
Computing and Informatics, Vol. 43, 2024, 1320–1351, doi: 10.31577/cai 2024 6 1320

MODELING AND ANALYSIS OF BUSINESS PROCESS
MANAGEMENT SYSTEMS USING TIMED
WORKFLOW NETS WITH TABLES

Jian Song, Guanjun Liu∗

Department of Computer Science
Tongji University
201804 Shanghai, China
e-mail: {1910690, liuguanjun}@tongji.edu.cn

Abstract. The existing modeling methods for business process management sys-
tems (BPMS) focus on the logical and abstract data layers but often ignore oper-
ations related to the underlying database, thus failing to describe system behavior
accurately. Workflow nets with tables (WFT-nets) compensate for the lack of de-
scription of database table operations in existing modeling methods. However, for
timed business process management systems (TBPMS), their correct behavior de-
pends on the logical correctness of the results obtained by the operational process
and the time required for each activity to be correctly executed within a specified
time. Since WFT-nets do not consider time properties, they are unable to describe
time-related activities in TBPMS, potentially leading to incorrect results. This
paper introduces timed workflow nets with tables (TWFT-nets), which add time
elements to transitions to simulate time-constrained activities in the system. Addi-
tionally, we assign different labels to represent the execution strategies of activities
under different time constraints. To analyze the soundness of TWFT-nets, we pro-
pose a timed database computation tree logic (TDCTL) model checking method
and define soundness from three perspectives: logic control layer, data design re-
quirements, and time constraints. We transform soundness into TDCTL formulas,
provide a model checking algorithm, and develop a tool. Experiments show the
effectiveness of our methods.

Keywords: BPMS, TDCTL, model checking, soundness, TWFT-net

Mathematics Subject Classification 2010: 68-Q60

∗ Corresponding author

https://doi.org/10.31577/cai_2024_6_1320

Modeling and Analysis of BPMS Using TWFT-Net 1321

1 INTRODUCTION

Business process management systems (BPMS) are increasingly crucial in real-life
applications and industrial production, such as smart healthcare systems and intel-
ligent rail transportation systems [1, 2]. Due to these systems’ complex business
logic and extensive data operations, rule violations or unreasonable designs can lead
to security vulnerabilities or financial losses. Therefore, it is important to model
and analyse the system to verify its correctness. Ensuring such systems’ security
and high reliability is a current research hotspot [3, 4, 5].

Formal methods are a mathematical and logic-based approach widely applied
in system development, where properties such as correctness and security require
formal modeling, analysis, and verification. As a formal language, Petri nets are
widely used in the modeling and analysis of BPMS, leveraging their structural char-
acteristics to uncover errors within systems [6, 7, 8]. Sidorova et al. [9, 10] proposed
workflow nets with data (WFD-nets), which combine traditional workflow nets with
abstract data operation to describe the data flow aspect of the BPMS. However,
when data flow operations are introduced into the business process model, there are
a lot of data interactions between activities, which make it easy to produce data
flow errors. To detect the defects caused by data in business process design, Combi
et al. [11, 12, 13] proposed a modeling approach that integrates business processes
with data. This method involves constructing activity diagrams to capture the data
operations performed by activities, providing an analysis method for BPMS.

The design requirements validation of workflow models is typically performed
using model checking techniques on their state reachability graph (SRG) [14, 15].
Sbäı et al. [16] transformed the system design requirements to be verified into an
LTL formula and performed verification on the constructed Petri nets model. To
verify the initialization of hardware devices, Mönnich et al. [17] abstractly modeled
the execution planning of devices as a Petri net and condition abstraction as tem-
poral logic, utilizing the NuSMV tool for verification. Trčka et al. [18, 19] proposed
using WFD-net to model BPMS, describing various data flow errors through tem-
poral logic and employing model checking techniques to identify data flow errors
in the business process model. With the development of a timed business process
management system (TBPMS), the correctness of the system is not only related to
logic behavior in the process but also to time constraints. Therefore, researchers
have proposed formal methods for TBPMS, such as time Petri net [20, 21, 22] and
timed automata [23, 24].

The activities in actual BPMS are about the data item operation in the under-
lying database table (select, insert, delete, and update). Tao et al. [25] proposed
a model called workflow nets with tables (WFT-nets) to satisfy the modeling re-
quirements for such systems. WFT-nets can describe concrete data item values in
database tables and represent additional behavioral information. However, with the
continuous application and development of TBPMS, the system has higher require-
ments for real time [26, 27]. WFT-nets lack consideration of time constraints, so they
can not accurately describe the operation behavior of each activity in the TBPMS.

1322 J. Song, G. Liu

To precisely characterize TBPMS, we have extended WFT-nets by attaching time
elements to transitions, resulting in timed workflow nets with tables (TWFT-nets)
model. TWFT-nets retain the advantages of traditional modeling methods in con-
trol flow and data flow and provide a detailed representation of the operation of the
concrete data item value in database tables. Adding the time elements to transitions
makes the model more closely related to real systems, thus facilitating convenient
analysis of actual systems. To validate the soundness of TWFT-nets, we propose a
model checking method of timed database computation tree logic. We define sound-
ness from three perspectives: logic control layer, data design requirements, and time
constraints. We translate soundness into corresponding TDCTL formulas, thereby
enabling the detection and prevention of potential adverse behaviors in the system.
We propose the related model checking algorithms and develope a tool based on
TWFT-nets. Experiments and case study show the advantages and usefulness of
our method and tool.

This paper is organized as follows. Section 2 reviews related work. Section 3
presents some basic notations and gives a motivating example. Section 4 defines
TWFT-nets and their firing rules and shows their state reachability graph genera-
tion algorithms. Section 5 introduces timed database model checking methods and
defines their soundness. Section 6 provides a group of experiments to demonstrate
our methods’ effectiveness. Section 7 concludes this paper.

2 RELATED WORK

Formal modeling methods have been widely applied in analyzing and validating
BPMS [28, 29, 30]. Most researchers focus on the soundness validation of busi-
ness process models [31, 32]. This section introduces some conceptual models and
validation techniques to analyze business process models.

2.1 Modeling Conceptual of BPMS

In the early research, Van der Aalst [33] and Morimoto [34] proposed to use WF-nets
to model BPMS and describe the control flow relationship between activities. With
the development of BPMS, many activities within the system became associated
with data flow. Sidorova et al. [9, 18] proposed a modeling method for WFD-nets.
This method extends WF-nets with abstract data operations (read/write/delete) to
describe the operations related to data elements in the system. Time Petri nets
and timed automata have been proposed to describe time-related activities in busi-
ness processes and the interaction between activities [35, 36]. As the complexity of
business processes increases, each activity has various attributes and colored Petri
nets can further model the attributes of activities and improve the modeling abil-
ity [37, 38]. The underlying activity of the BPMS are about the background database
operation. Tao et al. [25] proposed a modeling method named WFT-net, which can
simulate the operation of data elements in the database and more accurately describe
the operation behavior of activities in the system.

Modeling and Analysis of BPMS Using TWFT-Net 1323

The actual BPMS are related to control flow, data flow, and time attributes.
Previous research in formalizing BPMS focused on control and data flow or em-
phasized time attributes. None of the existing methods integrated all three aspects
into the modeling process. The TWFT-net modeling method we propose effectively
incorporates these attributes into the model. The TWFT-net modeling method
effectively incorporates these attributes into the model.

