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Abstract. Brain-computer interface (BCI) technology holds immense promise in
the rehabilitation of patients with movement disorders, leveraging the body’s phys-
iological mechanisms to enhance their quality of life by reshaping motor neural
circuits through external devices. Nevertheless, current BCI applications for reha-
bilitation predominantly rely on a single physiological signal, often overlooking the
synergistic impact of multiple signals. Simultaneously, while reinforcement learning
shows significant potential for BCI applications, there exists a scarcity of studies
exploring this intersection.This paper introduces a novel motor intention judgment
model grounded in multimodal signal fusion and reinforcement feature selection.
The model adeptly extracts comprehensive motor intention features by integrating
pertinent information from both electroencephalogram (EEG) and electromyogram
(EMG). Furthermore, reinforcement learning is employed for judicious feature se-
lection, yielding promising outcomes in subsequent experiments. The study utilizes
publicly available datasets to diagnose the motion intention of the subjects, comple-
mented by ablation experiments to affirm the efficacy of the model components. In
instances of feature-level fusion, the model demonstrated a noteworthy enhancement
in the average five-classification accuracy, surpassing results obtained from isolated
EEG and EMG experiments by 28.46% and 12.68%, respectively. The primary
objective of this research is to furnish robust model support for motor rehabilita-
tion training with exoskeletons, offering personalized solutions for the restoration
of motor functions.

Keywords: Hybrid BCI, EEG, EMG, reinforcement learning, feature fusion, fea-
ture selection

Mathematics Subject Classification 2010: 68-T10

1 INTRODUCTION

The Brain-Computer Interface (BCI) is an advanced technology employing special-
ized equipment to facilitate information interaction between the nervous system and
external devices, establishing a direct link between the brain and external devices
without traversing the brain’s typical peripheral neural and muscular output path-
ways [1]. This technology captures brain neural activity signals through sensors and
employs advanced machine learning and pattern recognition algorithms to discern
these signals during different cognitive activities. Subsequently, it translates them
into control commands, facilitating direct communication between the human brain
and external devices. Currently, BCI technology holds significant research value
in diverse fields such as emotion recognition [2], sleep state recognition [3], smart
cities [4], disease diagnosis [5], and healthcare [6]. Notably, BCI technology exhibits
considerable potential in motor rehabilitation [7, 8], providing a novel communi-
cation channel and rehabilitation method for individuals facing physical challenges.
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Among the various BCI types, hybrid BCI stands out as a popular choice. This type
enhances the accuracy of individual state judgment by amalgamating BCIs capable
of capturing different physiological signals, adapting them to more complex usage
scenarios and thereby enhancing the practical usability of BCIs [9]. Hybrid BCIs
manifest in various forms, and this paper specifically delves into the combination of
EEG-based BCIs and EMG-based BCIs, which represents one of the more common
and impactful combinations [10].

Hybrid BCI introduces a groundbreaking concept in utilizing brain-computer
interface technology for exercise rehabilitation, a notion that has garnered signifi-
cant attention from researchers [10, 11]. Studies have indicated homology between
EEG and EMG signals, with EEG demonstrating an earlier response time than
EMG signals in limb movement intention [12]. Furthermore, intriguingly, even in
cases where a patient has lost a limb, the brain continues in sending signals to the
absent limb [13]. These research findings collectively provide a theoretical foun-
dation for the viability of BCI-assisted motor rehabilitation. Currently, researchers
have delved into the integration of BCIs with exoskeletons, declaring that BCIs hold
unique applications and practical value within the system as a communication and
control method for individuals with physical disabilities [14]. A crucial component
of converting physiological signals into control signals for rehabilitation equipment
involves the implementation of a motion intent detection algorithm. This algorithm
plays a pivotal role in seamlessly translating physiological signals into control signals,
facilitating the effective operation of rehabilitation equipment.

In the realm of motion intent detection algorithms, two predominant approaches
have emerged: traditional machine learning methods and deep learning methods.
The former relies on manual signal processing and feature extraction, necessitating
researchers to undertake tasks such as artifact removal, re-referencing, and bandpass
filtering on the acquired signals [15]. Several traditional methods are employed for
extracting features from physiological signals, including Common Spatial Pattern
(CSP) [16], Short-Time Fourier Transform [17], Principal Component Analysis [18],
and supervised classification using traditional machine learning methods [19]. Con-
versely, the latter approach, based on deep learning methods, streamlines the process
with fewer mandatory steps. Preprocessing of acquired signals becomes optional and
can be tailored to the specific objectives of the experiment. Feature extraction, in
this context, entirely relies on the functionality of the neural network employed in
the system. This dichotomy reflects the evolving landscape in motion intent detec-
tion algorithms, offering researchers flexibility in choosing methodologies that align
with their experimental goals and resource constraints.

