power-saving strategy for hosts. Simulator validation was per-
formed by evaluating utilization, frequency and voltage scaling, power consumption,
energy usage, and time-saving. This open source simulator facilitates energy-aware
optimization and analysis of actual workflow processing. To recreate real traces
of the workflow within the simulator, complex scenarios based on projects such as

Smart Methods for VM Migration in Cloud Computing 1301

Montage, Sipht, NASA’s Inspiral, and the Southern California Earthquake Center’s
CyberShake were considered. Specifically, this paper focused on the Montage and
CyberShake projects [52, 53].

In the context of scientific workflows, a workflow is defined as a collection of
processing jobs interconnected in a specific way to perform a given task. Char-
acterizing a workflow involves identifying individual processing jobs, which entails
dividing the entire process into subprocesses called jobs or chunks. Additionally,
each job must be associated with other jobs, determining the job dependencies, the
jobs that must be executed before each job, and the input and output data required
for each job. For this study, 100 and 1 000 jobs were considered for each simulation
in the Montage and CyberShake scenarios.

Input Feature Description

MIPS Millions of instructions per second
POW(Power) IDLE power consumption
LEN(Length) Task size
POWMAX Dynamic power consumption
UTILIZATION Utilization factor of the process entity

Output Feature Description

SEL(Selection) Suitability of every single host VM

Table 1. Input and Output variables for meta-scheduler

1: IF (MIPS is low) or (pow is middle) or (len is middle) or (powmax is low) THEN
(sel is very low)

2: IF (MIPS is low) and (len is high) and (powmax is low) and (utilization is middle)
THEN (sel is high)

3: IF (pow is high) and (len is high) and (utilization is middle) THEN (sel is very
high)

4: IF (len is high) and (powmax is low) and (utilization is middle) THEN (sel is
middle)

5: IF (pow is middle) or (len is low) or (powmax is middle) or (utilization is low)
THEN (sel is low)

Table 2. Example of meta-scheduler RB

The evaluation of the proposed systems focuses on multiple scenarios related to
meta-scheduling in cloud computing. This work considers the application of KASIA,
Pittsburgh and ANFIS for the learning process of the meta-schedulers. A crucial
aspect of the selection process is obtainig a reliable RB that can effectively support
the performance of the methods. Hence, the fuzzy learning system aims to generate
a high-quality RB that can be used by the KASIA and Pittsburgh meta-schedulers.
Table 2 provides an example of an RB used by the KASIA meta-scheduler, taking
into account the features presented in Table 1. These features serve as antecedents

1302 F. Maldonado, A. Jiménez, D. Seddiki, S. Galán, M. Valverde, T. Marciniak

and consequents in the meta-scheduling systems. Additionally, the ANFIS system
needs to acquire a suitable RB to ensure its optimal performance. This objective is
achieved through the hybrid learning algorithm, which considers the identification
of the optimal RB while minimizing the potential error. This approach is essential
to prevent the system from getting trapped in local minima and ensure efficient
performance.

Figure 6. Gaussian fuzzy sets for classification

Figure 6 illustrates an example of the normalized input and output features, rep-
resented by fuzzy sets. The input variables are characterized by three membership
functions, corresponding to low, middle, and high values within the input domain.
Conversely, the output is described by five fuzzy membership functions: very low,
low, middle, high, and very high. As explained in Section 3, Gaussian membership
functions are used due to their smoothness and concise notation. Additionally, these
curves possess the advantageous property of being non-zero at all points within the
classification, covering the entire universe of discourse.

4.1 Simulation Scenarios

The simulated scenario in this study consists of a cloud system that includes 4 data-
centers. The network topology is composed of 20 hosts, each equipped with a single
processing element which has a capacity of 1 500 MIPS. Within these hosts, 20 VMs
are deployed, each capable of delivering a performance of 1 000 MIPS. Additionally,
the DVFS simulator employs inter-host scheduling as overlapping mechanism.

WorkflowSim, an extension of CloudSim, is used to handle DAX (Directed
Acyclic Graph in XML) workflows or workloads characterized by high task inde-
pendence complexity. Two graphical examples representing real Montage and Cy-
berShake traces are depicted in the subsequent figures, illustrating the job types
and dependencies. In the DVFS simulator’s workload management, five primary
entities are considered: the Planner, the Merger, the Engine, the Scheduler, and the

Smart Methods for VM Migration in Cloud Computing 1303

Datacenter. The Planner initializes the system and parses the DAX file to obtain in-
dividual tasks known as Cloudlets. The Merger, or Clustering Engine, groups these
tasks into jobs, which are then processed by the Engine according to the specific
workflow order. Finally, the Scheduler determines the most suitable VM within the
Datacenter for executing each task.

Montage, developed by NASA, is an open-source toolkit designed to facilitate
the creation of customized astronomical sky mosaics using FITS-formatted (Flexible
Image Transport System) input images. The number of jobs in a Montage work-
flow depends on the quantity of input images required to generate the final mosaic.
Figure 7 a) illustrates a Montage workflow with a limited number of jobs. As men-
tioned earlier, work traces obtained from the Montage project, including 100 and
1 000 jobs, are utilized to evaluate the performance of the proposed meta-schedulers
in the simulator under medium load conditions.

The Southern California Earthquake Center (SCEC) has developed CyberShake,
a high-performance computational platform aimed at generating seismic hazard
models through extensive earthquake simulations. The number of jobs in a Cy-
berShake workflow depends on the quantity of synthetic seismograms required for
the earthquake simulation. Figure 7 b) illustrates an example of a CyberShake work-
flow. Traces including 100 and 1 000 jobs are utilized to evaluate the performance
of the proposed system using the simulator.