2.2 Model Verification

Model soundness verification is a current research hotspot. To detect data flow er-
rors in business process models, Song et al. [39] proposed three crucial criteria that
maintain data flow correctness in process adaptation. To ensure that business pro-
cess models do not lead to livelock and deadlock, Sidorova et al. [9, 40] proposed a
soundness verification method, which guarantees the soundness of business process
models at the control flow level. Considering time constraints in process models,
Liu et al. [41] proposed a logical time workflow nets modeling method, which can
solve the problem of logical defects in cross-organizational workflow nets. Model
checking is also one of the ways to verify the soundness of business process models.
Researchers need to transform design requirements into corresponding logical for-
mulas and then verify the correctness of these formulas on the state space [42, 10].
Stackelberg et al. [13] proposed an approach for detecting data-flow errors in BPMN
2.0 process models. They defined a set of anti-patterns representing data-flow errors
in BPMN 2.0 process models. Utilizing model checking techniques to validate data
flow errors enhances the correctness of the models.

The existing soundness verification methods are mainly based on control flow or
data flow without considering the values of data items related to database operations
in the underlying design of business processes, and time elements have not been
taken into account in the soundness verification. Therefore, our proposed TCTL
model checking method considers the soundness of the model from three design
requirements: control flow, data flow, and time constraints. Our method further
ensures the correctness of the model.

3 BASIC CONCEPTS AND MOTIVATING EXAMPLE

3.1 Basic Concepts

A net is a 3-tuple N0 = (P, T, F), where P is a finite set of places, T is a finite set
of transitions, F ⊆ (P ×T)∪ (T ×P) is a flow relation, and P ∩T = ∅∧P ∪T ̸= ∅.
A marking of a net is a mapping m : P → N, where N is the set of non-negative
integers and m(p) is the number of tokens in place p. For each node x ∈ P ∪ T ,
its preset is denoted by •x = {y ∈ P ∪ T |(y, x) ∈ F}, and its postset is denoted by
x• = {y ∈ P ∪ T |(x, y) ∈ F}.

Definition 1 (Petri net and firing rule [33, 43, 44]). A netN0 with an initial mark-

1324 J. Song, G. Liu

ing m0 is a Petri net and denoted as PN = (N0,m0). If ∀p ∈ P : p ≥ 1, then
transition t is enabled at marking m, which is denoted by m[t⟩. Firing an enabled
transition t at marking m yields a new marking m′, which is denoted as m[t⟩m′,

where ∀p ∈ P : m′ (p) =

 m (p)− 1, if p ∈ •t− t•;
m (p) + 1, if p ∈ t• − •t;
m (p) , otherwise.

A marking mk is reachable from m if there is a firing transition sequence σ =
t1, t2, . . . , tk and the marking sequencem1, . . . ,mk such thatm[t1⟩m1 . . .mk−1[tk⟩mk.
m[σ⟩mk represents thatm reachesmk after firing σ. The set of all marking reachable
from m is denoted as R(N0,m). This paper only considers bounded nets, i.e.,
∃k ∈ N,∀m ∈ R(N0,m),∀p ∈ P : m(p) ≤ k.

Definition 2 (Workflow net [40]). A net WN = (P, T, F) is a workflow net (WF-
net) if:

1. WN has two special places, i.e., a single source place start and a single sink
place end in P such that •start = ∅ and end• = ∅; and

2. ∀x ∈ P ∪ T : (start, x) ∈ F ∗ and (x, end) ∈ F ∗, where F ∗ is the reflexive-
transitive closure of F .

The second condition in Definition 2 means that if a new transition t is added
to the WF-net such that •t = {end} and t• = {start}, then the extended WF-net is
strongly connected.

Definition 3 (Table). A table R = {r1, r2, . . . , rk} is a finite set of records. Each
record ri = (A1, A2, . . . , An) in the R consists of n attribute values, where Aj repre-
sents the jth attribute value in the ith record, j ∈ {1, 2, . . . , n}.

For example, an initial table Patient is shown in Figure 2 (c), which contains two
records r1 = (id1, nurse1, blood1, ct1, bed1) and r2 = (id2, nurse2, blood2, ct2, bed2).

Definition 4 (Workflow Net with Table [25, 45]). A workflow net with table
(WFT-net) is a 13-tuple N = (P, T, F,D,R, rd ,wt , dt , sel , ins , del , upd , guard)
where

1. (P, T, F) is a WF-net;

2. D is a finite set of data elements;

3. R is an initial table;

4. rd : T → 2D is a labeling function of reading data;

5. wt : T → 2D is a labeling function of writing data;

6. dt : T → 2D is a labeling function of deleting data;

7. sel : T → 2R is a labeling function of selecting a record in a table;

8. ins : T → 2R is a labeling function of inserting a record in a table;

Modeling and Analysis of BPMS Using TWFT-Net 1325

9. del : T → 2R is a labeling function of deleting a record in a table;

10. upd : T → 2R is a labeling function of updating a record in a table; and

11. guard : T → GΠ is a labeling function of guards. GΠ = {g1, g2, . . . , gm} is a
set of guards, each of which is a Boolean expression over a set of predicates
Π = {π1, π2, . . . , πn}. Labeling functions ℓ1 : Π → 2D ∪ 2R represents the set
of data elements and table occurring in a predicate, and ℓ2 : GΠ → 2D ∪ 2R

represents the set of data elements and table occurring in a guard.

An example of a WFT-net is the workflow of a healthcare management system
in Figure 2. Its data elements are D = {Id ,Nurse,Blood ,CT ,Bed} and its set of
predicates is Π = {π1 = arrange(nurse), π2 = search(bed)}. Furthermore, π1 =
arrange(nurse) depends on the value of the data item nurse in a table Patient .
If the value of the data item nurse belongs to the Patient , then the π1 is true.
Otherwise, it is false. Guards are GΠ = {g1, g2, g3, g4}. The labeling functions are
ℓ1(π1) = {Nurse, nurse1, nurse2} and ℓ2(g1) = {nurse1, nurse2}. A writing labeling
function is wt(t0) = id, which means that a write operation on data element id is
performed when firing t0, and a select operation on the attribute Id in Patient is
also associated with t0, i.e., sel(t0) = {id1, id2}. Other labeling functions can be
understood similarly.

3.2 Motivating Example

This section gives an example of a healthcare management system [46]. Figure 1
describes the workflow in the system by the Business Process Model and Notation
(BPMN) activity diagrams and Figure 2 is also a transformed WFT-net. We first
review this business process.

A patient with liver and kidney function issues goes to the hospital for physical
examination. First, s/he needs to register and make payment (t0). Then, a doctor
randomly assigns a nurse to the patient (t1). If the nurse is available (t2), then the
nurse will accompany the patient for the examination (t5). Otherwise, the patient
needs to wait for a nurse until one becomes available (t4). Afterward, the nurse
guides the patient for a CT scan (t7) and blood test (t6). The patient waits for
the examination reports (t8) and hands them to the doctor for review (t9). If the
examination reports show that the patient’s health indicators are normal (t10), it
means the patient does not need to be hospitalized (t19). Otherwise, the patient
needs further observation in the hospital (t11). The doctor arranges for the patient
to be admitted and instructs the nurse to assign a hospital bed to the patient (t12).
When a hospital bed becomes available (t13), the nurse arranges for the patient
to be hospitalized directly (t17). Otherwise, there are no available beds (t14), the
nurse notifies the logistics staff to check for available beds until an empty bed is
found (t15), and the patient is admitted smoothly (t17). The patient undergoes the
examination and recovers (t18), and is discharged smoothly (t19).