Presently, significant strides have been made in the realm of physiological signal
classification, primarily driven by advancements in deep learning and related algo-
rithms. A myriad of neural network architectures, including Convolutional Neural
Networks (CNN) [20] and Recurrent Neural Networks (RNN) [21], have been suc-
cessfully applied to the classification of physiological signals. Lawhern et al. [22]
introduced EEG-NET, a model for EEG classification, leveraging multiple con-
volutional layers, and validated its performance across diverse paradigm datasets.
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Chen et al. [23] utilized a recurrent convolutional neural network to extract spatio-
temporal features from physiological signals, demonstrating its efficacy in identify-
ing subjects’ emotions. Sairamya et al. [24] constructed an artificial neural network
analyzing physiological signal features extracted by discrete wavelet transform, of-
fering an auxiliary method for diagnosing schizophrenia. Neeraj et al. [25] advanced
the field by incorporating the Attention mechanism into the network, presenting
the CNN-LSTM-ATT network for judging physiological signals of alcoholics. How-
ever, the inherent limitations of physiological signals, such as the non-smoothness of
EEG signals, signal uniqueness, and the relatively small size of physiological signal
datasets, necessitate the implementation of methods to better extract information
from these signals [26]. For instance, transfer learning [27] methods enhance clas-
sifier learning performance by projecting samples from source and target domains
into a common domain, addressing the challenge posed by small dataset sizes. Be-
yond transfer learning, researchers have explored the utility of small samples [28],
semi-supervised [29], and unsupervised [30] methods in conjunction with BCI to
address the aforementioned challenges. These approaches collectively contribute to
overcoming the intricacies associated with physiological signals, thereby advancing
the capabilities of motion intent detection algorithms.

Among various deep learning methods, reinforcement learning stands out as
a particularly promising approach [31]. Its iterative nature allows the reinforcement
learning framework to identify task-relevant segments from given physiological sig-
nals and provide appropriately defined reward signals [32]. Notably, some studies
have leveraged reinforcement learning to enhance the judgment and recognition of
physiological signals. For instance, Wang et al. [33] proposed a neural network search
algorithm based on the Q-learning algorithm to assist in constructing a neural net-
work for recognizing surface electromyography (sEMG) signals. While their study
did not delve into the physiological signals themselves, it focused on optimizing
the parameters of the neural network for improvement. Zhang et al. [34] employed
a model-free reinforcement learning approach to implement a control algorithm for
hip exoskeletons, yet the main contributors remained the kinematic parameters, not
fully reflecting the potential value of BCI, despite the use of EMGs for assisted
training. Ming et al. [35] used a Q-learning algorithm to assess subjects’ attention,
concentrating on attention-related EEGs without expanding into motor-related sig-
nals. Similarly, Ko et al.’s [36] feature selection of motor imagery signals using
the actor-critic model was groundbreaking, but their focus was limited to EEG and
motor imagery signals, overlooking EMG and motor execution signals. Addressing
the shortcomings of the aforementioned literature, this paper introduces a motion
intention judgment model grounded in multimodal signal fusion and reinforcement
feature selection. By concurrently harnessing information from EEG and EMG,
complemented by reinforcement learning to select signal fragments with pertinent
information, the proposed model facilitates motion intention detection. Experimen-
tal validations conducted on publicly available datasets attest to the model’s robust
performance, thereby offering a comprehensive and effective solution in the domain
of motion intention judgment.
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The subsequent sections of this paper are structured as follows. The second sec-
tion introduces the methodology adopted in this study. It encompasses the theory
of physiological signal fusion, an overview of the comprehensive model architecture,
and a detailed exposition of each component comprising the model. The third sec-
tion elucidates the datasets employed for experimental validation. It delves into
a comprehensive discussion and analysis of the experimental results, providing in-
sights into the model’s performance. The fourth section encapsulates the conclusions
drawn from the study. Additionally, it outlines future directions for research, offering
a perspective on potential advancements in the field. This organizational structure
is designed to provide readers with a systematic and coherent understanding of the
research methodology, results, and implications presented in this paper.

2 METHOD

In this section, we propose a classification model based on multimodal signals with
reinforcement learning. The model leverages reinforcement learning for feature selec-
tion and employs a feature fusion method to enhance the classification performance
on multimodal data. The entire model is structured into three distinct modules:
the feature extraction module, the feature selection module, and the classifier mod-
ule. The subsequent sections provide an in-depth exploration of the overall model
framework. Let us consider a trial of data denoted as X ∈ RC×T , where C repre-
sents the number of leads, and T is the number of sampling points. Upon inputting
X into the network, it initially enters the feature extraction module, concurrently
undergoing a feature fusion operation to yield the feature vector V . Subsequently,
the extracted feature vector V is directed to the feature selection module, where the
reinforcement learning method is applied to extract the most pertinent vector V ′ for
the target task. Finally, the resulting feature vector V ′ is forwarded to the classifier
module to execute the classification process. This modular architecture facilitates a
streamlined and effective approach to handling multimodal signals, optimizing fea-
ture selection through reinforcement learning, and ultimately improving the overall
classification performance.