4.2 Cloud Simulation Configuration

The cloud simulation configuration includes various components and characteris-
tics that imitate a multi-region cloud environment. Below are the details of this
configuration:

Number of Datacenters: The simulation involves four datacenters, representing
different geographic regions. This setup enables researchers to study the behav-
ior of a distributed cloud infrastructure and analyze factors like data locality
and network latency.

Number of Hosts: Each datacenter consists of 20 physical machines or hosts.
These hosts serve as the basis for running VMs and executing cloudlets. The
hosts have characteristics shown in Table 3.

Variable Value

PEs 2
RAM 4096MB
BW 1000 000MB
MIPS 1 860/2 660
Storage 1 000 000MB

Table 3. Feature configuration of hosts

1304 F. Maldonado, A. Jiménez, D. Seddiki, S. Galán, M. Valverde, T. Marciniak

a)

b)

Figure 7. Montage and CyberShake workflow DAX examples

Smart Methods for VM Migration in Cloud Computing 1305

Number of VMs: The cloud simulation configuration includes 20 VMs distributed
across the four datacenters. Table 4 presents the features for each VM.

Variable Value

PEs 1
RAM 613/870/1 740MB
BW 100 000MB
MIPS 500/1 000/2 000/2 500
Size 2 500MB

Table 4. Feature configuration of VMs

Number of Cloudlets: The exact number of cloudlets depends on the number of
tasks within scientific workflows. The simulation can include either 100 or 1 000
cloudlets to represent the workload that needs to be executed within the cloud
environment. Each cloudlet has the characteristics presented in Table 5.

Variable Value

PEs 1
Length 216 000 000

Table 5. Feature configuration of cloudlets

By utilizing this specific cloud simulation configuration, various aspects of the
cloud environment can be analyzed and optimized. Resource allocation strategies
can be explored, workload management techniques can be evaluated, and system
performance based on real-world values and characteristics can be assessed. This
configuration provides a realistic simulation environment for studying and improving
cloud computing systems.

4.3 Learning Approaches Configuration

The configuration of the proposed systems plays a crucial role during the simula-
tion stage. In the initial configuration, it is evident that KASIA and Pittsburgh
requires the specification of multiple variables. Conversely, ANFIS operates effec-
tively with a smaller number of variables. This ANFIS advantage is noteworthy, as
it demonstrates that the system can optimally function with fewer variables, without
compromising its performance.

To conduct KASIA simulations, certain variables must be configured, as outlined
in Table 6. As indicated in Table 1, there are five antecedents and one consequent,
corresponding to the five input variables and one output variable, respectively. The
simulations are performed using a swarm consisting of 20 particles, and the learning
process is conducted over 100 iterations. The updating mechanism incorporates
a weight factor, which is initialized to a value close to unity and its formulation is
dependent on the current iteration of the learning process. As shown in Table 6,

1306 F. Maldonado, A. Jiménez, D. Seddiki, S. Galán, M. Valverde, T. Marciniak

Variable Value

Number of rules 5
Number of antecedents 5
Number of consequents 1
Number of particles 20
Maximum iteration 100
Initial weight (ω0) 0.9
Competitive factor (c2) 2
Cooperative factor (c2) 2

Table 6. Parameter configuration for rule discovery in KASIA

the number of rules representing a RB is set to 5 for the three systems. This
selection is based on the constraint imposed by Sugeno-type FIS, where each rule
must correspond to a unique membership function. Since five output membership
functions are considered, the number of rules is also set to five.

Variable Value

Number of rules 5
Number of antecedents 5
Number of consequents 1
Number of individuals 20
Maximum iteration 100
Crossover rate 0.8
Initial mutation rate 0.1
Selection rate 0.8
Replacement rate 0.8

Table 7. Parameter configuration for rule discovery in Pittsburgh

Table 7 presents the parameter configuration for rule discovery in Pittsburgh.
It includes variables such as the number of rules, antecedents, consequents, and
individuals, along with values assigned to each parameter. The table specifies 5 rules
with 5 antecedents and 1 consequent, using a population size of 20 individuals. The
maximum iteration is set to 100, and a crossover rate of 0.8 is applied for genetic
exchange. The initial mutation rate is 0.1, and selection and replacement rates
are both set to 0.8. These parameter settings collectively define the rule discovery
process, determining the structure and characteristics of the generated rules within
a specified population and iteration limit for evolution.

During the ANFIS training process, an additional variable called “epoch” is
taken into account, in addition to the number of rules and their content as specified
in the KASIA and Pittsburgh configurations. The epoch variable represents the
number of times the ANFIS is trained using the adaptive neural network. In the
learning process, the ANFIS is trained 10 times for each RB evaluation, with the
objective of minimizing the LSE. The configuration details of this technique can be

Smart Methods for VM Migration in Cloud Computing 1307

Variable Value

Number of rules 5
Number of antecedents 5
Number of consequents 1
Number of particles 20
Maximum iteration 100
Number of epochs 10

Table 8. Parameter configuration for rule discovery in ANFIS

found in Table 8. It is noteworthy that ANFIS is configured with fewer variables
compared to KASIA, which is a valuable advantage of the system.

The image depicted in Figure 8 illustrates the neural network architecture used
in the ANFIS-based meta-scheduler. The neural network includes five layers. The
first layer consists of three Gaussian membership functions for each input, which
are connected to the second layer. In the second layer, the membership functions
are combined using multiplication operations to calculate the firing strength of the
five rules. The third layer normalizes the firing strength values, while the fourth
layer determines the consequent parameters for the output membership functions.
Finally, in the fifth layer, all incoming signals are summed to generate the output,
which is a crucial characteristic of this system.