Generally, soundness is used as a criterion to judge whether a model is correct [9,
10, 47]. A WFT-net shown in Figure 2 satisfies soundness because its end state

1326 J. Song, G. Liu

A1. Register

A2. Arrange
nurse

A3. Nurse

available？

A4. Wait for
nurse

No

A5. Examine
patient

A6. Draw
blood

A7. CT
examination

Yes

A8. Doctor view results

A9. Normal
results

A16. Leave
hospital

A10. Abnormal
results

A11. Arrange
hospitalization

A12. Bed

 available？
A15. Nurse
arrange bed

Yes

A13. Logistics staff
searching for beds

No

A14. Find
available beds

Figure 1. The BPMN model of a healthcare management system

is always reachable. However, analyzing the WFT-net shown in Figure 2 a), we
find that the model has the following problems. When at peak time, the nurses
are always busy, and no additional nurses are available, i.e., the transition t4 is
always waiting. For a patient who needs to examine liver and kidney function, s/he
needs to get blood drawn on an empty stomach. Therefore, the hospital’s blood
draw is usually scheduled in the morning, while the CT examination is not time-
limited. If the patient performs the CT examination activity first, s/he may miss
the morning blood draw appointment specified by the hospital. To complete both
examinations on the same day, the patient needs to finish them before the blood
draw deadline to avoid this situation. When more patients are in the hospital, there
is a shortage of available beds. In such case, the staff is constantly searching for an
available bed (t14), and the patient has to wait for the search results. If there are no
discharged patients, there will not be any available beds, resulting in hospitalized
patients waiting. These problems arise because the WFT-net does not consider time
elements when modeling the system, leading to incorrect verification results when
analyzing the model.

Modeling and Analysis of BPMS Using TWFT-Net 1327
t 0

:R
e
g
is

tr
at

io
n
 a

n
d

 p
a
y
m

e
n
t

w
t:

 i
d

S
E

L
E

C
T

 I
d

F

R
O

M
 P

a
ti

e
n

t
W

H
E

R
E

 I
d

 =
 `

id
`

t 0
:R

e
g
is

tr
at

io
n
 a

n
d

 p
a
y
m

e
n
t

w
t:

 i
d

S
E

L
E

C
T

 I
d

F

R
O

M
 P

a
ti

e
n

t
W

H
E

R
E

 I
d

 =
 `

id
`

g
1

g
2

t 1
:A

rr
an

g
e
 n

u
rs

e

w
t:

 n
u
r
se

S
E

L
E

C
T

 N
u

rs
e

F
R

O
M

 P
a

ti
e
n

t
W

H
E

R
E

 I
d

 =
 `

id
`

t 1
:A

rr
an

g
e
 n

u
rs

e

w
t:

 n
u
r
se

S
E

L
E

C
T

 N
u

rs
e

F
R

O
M

 P
a

ti
e
n

t
W

H
E

R
E

 I
d

 =
 `

id
`

p
1

p
2

t 2
:N

u
rs

e
 a

v
a
il

a
b

le

rd
:

n
u
r
se

S
E

L
E

C
T

 N
u

rs
e

F
R

O
M

 P
a

ti
e
n

t
W

H
E

R
E

 N
u

rs
e

=
 `

n
u
r
se

`

t 2
:N

u
rs

e
 a

v
a
il

a
b

le

rd
:

n
u
r
se

S
E

L
E

C
T

 N
u

rs
e

F
R

O
M

 P
a

ti
e
n

t
W

H
E

R
E

 N
u

rs
e

=
 `

n
u
r
se

`

t 3
:N

u
rs

e
 u

n
av

a
il

a
b

le

rd
:

n
u
r
se

S
E

L
E

C
T

 N
u

rs
e

F
R

O
M

 P
a

ti
e
n

t
W

H
E

R
E

 N
u

rs
e

=
 `

n
u
r
se

`

t 3
:N

u
rs

e
 u

n
av

a
il

a
b

le

rd
:

n
u
r
se

S
E

L
E

C
T

 N
u

rs
e

F
R

O
M

 P
a

ti
e
n

t
W

H
E

R
E

 N
u

rs
e

=
 `

n
u
r
se

`

p
4

p
6

p
5

t 6
:D

ra
w

 b
lo

o
d

rd
:

 B
lo

o
d

S
E

L
E

C
T

B

lo
o

d

F
R

O
M

P

a
ti

e
n

t
W

H
E

R
E

 I
d

 =
 `

id
`

t 6
:D

ra
w

 b
lo

o
d

rd
:

 B
lo

o
d

S
E

L
E

C
T

B

lo
o

d

F
R

O
M

P

a
ti

e
n

t
W

H
E

R
E

 I
d

 =
 `

id
`

p
0

S
ta

rt

t 5
:E

x
a
m

in
e
 p

a
ti

e
n
t

t 5
:E

x
a
m

in
e
 p

a
ti

e
n
t

p
7

p
8

t 8
:W

a
it

in
g

 f
o
r

re
su

lt
s

t 8
:W

a
it

in
g

 f
o
r

re
su

lt
s

p
9

t 9
:D

o
c
to

r
v

ie
w

 r
e
su

lt
s

t 9
:D

o
c
to

r
v

ie
w

 r
e
su

lt
s

p
10

t 1
0
:N

o
rm

a
l

re
s
u
lt

t 1
0
:N

o
rm

a
l

re
s
u
lt

p
18

p
17

p
11

t 1
3
:B

e
d
 a

v
a
il

a
b
le

rd
:

B
e
d

S
E

L
E

C
T

 B
e
d

F

R
O

M

P
a

ti
e
n

t
W

H
E

R
E

 B
e
d

 =
 `

b
e
d
`

t 1
3
:B

e
d
 a

v
a
il

a
b
le

rd
:

B
e
d

S
E

L
E

C
T

 B
e
d

F

R
O

M

P
a

ti
e
n

t
W

H
E

R
E

 B
e
d

 =
 `

b
e
d
`

p
12

t 1
4
:B

e
d

 u
n
a
v

a
il

a
b
le

rd
:

B
e
d

S
E

L
E

C
T

 B
e
d

F

R
O

M

P
a

ti
e
n

t
W

H
E

R
E

 B
e
d

 =
 `

b
e
d
`

t 1
4
:B

e
d

 u
n
a
v

a
il

a
b
le

rd
:

B
e
d

S
E

L
E

C
T

 B
e
d

F

R
O

M

P
a

ti
e
n

t
W

H
E

R
E

 B
e
d

 =
 `

b
e
d
`

p
15

p
13

t 1
7
:N

u
rs

e
 a

rr
a
n

g
e
s

b
e
d

rd
:

B
e
d

S
E

L
E

C
T

 B
e
d

F

R
O

M

P
a

ti
e
n

t
W

H
E

R
E

 I
d

 =
 `

id
`

t 1
7
:N

u
rs

e
 a

rr
a
n

g
e
s

b
e
d

rd
:

B
e
d

S
E

L
E

C
T

 B
e
d

F

R
O

M

P
a

ti
e
n

t
W

H
E

R
E

 I
d

 =
 `

id
`

t 1
1
:A

b
n

o
rm

a
l

re
su

lt
s

t 1
1
:A

b
n

o
rm

a
l

re
su

lt
s

t 1
9
:L

e
a
v

e
 h

o
sp

it
a
l

t 1
9
:L

e
a
v

e
 h

o
sp

it
a
l

p
16

t 1
8
:R

e
c
o
v

e
r

h
e
a
lt

h

t 1
8
:R

e
c
o
v

e
r

h
e
a
lt

h

p
14

t 1
6
:F

in
d
 a

n
 a

v
a
il

a
b
le

 b
e
d

rd
:

B
e
d

U
P

D
A

T
E

 P
a

ti
e
n

t
S

E
T

 B
e
d

 =
 `

b
e
d
`

W
H

E
R

E
 I

d
 =

 `
id

`

t 1
6
:F

in
d
 a

n
 a

v
a
il

a
b
le

 b
e
d

rd
:

B
e
d

U
P

D
A

T
E

 P
a

ti
e
n

t
S

E
T

 B
e
d

 =
 `

b
e
d
`

W
H

E
R

E
 I

d
 =

 `
id

`

t 1
5
:S

e
a
rc

h
 b

e
d

rd
:

B
e
d

t 1
5
:S

e
a
rc

h
 b

e
d

rd
:

B
e
d

g
4

g
3

E
n

d

t 7
:C

T
 e

x
a
m

in
a
ti

o
n

rd
:

C
T

S
E

L
E

C
T

 C
T

F

R
O

M
 P

a
ti

e
n

t
W

H
E

R
E

 C
T

 =
 `

c
t`

t 7
:C

T
 e

x
a
m

in
a
ti

o
n

rd
:

C
T

S
E

L
E

C
T

 C
T

F

R
O

M
 P

a
ti

e
n

t
W

H
E

R
E

 C
T

 =
 `

c
t`

(a

)

t 1
2
:A

rr
an

g
e
 h

o
s
p
it

a
li

z
a
ti

o
n

W
t:

B
e
d

 S
E

L
E

C
T

 B
e
d

F

R
O

M

P
a

ti
e
n

t
W

H
E

R
E

 B
e
d

 =
 `

b
e
d
`

t 1
2
:A

rr
an

g
e
 h

o
s
p
it

a
li

z
a
ti

o
n

W
t:

B
e
d

 S
E

L
E

C
T

 B
e
d

F

R
O

M

P
a

ti
e
n

t
W

H
E

R
E

 B
e
d

 =
 `

b
e
d
`

S
e
t

o
f

p
re

d
ic

a
te

s
P

re
d
ic

a
te

s
G

u
a
rd

fu

n
c
ti

o
n
s

G
u
a
rd

 f
u

n
c
ti

o
n

 s
e
m

a
n
ti

c
s

p
1
:a

rr
a
n
g

e
(n

u
r
se

)
g

1
=

p
1

g
2
=

p

1

N
u
rs

e
 a

v
a
il

a
b

le

N
u
rs

e
 u

n
av

a
il

a
b

le

(b
)

p
2
:s

e
a
rc

h
(b

e
d
)

g
3
=

p
2

g
4
=

p

2

B
e
d
 f

o
u

n
d

B
e
d
 n

o
t

fo
u

n
d

S
e
t

o
f

p
re

d
ic

a
te

s
P

re
d
ic

a
te

s
G

u
a
rd

fu

n
c
ti

o
n
s

G
u
a
rd

 f
u

n
c
ti

o
n

 s
e
m

a
n
ti

c
s

p
1
:a

rr
a
n
g

e
(n

u
r
se

)
g

1
=

p
1

g
2
=

p

1

N
u
rs

e
 a

v
a
il

a
b

le

N
u
rs

e
 u

n
av

a
il

a
b

le

(b
)

p
2
:s

e
a
rc

h
(b

e
d
)

g
3
=

p
2

g
4
=

p

2

B
e
d
 f

o
u

n
d

B
e
d
 n

o
t

fo
u

n
d

Id
N

u
rs

e

(c
)

P
a

ti
e
n

t

id
1

n
u
r
se

1

id
2

n
u
r
se

2

C
T

c
t 1

c
t 2

B
lo

o
d

b
lo

o
d

1

b
lo

o
d

2

B
e
d

b
e
d

1

b
e
d

2

Id
N

u
rs

e

(c
)

P
a

ti
e
n

t

id
1

n
u
r
se

1

id
2

n
u
r
se

2

C
T

c
t 1

c
t 2

B
lo

o
d

b
lo

o
d

1

b
lo

o
d

2

B
e
d

b
e
d

1

b
e
d

2

p
3

t 4
:W

a
it

in
g

 n
u

rs
e

rd
:

n
u
r
se

t 4
:W

a
it

in
g

 n
u

rs
e

rd
:

n
u
r
se

Figure 2. a) A WFT-net; b) guards; c) an initial table

1328 J. Song, G. Liu

A healthcare management system is a typical TBPMS. From an SRG shown
in Figure 3, we can see that the process can be successfully completed because the
activity is not constrained by time. However, some activities are strictly constrained
by time in a TBPMS. If these activities exceed the specified time limit, the activities
immediately stop. For instance, when the blood draw time exceeds the specified
time, the blood draw window will be closed, and the patient cannot complete the
examination. However, the SRG shown in Figure 3 indicates that the activity is not
constrained by time, and the patient can have a blood draw at any time. Therefore,
when simulating the TBPMS with a WFT-net, it cannot accurately describe time-
related activities, leading to incorrect results in system analysis. Literature [48]
provides the firing rule of WFT-net, and this paper does not repeat it.

Through the analysis of motivation cases, we can see that WFT-net ignores the
consideration of time elements, leading to system security risks. Therefore, we need
a new model to describe the system. This model should not only abstractly model
the backend database tables of the system but also consider the influence of time
on activities within the system. A timed workflow net with a table is such a model.

4 TIMED WORKFLOW NET WITH TABLE AND FIRING RULES

In order to accurately describe the operation behavior of TBPMS, we propose
a timed workflow net with the table (TWFT-net) and its transition firing rules
in this section.

4.1 Timed Workflow Net with Table

Definition 5 (Timed workflow net with table). A timed workflow net with table
(TWFT-net) is a 4-tuple N ′ = (N,Const ,Within,Deadline) where:

1. N is a WFT-net;

2. Const : T → N is a label function, which indicates that firing a transition t
requires a-time units to complete (a ∈ N);

3. Within : T → N is a label function, which indicates that firing a transition t
must be within a-time units to complete, otherwise the current activity stops;
and

4. Deadline : T → N is a label function, which indicates that firing a transition t
must be within a-time units to complete, otherwise the process will end.