2.1 The Theory of Feature Fusion

Drawing upon the theories presented in several articles [37, 38], we distill various
approaches to feature fusion into three categories: data-level, feature-level, and
decision-level. To illustrate these approaches, we employ a simple Convolutional
Neural Network (CNN) as an example. The network comprises a CNN layer for
feature extraction and a fully connected layer with Softmax for learning and classi-
fication.In the data-level fusion method, input data is fused before being processed
by the network. The fused data undergoes feature extraction, and the extracted
features are utilized for classification; for the feature-level fusion method, each type
of data possesses an independent feature extractor, potentially leveraging different
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algorithms for feature extraction. Features from each data type are extracted in-
dependently and then fused, and the fused features are employed for classification;
in the decision-level method, each type of data is associated with its exclusive deep
learning structure, akin to integrated learning. Decision-level fusion involves com-
bining the output of each network, culminating in the final result. Figure 1 shows
the structure of the three approaches described above. This classification and il-
lustration provide a comprehensive overview of the three fundamental strategies for
feature fusion in the context of neural network architectures.
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Figure 1. Flowcharts of fusion methods

Next, we delve into the fusion of EEG and EMG, elucidating the distinctions
between various feature fusion approaches. Considering data-level fusion, let Xeeg ∈
RCeeg×T represent EEG data and Xemg ∈ RCemg×T denote EMG data. The fused
data is represented as Xfusion = (Xeeg, Xemg), Xfusion ∈ R(Ceeg+Cemg)×T , which can
be considered as adopting the splicing approach.

For feature-level fusion, let the extracted EEG features be denoted as Veeg =
{v1, v2, . . . , vn}, with n being the number of feature components. Similarly, the EMG
features are represented as Vemg = {v′1, v′2, . . . , v′n}. Employing feature summation,
we obtain Vfusion = Veeg + Vemg = {v1 + v′1, v2 + v′2, . . . , vn + v′n}. This approach
enhances information within the feature vectors. If a specific component feature
is not salient, the feature selection module can recognize it faster with doubled
component information.

For decision-level fusion, let yeeg = argmax (Peeg) = argmax ({p1, p2, . . . , pm})
represent the prediction result of the EEG branch, where m is the number of cate-
gories. Similarly, yemg = argmax (Pemg) = argmax ({p′1, p′2, . . . , p′m}) is the prediction
result of the EMG branch. An integrated learning-like approach is employed to
synthesize probabilities from both branches, resulting in yfusion = argmax (Peeg +
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Pemg) = argmax ({p1 + p′1, p2 + p′2, . . . , pm + p′m}). The most likely category is de-
termined by integrating the largest probability value, yielding the final classification
result.

Comparing fusion features (Xfusion, Vfusion, yfusion) with non-fusion features (X,
V , y), fusion features contain more information, both positive and negative. How-
ever, in the subsequent feature selection module, positive features are retained, and
negative features are discarded whenever possible. This selective retention of posi-
tive features is the key factor contributing to the enhanced effectiveness of feature
fusion.

2.2 Feature Extraction Module

Our feature extraction module is based on the Multiscale Feature Extraction Net-
work (MSNN) [39], as illustrated in Figure 2. The structure of this network is rooted
in the residual theory, designed to derive more comprehensive and hierarchical clas-
sification features by concatenating feature vectors with varying extraction depths.
The network comprises two main modules: the time-domain feature characterization
module and the spatial feature characterization module. The input data initially
enters this module, where the temporal correlation characteristics of the data are
extracted. Multiple convolutional layers are employed within this module. After
the first layer, the output of each subsequent layer flows into the spatial feature
characterization module, showcasing the embodiment of the residual idea. Spatial
feature characterization module informed by the residual theory, receives the output
from each layer of the time-domain feature characterization module. The residual
idea is realized in this module, contributing to the generation of more holistic and
hierarchically structured classification features.

Given the input data X ∈ RC×T , in the time-domain feature characterization
module, only the time-domain dimension of the input data is targeted, so the di-
mension of the convolution kernel is set to be (1 × T ), where Ti is the size of the
convolution kernel set in the ith convolutional layer. After each round of time-
domain convolution, the time-domain information in the data will be more con-
densed, however, the information in other dimensions of the data will be impaired,
and at the same time the spatial dimension features of the physiological electrical
signals are equally important, so the spatial feature characterization module is intro-
duced, which utilizes the idea of residuals to extract the information of the data at
multiple levels, and at the same time, sets specific convolution kernels to extract the
spatial features in the data. For the output X ′ ∈ RC×T ′

of the previous module, for
the spatial characterization information contained in it, a convolution kernel with
dimension (C × 1) is used for the extraction operation. Each convolutional layer
in the spatial feature characterization module extracts the spatial information of
the corresponding layer of data and places the extracted features into the pending
region. After the process of the spatial feature characterization module is com-
pleted, all the feature vectors in the pending region are spliced together according
to a certain rule, so that we obtain the feature vector V for feature selection to be
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performed.
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Figure 2. The proposed architectural framework of our feature extraction module