Figure 8. ANFIS neural network used in the experiments

1308 F. Maldonado, A. Jiménez, D. Seddiki, S. Galán, M. Valverde, T. Marciniak

a)

b)

Figure 9. Convergence behavior of rule-based systems with makespan as fitness using
Montage structure. The 95% confidence regions of KASIA, Pittsburgh and ANFIS in
orange, green and blue, respectively, can be seen.

Smart Methods for VM Migration in Cloud Computing 1309

4.4 Simulation Results

In Figure 9, a comparison between the KASIA, Pittsburgh and ANFIS systems
is presented in the context of a Montage scenario taking into account 100 and
1 000 tasks to be performed. The learning process is depicted by considering make-
span as the fitness measure. The displayed values represent the average of the best
solution obtained from 30 experiments at each iteration. It can be observed that
both KASIA and ANFIS strategies exhibit a similar initial behavior, but ANFIS
quickly converges to its final value. The ANFIS better performance is due to the
use of the gradient descent/backpropagation mechanism, which allows ANFIS to
find optimal or near-optimal outcomes. Conversely, the Pittsburgh approach pro-
vides a worse performance than the previous methods because this methodology is
thought for finding near-optimal solutions which may lead to local minima, although
the method has escape mechanisms. This can be seen in both Montage graphics,
where the Pittsburgh approach reaches rapidly its final value and remain still. Re-
gions of confidence are included to facilitate the comparison. Furthermore, Tables 9
and 10 present the mean results achieved by the swarms, indicated as the Average,
along with the corresponding standard deviation (Standard Deviation) and 95%
confidence interval (95% Confidence Interval). On average, the final result of AN-
FIS slightly outperforms the best result of KASIA and Pittsburgh, as indicated by
the non-overlapping confidence regions in terms of makespan.

Strategy ANFIS KASIA Pittsburgh

Average (s) 95.2067 95.3523 95.8453
Standard Deviation (s) 0.1576 0.1475 0.6133
Confidence Interval (s) [95.1503, 95.2630] [95.2996, 95.4051] [95.6202, 96.0705]

Table 9. Simulations result for final makespan(s) using Montage 100

Strategy ANFIS KASIA Pittsburgh

Average (s) 834.5107 834.6697 834.9737
Standard Deviation (s) 0.1664 0.1847 0.2544
Confidence Interval (s) [834.4466, 834.5747] [834.5918, 834.7475] [834.8826, 835.0648]

Table 10. Simulations result for final makespan(s) using Montage 1 000

In Figure 10, the performance of KASIA, Pittsburgh and ANFIS in the Cyber-
Shake environment is presented. This figure illustrates the learning evolution of the
fuzzy reasoning-based meta-scheduler, considering makespan as the fitness measure
for both approaches. As depicted, the convergence patterns of KASIA, Pittsburgh
and ANFIS strategies differ as the number of iterations increases. As in the Mon-
tage algorithm, in Cybershake the algorithms have a similar behavior when it comes
to performance. The Pittsburgh approach has again that remaining still behavior,
while KASIA and ANFIS can continue to be improved over iterations. Additionally,

1310 F. Maldonado, A. Jiménez, D. Seddiki, S. Galán, M. Valverde, T. Marciniak

Tables 11 and 12 provide statistical information about the meta-scheduler strate-
gies. The final result of ANFIS demonstrates a slight superiority over the best
result of KASIA and Pittsburgh on average, as indicated by the non-superposition
of confidence regions in the final iteration in terms of makespan.

Strategy ANFIS KASIA Pittsburgh

Average (s) 2 998.6015 2 999.5316 3 000.7733
Standard
Deviation (s)

0.7846 1.0118 1.3604

Confidence
Interval (s)

[2 998.3903, 2 998.8127] [2 999.2099, 2 999.8533] [3 000.2865, 3 001.2602]

Table 11. Simulations result for final makespan(s) using CyberShake 100

Strategy ANFIS KASIA Pittsburgh

Average (s) 4 426.0363 4 428.6380 4 431.3483
Standard
Deviation (s)

1.7492 2.2286 3.6501

Confidence
Interval (s)

[4 425.4104, 4 426.6623] [4 427.8405, 4 429.4355] [4 430.0422, 4 432.6555]

Table 12. Simulations result for final makespan(s) using CyberShake 1 000

In Figure 11, the culmination of the optimization process is graphically depicted,
showcasing the final values reached by the Montage and CyberShake scenarios across
different task configurations, specifically, 100 and 1 000 tasks for each scenario. The
figure meticulously delineates the outcomes achieved through the application of the
three distinct approaches: Pittburgh, KASIA, and ANFIS. The juxtaposition of
these methodologies allows for a comprehensive analysis of their respective perfor-
mances in handling the complexities associated with the specified scenarios and task
quantities. This visual representation serves as a valuable resource for discerning the
efficacy of the optimization techniques employed, providing insights into the com-
parison of the Pittburgh, KASIA, and ANFIS approaches under varying conditions.