In a TWFT-net, if the time label function of transition t is Const , it indicates
that the firing time of the t is a fixed value, which we refer to as a static transition.
Tc is a set of transitions with time label function being Const 1. Otherwise, the
firing time of t is a dynamic value and t is called a dynamic transition, and Tv is a
set of dynamic transitions. Figure 4 a) shows a TWFT-net, which describes basic

1 Const [t] can be omitted in the TWFT-net, i.e. Const(t) = [a].

Modeling and Analysis of BPMS Using TWFT-Net 1329

Figure 3. State reachability graph of WFT-net

1330 J. Song, G. Liu

business logic, data elements operation, database table operations, guards, and time
constraints; Figure 4 b) shows the guards; and Figure 4 c) shows an initial table. In
the TWFT-net, Tv = {t4, t6, t15}, Tc = T−Tv, Deadline[t6] = 3, andWithin[t15] = 2.
In the TWFT-net, data element operations and database table operations are the
same as in the WFT-net. Compared with WFT-net, the database table in TWFT-
net also records the actual fire time of each user under the dynamic transition. For
example, at transition t4, a user id1 execution time is Within[t4] = 2, indicating
that id1 requires 2-time units to complete the blood draw activity, which satisfies
the 3-time units specified by the system.

t0:Registration and payment

wt: id

SELECT Id FROM Patient
WHERE Id = `id`

t0:Registration and payment

wt: id

SELECT Id FROM Patient
WHERE Id = `id`

g1 g2

t1:Arrange nurse

wt: nurse

SELECT Nurse FROM Patient
WHERE Id = `id`

t1:Arrange nurse

wt: nurse

SELECT Nurse FROM Patient
WHERE Id = `id`

p1

p2t2:Nurse available

rd: nurse

SELECT Nurse FROM Patient
WHERE Nurse = `nurse`

t2:Nurse available

rd: nurse

SELECT Nurse FROM Patient
WHERE Nurse = `nurse`

t3:Nurse unavailable

rd: nurse

SELECT Nurse FROM Patient
WHERE Nurse = `nurse`

t3:Nurse unavailable

rd: nurse

SELECT Nurse FROM Patient
WHERE Nurse = `nurse`

p4

p6p5

t6:Draw blood

rd: Blood

SELECT Blood FROM
Patient WHERE Id = `id`

t6:Draw blood

rd: Blood

SELECT Blood FROM
Patient WHERE Id = `id`

p0

Start

t5:Examine patient

t5:Examine patient

p7 p8

t8:Waiting for resultst8:Waiting for results

p9

t9:Doctor view resultst9:Doctor view results

p10

t10:Normal result

t10:Normal result

p18

p17

p11

t13:Bed available

rd: Bed

SELECT Bed FROM
Patient WHERE Bed = `bed`

t13:Bed available

rd: Bed

SELECT Bed FROM
Patient WHERE Bed = `bed`

p12

t14:Bed unavailable

rd: Bed

SELECT Bed FROM
Patient WHERE Bed = `bed`

t14:Bed unavailable

rd: Bed

SELECT Bed FROM
Patient WHERE Bed = `bed`

p15
p13

t17:Nurse arranges bed

rd: Bed

SELECT Bed FROM
Patient WHERE Id = `id`

t17:Nurse arranges bed

rd: Bed

SELECT Bed FROM
Patient WHERE Id = `id`

t11:Abnormal results

t11:Abnormal results

t19:Leave hospital

t19:Leave hospital

p16t18:Recover health

t18:Recover health

p14

t16:Find an available bed

rd: Bed

UPDATE Patient SET
 Bed = `bed` WHERE Id = `id`

t16:Find an available bed

rd: Bed

UPDATE Patient SET
 Bed = `bed` WHERE Id = `id`

t15:Search bed

rd: Bed

t15:Search bed

rd: Bed

g4g3

End

t7:CT examination

rd: CT

SELECT CT FROM Patient
WHERE CT = `ct`

t7:CT examination

rd: CT

SELECT CT FROM Patient
WHERE CT = `ct`

(a)

t12:Arrange hospitalization

Wt:Bed

 SELECT Bed FROM
Patient WHERE Bed = `bed`

t12:Arrange hospitalization

Wt:Bed

 SELECT Bed FROM
Patient WHERE Bed = `bed`

Set of
predicates

Predicates
Guard

functions
Guard function semantics

p1:arrange(nurse)
g1=p1

g2=p1

Nurse available

Nurse unavailable

(b)

p2:search(bed)
g3=p2

g4=p2

Bed found

Bed not found

Set of
predicates

Predicates
Guard

functions
Guard function semantics

p1:arrange(nurse)
g1=p1

g2=p1

Nurse available

Nurse unavailable

(b)

p2:search(bed)
g3=p2

g4=p2

Bed found

Bed not found

p3

t4:Waiting nurse

rd: nurse

t4:Waiting nurse

rd: nurse

Within[t4]=[3]

[1]

[1] [1]

[1]

[1]

[1]

Deadline[t6]=[3]

[1]

[1]

[1]

[1]

[1]

[1]

[1][1]

[1]

[1] [1]

Within[t15]=[2]

Id Nurse

(c)

Patient

id1 nurse1

id2 nurse2

CT

ct1

ct2

Blood

blood1

blood2

Bed

bed1

bed2

Within[t4]

2

3

Deadline[t6]

3

4

Within[t15]

1

null

Figure 4. a) A TWFT-net; b) guards; c) an initial table

4.2 The Firing Rules and State Reachability Graph of TWFT-Net

For a TWFT-net, since the time elements have been added to the transitions in a
WFT-net, the state of the TWFT-net should consist of the following five compo-
nents: a marking, data elements operations, the distribution of data item values in
a table, guards, and the time elements.

Definition 6 (State). Let N ′ be a TWFT-net, c = ⟨m, θD, ϑR, σ, I⟩ being a state
of N ′, where

Modeling and Analysis of BPMS Using TWFT-Net 1331

1. m is a marking of N ′;

2. θD : D → {⊥,⊤} is the values of the data elements in the current state. At an
initial state, every data element is undefined which is represented as ⊥. When
a write or a read operation is executed on a data element, it is assigned a value
which means that it is defined and represented by ⊤;

3. ϑR : R → 2A1×A2×···×An represents the values of the data items in a table at state
c. Notice that if an attribute of a record in the table is not assigned or deleted,
then it is null. If an update or an insert operation is executed on an attribute
of a record in the table, then it is assigned a concrete value;

4. σ : Π → {true, false,⊥} represents the assignment of each predicate. Since
each predicate is associated with some data items, after all related data items
of a predicate are written, this predicate is true (T) or false (F). Otherwise,
its value is undefined ; and

5. I = (Ia, Ib) is a 2-tuple of timed label, where Ia represents the value of the actual
time from the initial state to the current state, and Ib indicates the maximum
time value specified by the system from the initial state to the current state.

An initial state of the healthcare management system in Figure 4 is defined to be
c0 = ⟨[start], {Id = ⊥,Nurse = ⊥,Blood = ⊥,CT = ⊥,Bed = ⊥}, {(id1, nurse1,
blood1, ct1, bed1, 2, 3, 1), (id2, nurse2, blood2, ct2, bed2, 3, 4, null)}, (g1 = ⊥, g2 = ⊥,
g3 = ⊥, g4 = ⊥), (0, 0)⟩. It means that in the c0, only place p0 contains a to-
ken, data elements have undefined values, data item values in the table are defined
values, guards have undefined values, and the time values are assigned as 0. After
firing a transition t, if the t is bound to the operation of the relevant data item in
the table, corresponding changes are made to the associated database table. For
convenience of description, we define Ins(R′) as the set of insert operations on data
items in the table R′, Del(R′) as the set of delete operations on data items in the
R′, Sel(R′) as the set of select operations on data items in the R′, Upd(R′) as the
set of update operations that will be performed on the data items in the R′, and
Upd(R′)′ as the set of data items that have been updated. Υ(DI (t)) represents the
value of actual time required at transition t to fire, and DI (t) represents the value
of maximum time allowed at transition t to fire in the system. In summary, we
formalize the transitions’ enabling conditions and firing rules as follows:

Definition 7 (Firing rules for TWFT-net). Let N ′ be a TWFT-net. A transition
t ∈ T is enabled at a state c = ⟨m, θD, ϑR, σ, I⟩, denoted by c[t⟩, if and only if:

1. m[t⟩;
2. Υ(DI(t)) ≤ DI (t);

3. ∀d ∈ ((rd(t) ∪ wt(t)) ∩D) : θD(d) = ⊤;

4. ∀d ∈ (sel(t) ∪ ins(t) ∪ upd(t)) : ϑR = ⊤;

5. σ(guard(t)) = true;

6. ∀t ∈ Tv ∧Υ(DI (t)) ≤ DI (t) : I = (Ia, Ib) = (Υ(DI (t)),Υ(DI (t))); and

1332 J. Song, G. Liu

7. ∀t ∈ Tc : I = (Ia, Ib) = (DI (t),DI (t)).