2.3 Feature Selection Module

In the feature selection module, we introduce a reinforcement learning method for
selecting task-relevant features, and also inspired by [36], we revamped the feature
selection module. For the feature vector V = {v1, v2, v3, . . . , vT ′′} ∈ RC′′×T ′′×D,
where C ′′, T ′′, and D are the number of channels after convolution, the number
of sampling points after convolution, and the number of convolutionally spliced
number of feature maps, we use a method of feature segmentation according to
the time point t, where t belongs to P , P ⊂ {1, 2, 3, . . . , T ′′}. For physiological
signals, not all segments contain valid information, and the differences in physiolog-
ical conditions between people make the localization of valid features not traceable.
Therefore, we utilize the properties of reinforcement learning, which can be used
to filter task-relevant features in a label-free environment using a feedback learn-
ing decision strategy with a reward function. Briefly, it is the process in which an
intelligent body makes action decisions in a series of states, receives feedback from
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the reward function after interacting with the environment, and uses the feedback
to continuously and iteratively learn, as shown in Figure 3. In the following, we
deconstruct the whole learning process into states, actions, reward functions, and
learning strategies to illustrate them one by one.

Feature Vector

Agent

Decision

RejectionAccept

Contacting the 

selected segment

Calculating 

Reward

Feedback

Selected 

Feature Vector

Figure 3. The flowchart of our feature selection module

2.3.1 State

The state St in this model, where t = {1, 2, 3, . . . , T ′′} can be defined as the con-
catenation of the ensemble of feature vectors selected at the previous time point i.e.,

Set
(
{vi}i∈Pt−1

)
with the new conjunction formed by the above ensemble plus the

feature vectors at point t. It can also be denoted as

St = Cont
(
Set

(
{vi}i∈Pt−1

)
, Set

(
{vi}i∈Pt−1

∪ {vt}
))

,

where Cont is the tandem operation and Pt−1 is the time point selected in the
previous round, as for the Set operation, it can be defined as that

Set
(
{vi}i∈Pt

)
=

1

|Pt|
∑
i∈Pt

vi,
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where |Pt| is the length of Pt. For the state, stitching together the features with
and without the current time point features contains enough information for the
intelligence to make a correct decision.

2.3.2 Action

The action space is the set of actions that the agent can make, which we define here
as the information about whether the agent accepts the feature corresponding to
the current point in time, i.e.

at =

0, rejection,

1, accept.

And the goal of the whole structure is to find a continuous sequence of actions, so
we need to use the feedback of the action reward function at each time point to
make a decision on whether to accept the current feature or not. Therefore, we can
define the update strategy of the set Pt

Pt =

Pt−1 ∪ {t} , if at = 1,

Pt−1, if at = 0.

2.3.3 Reward

In order to make appropriate feedback to the action of agent, we first do the Set
operation on the feature vector that does not perform selection, i.e.

VOrigin = Set
(
{vi}i∈{1,2,3,...,T ′′}

)
,

and compute the classification loss LOrigin based on VOrigin . For the computation
of the classification loss, we choose the widely used cross-entropy function. And
our goal is to formulate the associated rewards according to the classification loss.

Therefore, for the action and the corresponding feature vector Set
(
{vi}i∈Pt−1

)
at

timepoint t, the reward rt is defined as

rt = LOrigin − Lt,

where Lt is the classification loss of the feature vector at timepoint t, which is also
calculated by the cross-entropy loss function. Ultimately, the expected reward Rt

obtained from an epoch of reinforcement learning is

Rt =
T ′′∑
k=0

γkrt+k,
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where γ is the discount factor, which is set to attenuate the cumulative effect of
future rewards on the current action selection of the intelligent body. That is, more
weight is given to the most recent action by gradually decreasing the value of the
future reward.

2.3.4 Strategy of Learning

Among many reinforcement learning methods, we choose the actor-critic network.
Briefly, the agent maintains a policy network as an actor and a value estimation
function as a critic. For timepoint t, the agent receives the environment st, selects
the most probable one from the action space according to the policy network, at. It
then receives a reward rt and receives the next state st+1 in the environment.

In our work, we utilize a simultaneous and parallel actor-critic network. Specif-
ically, two different deep neural networks are used for strategy estimation and ex-
pected return or value estimation, respectively. The output neuron of the strategy
network corresponds to the probability of taking a selection or rejection action with
respect to the current feature vector under state st. Meanwhile, the value estimation
network has an output neuron that produces the expected return under the current
state st.