Workflow\Strategy ANFIS KASIA Pittsburgh

Montage (s) 6.7560e+4 7.2654e+4 7.4751e+4
CyberShake (s) 7.0177e+5 7.4920e+5 7.6395e+5

Table 13. Overall execution time of simulations

When evaluating techniques in cloud computing, the computational cost plays
a critical role. To assess the efficiency of ANFIS, it is important to reduce its
computational cost. Therefore, the computational cost of KASIA, Pittsburgh and
ANFIS systems was evaluated in terms of time. The elapsed time for the algorithm’s
computing delay in Montage and CyberShake scenarios was tested on a computer

Smart Methods for VM Migration in Cloud Computing 1311

a)

b)

Figure 10. Convergence behavior of rule-based systems with makespan as fitness using
CyberShake structure. The 95% confidence regions of KASIA, Pittsburgh and ANFIS
can be seen in orange, green and blue, respectively.

1312 F. Maldonado, A. Jiménez, D. Seddiki, S. Galán, M. Valverde, T. Marciniak

Figure 11. Ultimate values of the optimization process across the four scenarios for Pitts-
burgh, KASIA and ANFIS

with an Intel i7 processor and 8 cores, and the results are presented in Table 13. The
ANFIS algorithm demonstrates superior computational cost performance compared
to KASIA and Pittsburgh in the simulated scenarios, with improvements of 7.01%
and 6.33% for KASIA and 10.74% and 8.86% for Pittsburgh in the Montage and
CyberShake scenarios, respectively. Furthermore, the number of RB evaluations
serves as a reliable measure for evaluating the computational cost of the proposed
systems. ANFIS requires 120 000 evaluations, while KASIA and Pittsburgh require
240 000 evaluations and 192 000, respectively. The computational cost formulation
in terms of the number of evaluations for the three systems is as follows:

NANFIS = 10 epochs · 100 iterations · 120 simulations = 120 000 RB evaluations,

NKASIA = 20 particles · 100 iterations · 120 simulations = 240 000 RB evaluations,

NPittsburgh = 0.8 (80% Selection) · 20 individuals · 100 iterations · 120 simulations

= 192 000 RB evaluations.

The ANFIS system’s lower computational cost, coupled with its superior per-
formance regarding makespan, suggests that it is the preferred system over KASIA
and Pittsburgh. After presenting the results, it is noteworthy to showcase the best
RB achieved by the ANFIS-based meta-scheduler, given its outperformance com-
pared to the KASIA-based and Pittsburgh-based systems. The rules for this RB are
presented in Table 14.

Smart Methods for VM Migration in Cloud Computing 1313

1: IF (MIPS is middle) or (pow is high) or (len is middle) THEN (sel is very high)
2: IF (MIPS is high) and (pow is middle) and (len is middle) and (utilization is

middle) THEN (sel is very low)
3: IF (MIPS is middle) or (pow is high) or (powmax is low) or (utilization is middle)

THEN (sel is middle)
4: IF (MIPS is high) and (pow is high) and (len is high) and (powmax is middle)

and (utilization is low) THEN (sel is low)
5: IF (MIPS is low) or (pow is low) or (len is low) or (powmax is middle) THEN

(sel is high)

Table 14. Good RB for the CyberShake scenario

5 CONCLUSIONS AND FUTURE WORK

While there is a significant body of research on scheduling algorithms in cloud com-
puting, only a limited number of studies address the inherent uncertainty and dy-
namism of resources. To tackle this, three machine learning techniques based on
FRBS have been introduced. The first technique leverages PSO to achieve higher
quality RBs in a shorter time and with a simple setup. The second technique em-
ploys a genetic algorithm that enables the finding of near-optimal solutions taking
advantage of the genetics features. And the third technique exploits the proper-
ties of neural networks to acquire knowledge more efficiently and achieve better
convergence speed in terms of makespan.

In this work, the proposed neuro-fuzzy scheduler is applied to job scheduling in
cloud computing and compared with the KASIA and Pittsburgh fuzzy and genetic
systems, respectively. Makespan is used as the training metric for the expert system.
The results demonstrate that the neuro-fuzzy system slightly outperforms the fuzzy
systems in two different environments, Montage and CyberShake. Additionally,
the proposed system exhibits a computational cost advantage, with reductions of
7.01% and 6.33% for KASIA and 10.74% and 8.86% for Pittsburgh in Montage
and CyberShake, respectively, in terms of elapsed time. Furthermore, the proposed
system outperforms the KASIA system by 50% and Pittsburgh by 37.5% in terms
of the number of RB evaluations.

These experiments motivate further comparisons and investigations in the field
of neural networks applied to cloud computing, particularly in the context of task
scheduling in terms of makespan and computational effort. Additionally, future re-
search may explore energy reduction and renewable energy usage through VMmigra-
tion. Two works are presented for future investigations: investigate game-theoretic
approaches to meta-scheduling in cloud computing, developing models capturing
interactions among stakeholders and analyzing equilibrium outcomes, and develop-
ing a multi-objective swarm fuzzy algorithm for cloud task scheduling, optimizing
makespan, renewable energy usage, and interpretability through a Pareto-based op-
timization framework.

1314 F. Maldonado, A. Jiménez, D. Seddiki, S. Galán, M. Valverde, T. Marciniak

Acknowledgements

This work has been supported by the research project No. P18-RT-4046, funded by
the Andalusian Government, and by the NextGenerationEU recovery plan, funded
by the European Union.

REFERENCES

[1] Seddiki, D.—Garćıa Galán, S.—Muñoz Expósito, J. E.—
Valverde Ibáñez, M.—Marciniak, T.—Pérez de Prado, R. J.: Sustainable
Expert Virtual Machine Migration in Dynamic Clouds. Computers and Electrical En-
gineering, Vol. 102, 2022, Art. No. 108257, doi: 10.1016/j.compeleceng.2022.108257.

[2] Cordón, O.—Herrera, F.—Hoffmann, F.—Magdalena, L.: Genetic Fuzzy
Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. World Sci-
entific, 2001, doi: 10.1142/4177.