After firing a transition t, the t is enabled at a state c. A new state c′ =
⟨m′, θ′D, ϑ

′
R, σ

′, I ′⟩ is generated, which is denoted as c[t⟩c′, such as:

1. m[t⟩m′;

2. ∀d ∈ dt(t) : θ′D(d) = ⊥; ∀d ∈ (wt(t) ∪ rd(t)) : θ′D(d) = ⊤;

3. ∀d ∈ wt(t) \ dt(t) : θ′D(d) = ⊤; ∀d ∈ D \ (wt(t) ∪ dt(t)) : θ′D(d) = θD(d);

4. ∀R′.d ∈ ins(t)∧∀Ins(R′)∩R′ ̸= ∅ : ϑ′
R′ = ϑR′ ; ∀R′.d ∈ ins(t)∧∀Ins(R′)∩R′ =

∅ : ϑ′
R′ = ϑR′ ∪ Ins(R′);

5. ∀R′.d ∈ del(t)∧∀Del(R′) ⊆ R′ : ϑ′
R′ = ϑR′\Del(R′); ∀R′.d ∈ del(t)∧∀Del(R′) ⊈

R′ : ϑ′
R′ = ϑR′ ;

6. ∀R′.d ∈ upd(t) ∧ ∀Upd(R′) ⊆ R′ : ϑ′
R′ = (ϑR′ \ Upd(R′)) ∪ Upd(R′)′;

7. ∀R′.d ∈ sel(t)∧ ∀Sel(R′) ⊆ R′ : ϑ′
R′ = ⊤; ∀R′.d ∈ sel(t)∧ ∀Sel(R′) ⊈ R′ : ϑ′

R′ =
⊥;

8. ∀g ∈ Gπ ∧ ℓ2(g) ∈ ((wt(t) ∨ rd(t) ∨ dt(t)) ∧ (upd(t) ∨ ins(t) ∨ sel(t) ∨ del(t))) :
σ′(g) = {true, false};

9. ∀g ∈ Gπ ∧ ℓ2(g) /∈ ((wt(t) ∨ rd(t) ∨ dt(t)) ∧ (upd(t) ∨ ins(t) ∨ sel(t) ∨ del(t))) :
σ′(g) = ⊥;

10. ∀g /∈ Gπ ∧ (ℓ2(g) ∩ (wt(t) ∨ rd(t))) = ∅ : σ′(g) = σ(g);

11. ∀t ∈ Tv ∧Υ(DI (t)) ≤ DI (t) : I ′ = (I ′a, I
′
b) = (Ia+Υ(DI(t)), Ib+Υ(DI(t))); and

12. ∀t ∈ Tc : I
′ = (I ′a, I

′
b) = (Ia + DI (t), Ib + DI (t)).

For example, given an initial state c0 = ⟨[start], {Id = ⊥,Nurse = ⊥,Blood =
⊥,CT = ⊥,Bed = ⊥}, {(id1, nurse1, blood1, ct1, bed1, 2, 3, 1), (id2, nurse2, blood2,
ct2, bed2, 3, 4, null)}, (g1 = ⊥, g2 = ⊥, g3 = ⊥, g4 = ⊥), (0, 0)⟩ of the TWFT-net
in Figure 3. According to Definition 7, a transition t0 is enabled at c0. After firing
t0, a token in start will be moved into p1. Since only a write operation is per-
formed on the data element id at t0, id is a defined value, i.e., θid = id1 or θid = id2,
and other data elements remain undefined values. The database table is Patient =
{(id1, nurse1, blood1, ct1, bed1, 2, 3, 1), (id2, nurse2, blood2, ct2, bed2, 3, 4, null)} since
t1 is to select from the Patient but not to change it. Since the guards are unrelated to
data element id , they are still undefined. Due to t0 is bound to a time element, time
will change. When θid = id1, the firing time of the t0 is Const(t0) = 1, so I = (1, 1).
Similarly, when θid = id2, we obtain I = (1, 1). Therefore, firing t0 generates two
new states: c1 = ⟨[start], {id1}, {(id1, nurse1, blood1, ct1, bed1, 2, 3, 1), (id2, nurse2,
blood2, ct2, bed2, 3, 4, null)}, (g1 = ⊥, g2 = ⊥, g3 = ⊥, g4 = ⊥), (1, 1)⟩; and c2 =
⟨[start], {id2}, {(id1, nurse1, blood1, ct1, bed1, 2, 3, 1), (id2, nurse2, blood2, ct2, bed2,
3, 4, null)}, (g1 = ⊥, g2 = ⊥, g3 = ⊥, g4 = ⊥), (1, 1)⟩.

At state c1, according to Definition 7, t1 is enabled at c1. After firing t1, since t1
performs writing operation on data element Nurse, the guards g1 and g2 are asso-
ciated with Nurse, generating two states: c2 = ⟨[p2], {id1, nurse1}, {(id1, nurse1,

Modeling and Analysis of BPMS Using TWFT-Net 1333

Algorithm 1 A method to generate an SRG

Input: TWFT-net N ′

Output: SRG

1: Take c0 as the root node of N ′ and mark it as new ;
2: while there is a node marked new do
3: Select any node labeled as new and denoted it by c;
4: if there is a directed path from c0 to c′ and c′ is the same as c then
5: Mark c as old , and return to step 2;

6: if ∀t ∈ T : ¬c[t⟩ then
7: Erase the new label from node c, and return to step 2;

8: for t ∈ T do
9: if t ∈ Tc ∧ c[t⟩ then

10: According to Definition 7, calculate c[t⟩c′;
11: if t ∈ Tv ∧Υ(DI (t)) ≤ DI(t) ∧ c[t⟩ then
12: According to Definition 7, calculate c[t⟩c′;
13: else if DI (t).name = Within then
14: continue;
15: else
16: break;

17: if c′ already exists in the directed path from c0 then
18: Draw a directed arc from c to c′, and mark the side of the arc as t;
19: else
20: Generate a node c′ and mark it as new in SRG(N ′). Then, draw

a directed arc from c to c′, marking the side of the arc as t and Υ(DI (t)). Erase
the new label from node c, and return to step 2.

blood1, ct1, bed1, 2, 3, 1), (id2, nurse2, blood2, ct2, bed2, 3, 4, null)}, (g1 = T, g2 = F,
g3 = ⊥, g4 = ⊥), (2, 2)⟩, and c25 = ⟨[p2], {id1, nurse}, {(id1, nurse1, blood1, ct1, bed1,
2, 3, 1), (id2, nurse2, blood2, ct2, bed2, 3, 4, null)}, (g1 = F, g2 = T, g3 = ⊥, g4 = ⊥),
(2, 2)⟩.

Let N ′ be a TWFT-net, according to transition enabling conditions and fir-
ing rules, we propose an algorithm for generating an SRG of the N ′, as shown in
Algorithm 1.