2.4 Classifier Module

After obtaining the feature vector V ′ that has been selected by the feature selection
module, we input it into the global average pooling layer, which can better empha-
size the spatio-temporal information of each feature dimension and its correlation
with the neighboring parts from the point of view of BCI. After the pooling opera-
tion, the feature vectors are put into a classifier consisting of a fully connected layer
as well as a Softmax layer, Softmax is a mathematical function typically used to
convert a set of arbitrary real numbers into real numbers representing a probability
distribution. It is essentially a normalization function that converts a set of arbi-
trary real values into probability values between [0, 1], with different probabilities
indicating the magnitude of the likelihood that this sample is in the corresponding
category, and the higher the probability, the greater the likelihood that the sample
belongs to that category, with the probabilities summing up to 1. Assuming that
Z l ∈ RK is the output of the previous layer, then the Softmax function can be
expressed as:

Softmax (Z l)i =
ezi∑K−1

j=1 ezj
,

where K is the length of Z l and i ∈ {0, 1, 2, . . . , K − 1}. Finally the whole classifier
outputs a predicted label ŷ belonging to the input X of the epoch.
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2.5 Framework of the Model

Having introduced all the modules, we present the overarching architecture of the
model, exemplifying a network that incorporates feature-level fusion. As depicted
in Figure 4, the EEG data, following preprocessing, is input into the feature extrac-
tion module to derive the EEG feature denoted as Veeg. Similarly, the EMG feature
Vemg is obtained. The fusion of these two signals yields the fused feature Vfusion,
subsequently channeled into the feature selection module. Within this module, the
processing results in the extraction of the feature V ′ containing the most informa-
tive content for classification. Finally, this feature is employed for classification,
resulting in the predicted label ŷ. This architecture exemplifies the feature-level fu-
sion strategy, showcasing how information from EEG and EMG signals is effectively
combined and processed through the various modules of the model to yield a robust
and informative classification outcome.
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Figure 4. The proposed architectural framework of our model

3 EXPERIMENT AND RESULT

In this section, we will elucidate the dataset utilized for our experiments and expound
on the preprocessing steps undertaken. Simultaneously, we will employ this dataset
to assess the efficacy of our model, demonstrating its effectiveness through various
comparisons.
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3.1 Dataset and Preprocessing

We used a publicly available dataset [40] in this experiment that simultaneously
captured participants’ EEG, EMG, and associated motion information using an in-
ertial measurement unit while they walked on multiple levels of pavement. Ten
participants (5 males, 5 females) participated in the dataset, and each participant
performed 10 sessions, with each session consisted of a round-trip walk. The exper-
imental paradigm and acquisition setup will be described below, one by one.

The experiment was designed with five stabilized movement patterns (level
ground walking (LW), stair descent (SD), stair ascent (SA), ramp descent (RD),
and ramp ascent (RA)). Subjects were asked to walk at their preferred speed. Sub-
jects began walking on level ground, walked down the ramp, transitioned to walking
on level ground, ascended the stairs, and then rested at the end of the stair land-
ing (in the forward direction). Subjects then turned 180◦, walked down the stairs,
transitioned to walking on level ground, ascended the ramp, and rested at the end
of the ramp landing (reverse direction). Walking in both the forward and reverse
directions constituted one complete test trial. Subjects completed an average of 20
trials.

During the experiments, the face and scalp were recorded wirelessly using a 64-
channel Ag/AgCl active electrode EEG device (sampling frequency = 1 000Hz).
The TP9, PO9, PO10, and TP10 channels were removed from the cap for elec-
trooculogram (EOG) capture of blinks and eye movements, and the remaining 60
channels were arranged according to the 10–20 international system. Surface EMG
signals were recorded at 1 000Hz using active bipolar electrodes (fixed electrode
distance of 20mm). Surface EMG signals were recorded bilaterally at 6 sites on
each leg: the tibialis anterior, gastrocnemius, rectus femoris, vastus lateralis, bicep
femoris longus, and the semitendinosus. Seventeen wireless inertial measurement
units (IMUs) were also worn by the subjects for whole-body motion capture. IMU
data were recorded at 30Hz and synchronized with EEG time using an external
hardware trigger.

For processing and cutting of the dataset, we labeled the time points of different
road surfaces based on the inertia and position information recorded by the IMU sen-
sors and converted them to the corresponding points of the EEG and EMG signals
for cutting. Based on the sampling frequency of the signals and the relevant a priori
knowledge, we chose to take one second of data as a sample, i.e., 1 000 sampling
points for each sample. For EEG, we extracted the data from 60 channels and did
the re-referencing operation, which is performed with the average of the whole data,
i.e., mean-referencing. The purpose is to avoid information loss to some extent. For
EMG, the operation is similar to that for EEG, but there is no re-referencing pro-
cess, and in order to filter the useless clutter information, we performed a band-pass
filtering from 1 to 100Hz to minimize the interference of useless information on the
classification.
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3.2 Settings and Results

The MUL RL network with a fusion strategy is used to recognize the ground con-
dition when the subject is moving, the model will be trained for 120 epochs with
a batchsize of 64. To optimize the model, we use an RMSprop optimizer with
a learning rate of 1e−4 for the parts outside of reinforcement learning, and for the
actor-commentary boundaries network of the reinforcement learning module, we
use a learning rationale of 1e−2 for the RMSprop optimizer for optimization. The
training loss for each round is computed uniformly using the previously mentioned
cross-entropy loss function. In the evaluation phase, the classification accuracy is
used as a metric to assess the performance of the model.