[3] Booker, L. B.—Goldberg, D. E.—Holland, J. H.: Classifier Systems and Ge-
netic Algorithms. Artificial Intelligence, Vol. 40, 1989, No. 1-3, pp. 235–282, doi:
10.1016/0004-3702(89)90050-7.

[4] Smith, S. F.: A Learning System Based on a Genetic Adaptive Algorithm. Ph.D.
Thesis. University of Pittsburgh, 1980.

[5] Adil, M.—Nabi, S.—Raza, S.: PSO-CALBA: Particle Swarm Optimization
Based Content-Aware Load Balancing Algorithm in Cloud Computing Environ-
ment. Computing and Informatics, Vol. 41, 2022, No. 5, pp. 1157–1185, doi:
10.31577/cai 2022 5 1157.

[6] Benabbes, S.—Hemam, S. M.: An Approach Based on Genetic and Grasshopper
Optimization Algorithms for Dynamic Load Balancing in CloudIoT. Computing and
Informatics, Vol. 42, 2023, No. 2, pp. 364–391, doi: 10.31577/cai 2023 2 364.

[7] Pérez de Prado, R. J.—Garćıa Galán, S.—Muñoz Expósito, J. E.—
Yuste Delgado, A. J.: Knowledge Acquisition in Fuzzy Rule-Based Systems with
Particle-Swarm Optimization. IEEE Transactions on Fuzzy Systems, Vol. 18, 2010,
No. 6, pp. 1083–1097, doi: 10.1109/TFUZZ.2010.2062525.

[8] Garćıa Galán, S.—Pérez de Prado, R. J.—Muñoz Expósito, J. E.: Swarm
Fuzzy Systems: Knowledge Acquisition in Fuzzy Systems and Its Applications in
Grid Computing. IEEE Transactions on Knowledge and Data Engineering, Vol. 26,
2014, No. 7, pp. 1791–1804, doi: 10.1109/TKDE.2013.118.

[9] Sarhadi, A.—Torkestani, J. A.: Cost-Effective Scheduling and Load Balancing
Algorithms in Cloud Computing Using Learning Automata. Computing and Infor-
matics, Vol. 42, 2023, No. 1, pp. 37–74, doi: 10.31577/cai 2023 1 37.

[10] Jang, J. R.: Fuzzy Nodeling Using Generalized Neural Networks and Kalman Fil-
ter Algorithm. Proceedings of the 9th National Conference on Artificial Intelligence
(AAAI ’91), Vol. 2, 1991, pp. 762–767.

[11] Buriboev, A.—Muminov, A.: Computer State Evaluation Using Adaptive Neuro-
Fuzzy Inference Systems. Sensors, Vol. 22, 2022, No. 23, Art. No. 9502, doi:
10.3390/s22239502.

https://doi.org/10.1016/j.compeleceng.2022.108257
https://doi.org/10.1142/4177
https://doi.org/10.1016/0004-3702(89)90050-7
https://doi.org/10.31577/cai_2022_5_1157
https://doi.org/10.31577/cai_2023_2_364
https://doi.org/10.1109/TFUZZ.2010.2062525
https://doi.org/10.1109/TKDE.2013.118
https://doi.org/10.31577/cai_2023_1_37
https://doi.org/10.3390/s22239502

Smart Methods for VM Migration in Cloud Computing 1315

[12] Cotes Ruiz, I. T.—Pérez de Prado, R. J.—Garćıa Galán, S.—Muñoz-
Expósito, J. E.—Ruiz Reyes, N.: Dynamic Voltage Frequency Scaling Simulator
for Real Workflows Energy-Aware Management in Green Cloud Computing. PLoS
ONE, Vol. 12, 2017, No. 1, Art. No. e0169803, doi: 10.1371/journal.pone.0169803.

[13] Calheiros, R. N.—Ranjan, R.—Beloglazov, A.—De Rose, C. A. F.—
Buyya, R.: CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing
Environments and Evaluation of Resource Provisioning Algorithms. Practice and Ex-
perience, Vol. 41, 2011, No. 1, pp. 23–50, doi: 10.1002/spe.995.

[14] Chen, W.—Deelman, E.: WorkflowSim: A Toolkit for Simulating Scientific Work-
flows in Distributed Environments. 2012 IEEE 8th International Conference of E-
Science, 2012, pp. 1–8, doi: 10.1109/eScience.2012.6404430.

[15] Deelman, E.—Vahi, K.—Rynge, M.—Mayani, R.—Ferreira da Silva, R.—
Papadimitrou, G.—Livny, M.: The Evolution of the Pegasus Workflow Manage-
ment Software. Computing in Science & Engineering, Vol. 21, 2019, No. 4, pp. 22–36,
doi: 10.1109/MCSE.2019.2919690.

[16] Liang, B.—Dong, X.—Wang, Y.—Zhang, X.: A High-Applicability Hetero-
geneous Cloud Data Centers Resource Management Algorithm Based on Trusted
Virtual Machine Migration. Expert Systems with Applications, Vol. 197, 2022,
Art. No. 116762, doi: 10.1016/j.eswa.2022.116762.

[17] Rozas, H.—Jaramillo, F.—Perez, A.—Jimenez, D.—Orchard, M. E.—
Medjaher, K.: A Method for the Reduction of the Computational Cost Associ-
ated with the Implementation of Particle-Filter-Based Failure Prognostic Algorithms.
Mechanical Systems and Signal Processing, Vol. 135, 2020, Art. No. 106421, doi:
10.1016/j.ymssp.2019.106421.