We assume that the number of nodes in a TWFT-net is n and the number of
iterations in the while loop is m, and then the time complexity of the Algorithm 1 is
O(|n| • |m|). In Algorithm 1, the labeling of the nodes changes gradually during the
loop according to the conditions, which eventually leads to no node being labeled
as new , making the loop end. Therefore, Algorithm 1 can be terminated.

Based on Algorithm 1, we generated an SRG of the TWFT-net, as shown in
Figure 5. Since a user id2 did not complete the blood draw within the specified time,
it results in the failure of the entire physical examination process, leading to process
termination. Consequently, compared with the WFT-net, the SRG generated by the

1334 J. Song, G. Liu

TWFT-net has a total reduction of 38 invalid states. We can know from the SRG,
as shown in Figure 5, that TWFT-net can accurately reflect the operating behavior
of the actual system when describing the TBPMS. The SRG shows that the id2 has
no successor states at transition t4. It occurs because id2 undergoes the blood draw
after a delay of 4-time units, significantly exceeding the system’s specified time. As
a result, the system automatically stops the blood draw, preventing the user from
completing subsequent examinations on the same day and terminating the entire
process. In contrast, since the time constraints are not considered in the WFT-net,
users can undergo examinations at any time, which contradicts the realistic scenario.
As a result, the SRG generated by the WFT-net without time constraints (as shown
in Figure 3) contains many invalid states. However, the TWFT-net considers the
influence of time on the workflow system, effectively avoiding such situations.

(t0,1)

(t1,1)

(t2,1)

(t5,1)

(t6,3)

(t7,1)

(t8,1)

(t9,1)

(t10,1)

(t19,1)

(t11,1)

(t3,1)

(t7,1)

(t6,3)

(t4,3)
(t5,1)

(t6,3)

(t7,1)

(t6,3)

(t7,1)

(t8,1)

(t19,1)

(t10,1)

(t12,1)

(t13,1)

(t17,1)

(t18,1)

(t19,1)

(t19,1)

(t18,1)

(t17,1)

(t16,1)

(t15,2)

(t14,1)

(t9,1) (t11,1)

(t12,1)

(t13,1)

(t17,1)

(t18,1)

(t19,1)

(t1,1)

(t2,1)

(t5,1)

(t7,1)

(t3,1)

(t4,3)

(t5,1)

(t7,1)

(t19,1)

(t18,1)

(t17,1)

(t16,1)

(t15,2)

(t14,1)

Figure 5. State reachability graph of TWFT-net

Modeling and Analysis of BPMS Using TWFT-Net 1335

5 TIMED DATABASE COMPUTATION TREE LOGIC AND SOUND-
NESS ANALYSIS

Model checking is a technique used for automatically verifying the soundness of
a workflow model. Its basic idea is to traverse an SRG of the model to check if
the model satisfies the given design requirements. Generally speaking, we will verify
whether the structure and dynamic behavior of a TWFT-net are consistent with the
design requirements of the modeled system and detect whether the system termi-
nates at an acceptable state. Therefore, in order to verify the soundness of a TBPMS,
this section presents a model checking method based on timed database computation
tree logic (TDCTL). First, we propose a TDCTL model checking method and define
a soundness property of TWFT-net. Then, the soundness definition is transformed
into corresponding TDCTL formulas. Finally, the satisfaction of TDCTL formulas
in the SRG is verified. If satisfied, it indicates that the system satisfies the design
requirements; otherwise, counterexamples are provided. Thus, the issue of system
soundness is transformed into the satisfiability problem of TDCTL formulas. In the
following sections, we will introduce the relevant concepts of TDCTL and soundness.

5.1 Syntax and Semantics of TDCTL

The soundness of a TBPMS depends not only on control flow and data flow but also
on the precise execution time of various activities within the system. Therefore, this
paper proposes an approach called TDCTL to describe the design requirements of
the TBPMS. The syntax of TDCTL is based on TWFT-net, and the semantics of
TDCTL are explained using the SRG of TWFT-net. The SRG structure can be
defined as a 5-tuple SRG = ⟨AP , C, c0,ℜ, L⟩, where:

1. AP is a finite set of atomic propositions;

2. C is a finite set of states;

3. c0 ∈ C is an initial state;

4. ℜ ⊆ C × C is a transition relation; and

5. L : C → 2AP is a labeling function used to label the set of atomic propositions
satisfied on a state.

An SRG of TWFT-net, as shown in Figure 5, a set of atomic propositions AP =
{p0, . . . , p18, id1, nurse1, blood1, ct1, bed1, 2, 3, 1, id2, nurse2, blood2, ct2, bed2, 3, 4},
a set of states C = {c0, c1, . . . , c58}, a labeling function L(c0) = {p0, {(id1, nurse1,
blood1, ct1, bed1, 2, 3, 1), (id2, nurse2, blood2, ct2, bed2, 3, 4, null)}, and a transition re-
lation is ℜ = {(c0, c1), (c0, c2), . . . , }.

Giving a TWFT-net N ′ = (N,DI), the TDCTL syntax is defined as follows:

Definition 8 (Syntax of TDCTL). TDCTL is defined with the following grammar:
φ ::= true|p|Dj

i |¬φ|φ∧φ1|EXφ|EGφ|EφU△aφ1|AφU△aφ1|∃Dj
i ∈ R, [φ(Dj

i)△a]|∀Dj
i

1336 J. Song, G. Liu

∈ R, [φ(Dj
i)△a], where △ ∈ {<,≤,=,≥, >}, p ∈ P , Dj

i ∈ R, a ∈ R is natural
numbers, φ and φ1 are TDCTL formulas.

Dj
i represents the data item of the jth dimensional vector of the ith record in

the table, e.g., Figure 4 c) shows an initial table Patient = {(id1, nurse1, blood1, ct1,
bed1, 2, 3, 1), (id2, nurse2, blood2, ct2, bed2, 3, 4, null)}, we can compute D2

1 = nurse1.
Other basic operators are derived from the above ones: deadlock ≡ ¬EXtrue,
EF△aφ ≡ E(trueU△aφ), AF△aφ ≡ A(trueU△aφ), AGφ ≡ ¬EF¬φ, AXφ ≡
¬EX¬φ ∧ ¬deadlock , and φ → φ1 ≡ ¬φ ∨ φ1.

Definition 9 (Semantics of TDCTL). Given an SRG of TWFT-net, φ is a TDCTL
formula, and SRG, c |= φ means that this formula is satisfied at state c of the SRG.
If the SRG is clear from the context, it can be omitted. The relation |= is recursively
defined as follows:

1. c |= true;

2. c |= p ⇔ p ∈ L(c);

3. c |= Dj
i ⇔ Dj

i ∈ L(c);

4. c |= ¬φ ⇔ c ̸|= φ;

5. c |= φ1 ∧ φ2 ⇔ c |= φ1 and c |= φ2;

6. c |= ∃Dj
i ∈ R, [φ(Dj

i)△a] ⇔ ∃Dj
i ∈ R and c |= φ(Dj

i)△a;

7. c |= ∀Dj
i ∈ R, [φ(Dj

i)△a] ⇔ ∀Dj
i ∈ R and c |= φ(Dj

i)△a;

8. c |= EXφ ⇔ ∃(c, c1) ∈ ℜ(c) and c1 |= φ;

9. c |= EGφ ⇔ there exists some paths ⟨c1, c2⟩⟨c2, c3⟩ . . . , and for all ci along the
path, we have ci |= φ, where c1 = c;

10. c |= E(φ1U△aφ2) ⇔ for some paths ⟨c1, c2⟩ . . . ⟨ck−1, ck⟩, we have: (1) ∃k ≥
0, π(k) |= φ2; (2) ∀0 ≤ j < k, π(j) |= φ1; (3) ck.Ia △ a; and

11. c |= A(φ1U△aφ2) ⇔ for all paths ⟨c1, c2⟩ . . . ⟨ck−1, ck⟩, we have: (1) ∃k ≥
0, π(k) |= φ2; (2) ∀0 ≤ j < k, π(j) |= φ1; (3) ck.Ia △ a.