Method
Test Subject

Mean
Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10

CSP + SVM(EEG) 46.84 43.27 49.62 37.94 42.41 39.02 44.59 36.65 39.54 31.07 41.095
CNN(EMG) 46.55 44.85 46.15 43.24 49.42 39.02 44.59 40.31 40.12 49.72 44.397
Data-level + RL 49.43 48.55 45.76 47.06 43.58 42.77 41.31 42.41 32.35 35.03 42.825
Feature-level + RL 55.17 58.05 53.85 60.88 49.42 46.24 49.18 48.17 38.89 53.67 51.352
Decision-level + RL 51.12 55.41 51.15 52.94 49.03 47.98 44.26 47.64 41.83 46.33 48.769

Table 1. The accuracy of proposed method and comparison method

We evaluated the accuracy of our proposed model in discerning various ground
conditions through experiments conducted on all 10 subjects. The results were
compared with a baseline model, employing a CSP + SVM architecture for EEG,
and a customized CNN model for EMG, respectively. The experimental outcomes,
detailed in Table 1, demonstrate the superior performance of our model across all
subjects, with an overall higher average accuracy compared to the baseline model.
Specifically, among the different fusion strategies, data-level fusion yielded subopti-
mal results. Only subjects 1, 2, 4, 6, and 8 exhibited improvements over the baseline
models, while the average accuracy surpassed the CSP + SVM model but not the
common CNN model for myoelectric categorization. In contrast, feature-level fu-
sion consistently outperformed other models on the majority of subjects, excluding
subjects 6 and 9. It achieved the best results in terms of accuracy mean, surpassing
both data-level and decision-level fusion models. While decision-level fusion exhib-
ited notable efficacy, particularly surpassing feature-level fusion in subjects 6 and 9,
it emerged as the most effective model in terms of average accuracy after excluding
the feature-level fusion method. In summary, our proposed model, incorporating
feature fusion coupled with enhanced feature selection, demonstrates promising re-
sults in effectively detecting ground conditions during motion, as evidenced by the
experimental outcomes.

To further substantiate the effectiveness of the proposed method, we conducted
ablation experiments. Subsequently, we removed the reinforcement feature selection
module from the model to assess its impact on classification. The experiments cov-
ered various fusion strategies, and the conclusive results are presented in Table 2.
Evidently, the classification accuracy of the network employing the reinforced feature
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selection module surpassed that without it, across data, feature, and decision-level
fusion methods. This improvement held true even when compared to a model utiliz-
ing all three feature fusion methods. This underscores the capability of our enhanced
feature selection module to identify features conducive to classification while discard-
ing those with minimal or negative impact on enhancing the model’s classification
effectiveness. Simultaneously, depicted in Figure 5, we showcase the performance
of subject 3 in the initial round of ablation experiments using a confusion matrix.
The left side represents results from a model employing only feature-level fusion,
while the right side incorporates a feature selection module alongside feature-level
fusion. Notably, post-feature selection, the model’s overall classification accuracy
exhibited improvement. Upon detailed categorization, the model demonstrated an
impressive nearly 200% enhancement in the SD category (stair descent). However,
there was a simultaneous increase in the model’s error rate for misclassifying other
categories as SD. Examining other categories, the accuracy for recognizing LW and
SA remained relatively stable, while there was a decline in the accuracy for RD
and RA categories. This decline is presumed to stem from the model incorrectly
identifying less intense slope movements as relatively forceful stepping movements,
indicating an area for future model refinement.

Method
Test Subject

Mean
Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10

Data-level 46.84 45.38 43.85 46.76 41.25 40.75 39.34 34.29 31.7 33.9 40.406
Data-level + RL 49.43 48.55 45.76 47.06 43.58 42.77 41.31 42.41 32.35 35.03 42.825
Feature-level 51.44 55.41 47.69 57.94 49.02 44.22 48.85 41.1 35.62 50.28 48.157
Feature-level + RL 55.17 58.05 53.85 60.88 49.42 46.24 49.18 48.17 38.89 53.67 51.352
Decision-level 50.57 48.55 43.85 51.18 43.97 41.91 43.28 44.24 39.87 40.96 44.838
Decision-level + RL 51.12 55.41 51.15 52.94 49.03 47.98 44.26 47.64 41.83 46.33 48.769