[18] Moghadam, M. H.—Babamir, S. M.: Makespan Reduction for Dynamic Work-
loads in Cluster-Based Data Grids Using Reinforcement-Learning Based Schedul-
ing. Journal of Computational Science, Vol. 24, 2018, pp. 402–412, doi:
10.1016/j.jocs.2017.09.016.

[19] Güğül, G. N.—Gökçül, F.—Eicker, U.: Sustainability Analysis of Zero Energy
Consumption Data Centers with Free Cooling, Waste Heat Reuse and Renewable
Energy Systems: A Feasibility Study. Energy, Vol. 262, Part B, 2023, Art. No. 125495,
doi: 10.1016/j.energy.2022.125495.

[20] Gill, S. S.—Xu, M.—Ottaviani, C.—Patros, P.—Bahsoon, R. et al.: AI for
Next Generation Computing: Emerging Trends and Future Directions. Internet of
Things, Vol. 19, 2022, Art. No. 100514, doi: 10.1016/j.iot.2022.100514.

[21] Murad, S. A.—Muzahid, A. J. M.—Azmi, Z. R. M.—Hoque, M. I.—
Kowsher, M.: A Review on Job Scheduling Technique in Cloud Computing
and Priority Rule-Based Intelligent Framework. Journal of King Saud University –
Computer, and Information Sciences, Vol. 34, 2022, No. 6, Part A, pp. 2309–2331,
doi: 10.1016/j.jksuci.2022.03.027.

[22] Wu, H.—Chen, X.—Song, X.—Zhang, C.—Guo, H.: Scheduling Large-Scale
Scientific Workflow on Virtual Machines with Different Numbers of vCPUs. The Jour-
nal of Supercomputing, Vol. 77, 2021, No. 1, pp. 679–710, doi: 10.1007/s11227-020-
03273-3.

https://doi.org/10.1371/journal.pone.0169803
https://doi.org/10.1002/spe.995
https://doi.org/10.1109/eScience.2012.6404430
https://doi.org/10.1109/MCSE.2019.2919690
https://doi.org/10.1016/j.eswa.2022.116762
https://doi.org/10.1016/j.ymssp.2019.106421
https://doi.org/10.1016/j.jocs.2017.09.016
https://doi.org/10.1016/j.energy.2022.125495
https://doi.org/10.1016/j.iot.2022.100514
https://doi.org/10.1016/j.jksuci.2022.03.027
https://doi.org/10.1007/s11227-020-03273-3
https://doi.org/10.1007/s11227-020-03273-3

1316 F. Maldonado, A. Jiménez, D. Seddiki, S. Galán, M. Valverde, T. Marciniak

[23] Rukmini, S.—Shridevi, S.: An Optimal Solution to Reduce Virtual Machine Mi-
gration SLA Using Host Power. Measurement: Sensors, Vol. 25, 2023, Art. No. 100628,
doi: 10.1016/j.measen.2022.100628.

[24] Aladwani, T.: Types of Task Scheduling Algorithms in Cloud Computing Envi-
ronment. In: Righi, R. (Ed.): Scheduling Problems – New Applications and Trends.
IntechOpen, 2019, pp. 131–142, doi: 10.5772/intechopen.86873.

[25] Skabar, A.—Abdalgader, K.: Clustering Sentence-Level Text Using a Novel
Fuzzy Relational Clustering Algorithm. IEEE Transactions on Knowledge and Data
Engineering, Vol. 25, 2013, No. 1, pp. 62–75, doi: 10.1109/TKDE.2011.205.

[26] Zadeh, L. A.: Fuzzy Sets. Information and Control, Vol. 8, 1965, No. 3, pp. 338–353,
doi: 10.1016/S0019-9958(65)90241-X.

[27] Meniz, B.—Özkan, E. M.: Vaccine Selection for COVID-19 by AHP and
Novel VIKOR Hybrid Approach with Interval Type-2 Fuzzy Sets. Engineer-
ing Applications of Artificial Intelligence, Vol. 119, 2023, Art. No. 105812, doi:
10.1016/j.engappai.2022.105812.

[28] Jithendra, T.—Sharief Basha, S.: A Hybridized Machine Learning Approach
for Predicting COVID-19 Using Adaptive Neuro-Fuzzy Inference System and Reptile
Search Algorithm. Diagnostics, Vol. 13, 2023, No. 9, Art. No. 1641, doi: 10.3390/di-
agnostics13091641.

[29] Mamdani, E. H.: Application of Fuzzy Algorithms for Control of the Simple Dy-
namic Plant. Proceedings of the Institution of Electrical Engineers, Vol. 121, 1974,
No. 12, pp. 1585–1588, doi: 10.1049/piee.1974.0328.

[30] Takagi, T.—Sugeno, M.: Fuzzy Identification of Systems and Their Applications
to Modeling and Control. IEEE Transactions on Systems, Man, and Cybernetics,
Vol. SMC-15, 1985, No. 1, pp. 116–132, doi: 10.1109/TSMC.1985.6313399.

[31] Kennedy, J.—Eberhart, R.: Particle Swarm Optimization. Proceedings of
ICNN’95 – International Conference of Neural Networks, Vol. 4, 1995, pp. 1942–1948,
doi: 10.1109/ICNN.1995.488968.

[32] Roui, M. B.—Zomorodi, M.—Sarvelayati, M.—Abdar, M.—
Noori, H.—P lawiak, P.—Tadeusiewicz, R.—Zhou, X.—Khosravi, A.—
Nahavandi, S.—Acharya, U. R.: A Novel Approach Based on Genetic Algorithm
to Speed Up the Discovery of Classification Rules on GPUs. Knowledge-Based
Systems, Vol. 231, 2021, Art. No. 107419, doi: 10.1016/j.knosys.2021.107419.