Table 2. The accuracy of ablation experiment for feature selection module

LW RD SA SD RA
Predicted labels

LW
RD

SA
SD

RA
Tr

ue
 la

be
ls

55 1 2 0 0

1 15 9 14 9

3 8 18 8 16

5 11 11 14 9

2 5 16 10 18
0

10

20

30

40

50

a) Feature-level

LW RD SA SD RA
Predicted labels

LW
RD

SA
SD

RA
Tr

ue
 la

be
ls

54 1 0 3 0

0 12 4 31 1

3 6 18 23 3

2 3 7 36 2

1 2 18 18 12
0

10

20

30

40

50

b) Feature-level + RL

Figure 5. The confusion matrix of subject 3
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Method
Test Subject

Mean
Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10

Only EEG 43.97 50.4 40 45.88 36.96 40.75 40.66 36.65 33.99 30.5 39.976
Only EMG 42.53 48.28 46.54 38.53 47.86 39.88 44.92 46.54 39.8 60.84 45.572
Data-level 46.84 45.38 43.85 46.76 41.25 40.75 39.34 34.29 31.7 33.9 40.406
Feature-level 51.44 55.41 47.69 57.94 49.02 44.22 48.85 41.1 35.62 50.28 48.157
Decision-level 50.57 48.55 43.85 51.18 43.97 41.91 43.28 44.24 39.87 40.96 44.838

Table 3. The accuracy of ablation experiment for fusion theory

For the summarized fusion theory, we opted to utilize EEG and EMG signals
without fusion as a baseline to validate the effectiveness of our fusion approach.
Table 3 reveals that, while the model employing a single EMG as input (with the
exclusion of the reinforcing feature selection module) yielded the best results on
subjects 8 and 10, the fusion method outperformed on other subjects, surpassing
the baseline in terms of average classification accuracy. Among the three fusion
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methods, the data-level feature fusion method exhibited suboptimal performance,
outperforming the baseline only on subjects 1, 4, and 6. This suggests that data-
level fusion, by simply overlaying EEG and EMG data, without considering their
deeper features relevant to classification, resulted in a classification effect inferior
to single-signal classification. The feature-level fusion method emerged as the most
effective, consistently outperforming the other methods. Its accuracy was lower
than other methods only on subjects 8, 9, and 10, while it surpassed them in the
remaining subjects. The average classification accuracy of the feature-level fusion
method also outstripped the other methods. In contrast, the decision-level fusion
method showed merit, achieving the highest classification accuracy in subject 9, but
its performance varied across other subjects. This variability may be attributed to
the limitations of decision-level fusion, which combines classification results from
different models akin to ensemble learning but fails to discern invalid information
before it interferes with classification. In conclusion, the feature-level fusion method
excelled due to its comprehensive integration of extracted features. Despite the po-
tential integration of more invalid information into the feature vector during fusion,
the feature information addressing the current ground situation was more complete.
Consequently, this method reduced the interference of invalid information, making
a substantial contribution to the improvement of classification results.

To delve into the specific performance of the fusion theory, we intricately de-
picted the experiment’s outcomes for subject 4 through a confusion matrix, as illus-
trated in Figure 6. The top level of the matrix corresponds to the feature-level fusion
model, with the lower left section representing the model employing only EEG for
classification and the lower right section representing the model using only EMG
for classification. Upon inspection, the fusion model showcased superior accuracy
compared to the single-signal models in the LW, RD, SD, and RA categories. How-
ever, it exhibited a slight decrease in accuracy in the SA category compared to the
EEG model, although it remained higher than the EMG model. A holistic view of
the EEG model revealed relatively dispersed categorization across individual cate-
gories, with notable emphasis on distinguishing RA from SA. The model tended to
misclassify RA as SA in the majority of other misclassifications, likely due to both
involving upward movements and the topographic information in the signals not
being distinctly evident. In contrast, the EMG model displayed the highest differ-
entiation for LW, while internal differentiation among the other four categories was
less apparent. The misjudgment rate for RD even surpassed the accuracy rate, pos-
sibly because the EMG signal, indicative of sloped motion, differs significantly from
that on flat ground. The EMG alone may inadequately capture slope information,
leading to incomplete judgments. The fusion model, by amalgamating the strengths
of both signals, surpassed the drawbacks. Despite incorporating some shortcomings,
the multi-signal feature fusion model outperformed the single-signal model across
multiple indicators.

In conjunction with the ablation experiments, we conducted visualizations of
intermediate results to elucidate the operational mechanism of the feature selec-
tion module and highlight its effectiveness. We selected features extracted by the
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Select Mask

Before RL

5 epoch

10 epoch

15 epoch

20 epoch

Figure 7. Results of the intermediate feature visualization, left is the feature before feature
selection, right is the feature after feature selection

feature selection module at various stages. To facilitate illustration, we mapped
these features and presented them in an observable format, as depicted in Fig-
ure 7. The rectangles in the figure represent the mapped features. The left col-
umn displays the unselected features, the right column showcases features processed
by the feature selection module, and the black portion signifies abandoned feature
components. Moving from top to bottom in the figure corresponds to different
training stages – pre-feature processing module input and states after 5 epochs,
10 epochs, 15 epochs, and 20 epochs of training in the feature processing mod-
ule. For visualization purposes, LW category data from subject 5 was chosen.
A vertical analysis of the left column indicates minimal change in the entire fea-
ture matrix. Presumably, this is because the feature extraction module under-
went extensive training in prior epochs, fitting the model to the data, resulting
in minimal alterations during the feature selection stage. However, upon intro-
ducing the selection mask, the associated feature matrix underwent changes, as
seen in the right column. At the initial training stages, the selection mask was
in the trial phase, and only a few features were discarded. By the 15th epoch of
training, more features were discarded, though prominent features, such as those
on the rightmost side of the second row and the middle of the third row, were
still retained. Similarly, at the 20th epoch, most features on the left side of the
matrix were discarded, but significant features persisted. Throughout, the algo-
rithm retained the most favourable features for classification from start to fin-
ish.

It is worth noting that during feature selection, in addition to discarding fea-
tures with minimal contributions, some features with general contributions were also
excluded – a minor drawback of the algorithm. Naturally, due to the trial-and-error
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nature of reinforcement learning, there are instances where most features are dis-
carded, as illustrated in Figure 8. This data pertains to the RA category for subject
5 during the 15th epoch of training. Notably, a few more apparent features were
discarded, leaving only features with average contributions. Presumably, this con-
tributes to the limited improvement in classification accuracy. Addressing how to
minimize such occurrences is a consideration for future work, given the algorithm’s
trial-and-error nature.

Figure 8. Schematic of a negative case of feature selection

4 CONCLUSIONS AND FUTURE WORK

In this paper, we present a classification model that employs a multimodal data
fusion strategy and reinforcement learning. The approach integrates reinforcement
learning for feature selection and a feature fusion method to enhance the model’s
classification performance on multimodal data. We conducted experiments using
a publicly available web dataset, demonstrating that the model achieved an average
classification accuracy of 51.352% for five classifications. This outperformed other
fusion methods and the baseline model (41.095%), validating the effectiveness of our
proposed model. In the related ablation experiments, the feature fusion method ex-
hibited higher classification accuracy than single signal classification. Additionally,
the model with the feature selection module surpassed the ordinary model, further
supporting the efficacy of our proposed method.

In summary, our contributions can be summarized as follows:

1. We introduce the MUL RL model for detecting and classifying motion inten-
tions in motion execution scenarios. This model uniquely combines a feature
fusion strategy with a reinforcement learning-based feature selection approach.
The feature fusion strategy extracts feature information from multimodal physio-
logical signals, while the reinforcement learning-based feature selection approach
improves classification performance by selecting effective features.

2. A motion intention detection model is designed for motion execution signals in-
stead of motion imagery signals, and the model is validated on relevant datasets
to demonstrate the effectiveness of the model. Effective model support is pro-
vided for motor rehabilitation training using exoskeletons, and a personalized
solution is also provided for motor function rehabilitation.

For the second point, the model is integrated into an assisted movement rehabilita-
tion exoskeleton, collecting EEG and EMG signals from patients through an acqui-
sition device. The model decodes these signals to determine the patient’s current
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ground environment and provides assistive forces, aiding in neural circuitry rebuild-
ing and motor rehabilitation.

The discussion on multiple feature fusion methods in ablation experiments sheds
light on the distinct advantages and disadvantages of single feature fusion methods.
However, it underscores the pressing need for experimentation to evaluate the ef-
fectiveness of combining multiple fusion methods. Moreover, our feature selection
algorithm still has room for improvement, as it may inadvertently discard valid fea-
tures while eliminating those that contribute minimally to classification. Notably,
our validation efforts thus far have been confined to independent subjects, lacking
an exploration of the model’s effectiveness across different subjects. Additionally,
our dataset validation has been primarily focused on the classification performance
of healthy human signals, neglecting the unique challenges posed by patient signals.
Therefore, our work concludes with discussions on future directions:

• Conduct experiments combining multiple fusion methods to further advance the
theory of multimodal data fusion.

• Investigate the model’s performance across different subjects using techniques
like transfer learning to enhance adaptability to various patient conditions.

• We are committed to enhancing the feature selection algorithm to achieve more
refined feature selection and to mitigate the inadvertent discard of effective fea-
tures.

• Conduct experiments on patient data to compare the model’s effects on patients
and healthy individuals. Adjust the model architecture to better suit patient
needs.

These future efforts aim to enhance the robustness and applicability of the pro-
posed model in diverse scenarios, ultimately contributing to the field of motion
intention detection and rehabilitation.
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