[33] Kalia, H.—Dehuri, S.—Ghosh, A.: Fitness Inheritance in Multi-Objective Ge-
netic Algorithms: A Case Study on Fuzzy Classification Rule Mining. International
Journal of Advanced Intelligence Paradigms, Vol. 23, 2022, No. 1-2, pp. 89–112, doi:
10.1504/IJAIP.2022.125235.

[34] Konishi, T.—Masuyama, N.—Nojima, Y.: Effects of Accuracy-Based Single-
Objective Optimization in Multiobjective Fuzzy Genetics-Based Machine Learning.
2022 Joint 12th International Conference on Soft Computing and Intelligent Systems
and 23rd International Symposium on Advanced Intelligent Systems (SCIS & ISIS),
IEEE, 2022, pp. 1–6, doi: 10.1109/SCISISIS55246.2022.10002139.

[35] Dinh, T. P.: Adaptive Evolutionary Multitasking to Solve Inter-Domain Path Com-
putation Under Node-Defined Domain Uniqueness Constraint: New Solution En-

https://doi.org/10.1016/j.measen.2022.100628
https://doi.org/10.5772/intechopen.86873
https://doi.org/10.1109/TKDE.2011.205
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/j.engappai.2022.105812
https://doi.org/10.3390/diagnostics13091641
https://doi.org/10.3390/diagnostics13091641
https://doi.org/10.1049/piee.1974.0328
https://doi.org/10.1109/TSMC.1985.6313399
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.knosys.2021.107419
https://doi.org/10.1504/IJAIP.2022.125235
https://doi.org/10.1109/SCISISIS55246.2022.10002139

Smart Methods for VM Migration in Cloud Computing 1317

coding Scheme. Computing and Informatics, Vol. 42, 2023, No. 1, pp. 98–125, doi:
10.31577/cai 2023 1 98.

[36] Yu, X.—Liang, J.: Genetic Fuzzy Tree Based Node Moving Strategy of Tar-
get Tracking in Multimodal Wireless Sensor Network. IEEE Access, Vol. 6, 2018,
pp. 25764–25772, doi: 10.1109/ACCESS.2018.2835162.

[37] Tan, Q.—Sun, L.: A Novel Association Rules Mining Based on Improved Fu-
sion Particle Swarm Optimization Algorithm. In: Atiquzzaman, M., Yen, N., Xu, Z.
(Eds.): Proceedings of the 4th International Conference on Big Data Analytics for
Cyber-Physical System in Smart City – Volume 1 (BDCPS 2022). Springer, Singa-
pore, Lecture Notes on Data Engineering and Communications Technologies, Vol. 167,
2023, pp. 103–111, doi: 10.1007/978-981-99-0880-6 12.

[38] Kazemi, M. A.—Pa, M.—Uddin, M. N.—Rezakazemi, M.: Adaptive Neuro-
Fuzzy Inference System-Based Data Interpolation for Particle Image Velocimetry in
Fluid Flow Applications. Engineering Applications of Artificial Intelligence, Vol. 119,
2023, Art. No. 105723, doi: 10.1016/j.engappai.2022.105723.

[39] Nagalakhsmi, K.—Suriya, S.: Performance Analysis of Breast Cancer Detection
Method Using ANFIS Classification Approach. Computer Systems, Science and En-
gineering, Vol. 44, 2023, No. 1, pp. 501–517, doi: 10.32604/csse.2023.022687.

[40] Keikhisrokani, P.—Naidu A/P Anathan, A. B.—Iryanti Fadilah, S.—
Manickam, S.—Li, Z.: Heartbeat Sound Classification Using Hybrid Adaptive
Neuro-Fuzzy Inferences System (ANFIS) and Artificial Bee Colony. Digital Health,
Vol. 9, 2023, doi: 10.1177/20552076221150741.

[41] Ambhika, C.—Murukesh, C.: Optimized ANFIS Model for Stable Clustering in
Cognitive Radio Network. Intelligent Automation and Soft Computing, Vol. 35, 2023,
No. 1, pp. 827–838, doi: 10.32604/iasc.2023.026832.

[42] Uluocak, İ.—Yavuz, H.: Artifical Intelligence Based PID Controller for an Eddy
Current Dynamometer. Intelligent Automation and Soft Computing, Vol. 33, 2022,
No. 2, pp. 1229–1243, doi: 10.32604/iasc.2022.023835.

[43] Chang, P. Y.—Chou, F. I.—Yang, P. Y.—Chen, S. H.: Hybrid Multi-Object
Optimization Method for Tapping Center Machines. Intelligent Automation and Soft
Computing, Vol. 36, 2023, No. 1, pp. 23–38, doi: 10.32604/iasc.2023.031609.

[44] Atlam, H. F.—Wills, G. B.: ANFIS for Risk Estimation in Risk-Based Access
Control Model for Smart Homes. Multimedia Tools and Applications, Vol. 82, 2023,
No. 12, pp. 18269–18298, doi: 10.1007/s11042-022-14010-8.

[45] Renaud, J.—Karam, R.—Salomon, M.—Couturier, R.: Deep Learning
and Gradient Boosting for Urban Environmental Noise Monitoring in Smart
Cities. Expert Systems with Applications, Vol. 218, 2023, Art. No. 119568, doi:
10.1016/j.eswa.2023.119568.

[46] Thandra, J.—Sharief Basha, S.: Artificial Intelligence (AI) Model: Adap-
tive Neuro-Fuzzy Inference System (ANFIS) for Diagnosis of COVID-19 In-
fluenza. Computing and Informatics, Vol. 41, 2022, No. 4, pp. 1114–1135, doi:
10.31577/cai 2022 4 1114.

[47] Wu, X.—Wang, H.—Wei, D.—Shi, M.: ANFIS with Natural Language Process-
ing and Gray Relational Analysis Based Cloud Computing Framework for Real Time

https://doi.org/10.31577/cai_2023_1_98
https://doi.org/10.1109/ACCESS.2018.2835162
https://doi.org/10.1007/978-981-99-0880-6_12
https://doi.org/10.1016/j.engappai.2022.105723
https://doi.org/10.32604/csse.2023.022687
https://doi.org/10.1177/20552076221150741
https://doi.org/10.32604/iasc.2023.026832
https://doi.org/10.32604/iasc.2022.023835
https://doi.org/10.32604/iasc.2023.031609
https://doi.org/10.1007/s11042-022-14010-8
https://doi.org/10.1016/j.eswa.2023.119568
https://doi.org/10.31577/cai_2022_4_1114

1318 F. Maldonado, A. Jiménez, D. Seddiki, S. Galán, M. Valverde, T. Marciniak

Energy Efficient Resource Allocation. Computer Communications, Vol. 150, 2020,
pp. 122–130, doi: 10.1016/j.comcom.2019.11.015.

[48] Amekraz, Z.—Hadi, M. Y.: CANFIS: A Chaos Adaptive Neural Fuzzy Infer-
ence System for Workload Prediction in the Cloud. IEEE Access, Vol. 10, 2022,
pp. 49808–49828, doi: 10.1109/ACCESS.2022.3174061.

[49] Kumar, D.—Mandal, N.—Kumar, Y.: Fog-Based Framework for Diabetes Pre-
diction Using Hybrid ANFIS Model in Cloud Environment. Personal and Ubiquitous
Computing, Vol. 27, 2023, No. 3, pp. 909–916, doi: 10.1007/s00779-022-01678-w.

[50] Jithendra, T.—Basha, S. S.: Analyzing Groundwater Level with Hybrid ANN
and ANFIS Using Metaheuristic Optimization. Earth Science Informatics, Vol. 16,
2023, No. 4, pp. 3323–3353, doi: 10.1007/s12145-023-01097-2.

[51] Jithendra, T.—Sharief Basha, S.—Das, R.—Gajjela, R.: Modeling and Op-
timization of WEDM of Monel 400 Alloy Using ANFIS and Snake Optimizer: A
Comparative Study. Proceedings of the Institution of Mechanical Engineers, Part C:
Journal of Mechanical Engineering Science, Vol. 238, 2023, No. 5, pp. 1573–1589, doi:
10.1177/09544062231187207.

[52] Montage: An Astronomical Image Mosaic Engine. http://montage.ipac.caltech.
edu.

[53] Statewide California Earthquake Center. https://www.scec.org.

Francisco Javier Maldonado Carrascosa received his
M.Sc. degree in physics and mathematics from the Granada Uni-
versity in 2021. Currently, he is a junior researcher and Ph.D.
student at the Telecommunication Engineering Department of
the Jaén University. His current research interests include en-
gineering applications of artificial intelligence (neural networks,
scheduling in edge/cloud/fog computing).

Antonio Jim�enez S�anchez received his M.Sc. degree in tele-
communication engineering from the Jaén University in 2023.
Currently, he is a junior researcher at the Telecommunication
Engineering Department of the Jaén University. His current
research interests include engineering applications of artificial
intelligence (multi-objective optimization, scheduling in edge/
cloud/fog computing).

https://doi.org/10.1016/j.comcom.2019.11.015
https://doi.org/10.1109/ACCESS.2022.3174061
https://doi.org/10.1007/s00779-022-01678-w
https://doi.org/10.1007/s12145-023-01097-2
https://doi.org/10.1177/09544062231187207
http://montage.ipac.caltech.edu
http://montage.ipac.caltech.edu
https://www.scec.org

Smart Methods for VM Migration in Cloud Computing 1319

Doraid Seddiki received his M.Sc. degree in telecommunication
engineering from Cartagena University. Currently he is a Ph.D.
student at the University of Jaén. His current research interests
include artificial intelligence, cloud computing and scheduling.
In addition, he also has a wide experience working in the private
sector for more than 20 years.

Sebastián Garc��a Gal�an received his M.Sc. and his Ph.D. de-
grees in telecommunication engineering from the Málaga Univer-
sity and the Technical University of Madrid (UPM), in 1995 and
2004, respectively. Currently, he is Full Professor in telematics
engineering at the Telecommunication Engineering Department
of the Jaén University. His current research interests include en-
gineering applications of artificial intelligence (cardiopulmonary
illnesses, scheduling in edge/cloud/fog computing).

Manuel Valverde Ib�a~nez received his M.Sc. degree in in-
dustrial management engineering from the University of Jaén,
Spain, in 2002, and his Ph.D. degree in industrial engineering
from the UNED in 2006. He is Associate Professor in the Elec-
trical Engineering Department of the University of Jaén. His re-
search interests include renewable energy power systems, power
quality, modeling and control of power converters and smart
grids.

Tomasz Marciniak is Associate Professor in the Telecommu-
nication, Computer Science and Electrical Engineering Depart-
ment of the Bydgoszcz University of Science and Technology.
His research interests include networking, artificial intelligence,
IoT technologies, and bioinformatics.