TDCTL expands upon CTL by adding database table operations and specific
time element constraints to CTL. It describes design requirements related to time
and database tables in TBPMS using quantified CTL temporal operators. Generally,
we express design requirements using TDCTL formulas φ. When φ is valid in a
TWFT-net, it means that the calculation result of φ on the SRG of TWFTC-net is
true, indicating that the system satisfies the design requirements. For example, in
the TBPMS, as shown in Figure 4, we require users to finally be able to complete the
examination when they go to the hospital. This design requirement can be described
using a TDCTL formula φ1 = AG(∀id ∈ R, [id ̸= ∅] → AFp18). From the SRG
shown in Figure 5, we can see that id2 exceeds the time specified by the system
during the blood draw, resulting in id2 being unable to complete the examination.
Therefore, φ1 is incorrect.

Modeling and Analysis of BPMS Using TWFT-Net 1337

Algorithm 2 Computation of the Sat(φ)

Input: A TWFT-net N ′, SRG, TDCTL formula φ
Output: Sat(φ) = {c ∈ C|c |= φ};
1: if φ == true then
2: Return C;

3: if φ == p ∨Dj
i then

4: Return ({c|φ ∈ L(c)});
5: if φ == ¬φ1 then
6: Return C-Sat(φ1);

7: if φ == φ1 ∧ φ2 then
8: Return Sat(φ1) ∩ Sat(φ2);

9: if φ == EXφ1 then
10: Return {c ∈ C|(c, c′) ∈ ℜ ∧ c′ ∈ Sat(φ1)};
11: if φ == EGφ1 then
12: Return SatEG(φ1);

13: if φ == ∃Dj
i ∈ R, [φ1(D

j
i)△a] then

14: Return Sat(∃, φ1(D
j
i),△, a);

15: if φ == ∀Dj
i ∈ R, [φ1(D

j
i)△a] then

16: Return Sat(∀, φ1(D
j
i),△, a);

17: if φ == E(φ1U△aφ2) then
18: Return SatEU(φ1, U, a, φ2);

19: if φ == A(φ1U△aφ2) then
20: Return SatAU(φ1, U, a, φ2);

5.2 Model Checking Algorithms of TDCTL

This section gives TDCTL model checking algorithms based on TWFT-net. First,
we generate an SRG of the TWFT-net, where C is the set of states in the SRG. Then,
we provide a TDCTL formula φ that describes the properties of the system. Finally,
we identify all state sets in C that satisfy the formula φ and denote them as Sat(φ).
Post(c) represents the successor set of state c and Pre(c) represents the predecessor
set of state c. If the formula φ is true on the SRG, it means that the system satisfies
the property specifications. Algorithm 2 shows the process of calculating Sat(φ). It
recursively calculates the state sets that satisfy each subformula of φ, leading to the
final state set Sat(φ).

In Algorithm 2, except for the last four operators, the rest are traditional CTL
operators, so they will not be described in detail. Interested readers can refer
to [49, 16, 50]. This section only provides the Sat(φ) solving algorithm for operators
related to data items and time. The algorithms for calculating Sat(∃, φ(Dj

i),△, a),
Sat(∀, φ(Dj

i),△, a), SatEU(φ1, U, a, φ2), and SatAU(φ1, U, a, φ2) can be found in Al-
gorithm 3, Algorithm 4, Algorithm 5, and Algorithm 6, respectively.

1338 J. Song, G. Liu

Algorithm 3 shows the detailed steps for calculating Sat(∃, φ(Dj
i),△, a). First,

we need to compute set Sat(φ(Dj
i)). Then, the algorithm iterates through each state

c ∈ Sat(φ(Dj
i)), if there exists c satisfies c.Dj

i△a, then add c to Sat(c). Finally, it
returns Sat(c).

Algorithm 3 Computation of the Sat(∃, φ(Dj
i),△, a)

Input: A TWFT-net N ′, SRG, TDCTL formula φ1

Output: Sat(∃, φ(Dj
i),△, a);

1: Sat(φ(Dj
i)) = {c ∈ C|c.Dj

i ∈ R};
2: Sat(c) = {c|∃c ∈ Sat(φ(Dj

i)) : c.D
j
i△a}.

3: Return Sat(c).

For example, we calculate a TDCTL formula φ = ∃id .time(Ib) ∈ R, [id .time(Ib)
≤ 3] based on an SRG as shown in Figure 5, as follows:

1. Sat(φ1) = Sat(id .time(Ib)) = {c ∈ C|c.id .time(Ib) ∈ R} = {c0, c1, . . . , c58}; and
2. Sat(φ) = {c|∃c.id .time(Ib) ∈ Sat(φ1) : c.id .time(Ib)△a} = {c0, c1, c2, c3, c25, c26,

c49, c50, c51, c54, c55}.

Algorithm 4 shows the detailed steps for calculating Sat(∀, φ(Dj
i),△, a). First,

we need to compute set Sat(φ(Dj
i)). Then, the algorithm iterates through each

state c ∈ Sat(φ(Dj
i)), if all states c satisfy c.Dj

i△a, then add c to Sat(c). Finally, it
returns Sat(c).

Algorithm 4 Computation of the Sat(∀, φ(Dj
i),△, a)

Input: A TWFT-net N ′, SRG, TDCTL formula φ
Output: Sat(∀, φ(Dj

i),△, a);

1: Sat(φ(Dj
i)) = {c ∈ C|c.Dj

i ∈ R};
2: Sat(c) = {c|∀c ∈ Sat(φ(Dj

i)) : c.D
j
i△a}.

3: Return Sat(c).

For example, we calculate a TDCTL formula φ = ∀id .time(Ib) ∈ R, [id .time(Ib)
≤ 3] based on an SRG. Compared with Algorithm 3, the Algorithm 4 has stronger
constraints and requires that all states satisfy φ. The process of calculating Sat(φ)
based on the SRG, as shown in Figure 5, is as follows:

1. Sat(φ1) = Sat(id .time(Ib)) = {c ∈ C|c.id .time(Ib) ∈ R} = {c0, c1, . . . , c58}; and
2. Sat(φ) = {c|∀c.id .time(Ib) ∈ Sat(φ1) : c.id .time(Ib)△a} = ∅.

Algorithm 5 calculates the set of states that satisfy E(φ1U△aφ2) based on the
traditional CTL model checking algorithm, denoted as SatEU(φ1,△, a, φ2). First,
the algorithm initializes the sets Q1, Q2, Qold, and Qnew as empty, then iterating
through states c satisfying φ2 and c.time△a, adding them to Qnew, and updating

Modeling and Analysis of BPMS Using TWFT-Net 1339

Q2 to match Qnew. Subsequently, states c satisfying φ1 and c.time△a are added to
Q1. During the while loop where Qold ̸= Qnew, Qold is updated to Qnew, and a new
Qnew = Q2 ∪ (Q1 ∩ {c ∈ C|Post(c.time△a) ∩Qnew ̸= ∅}) is computed. Finally, the
algorithm returns Qold as the output result.

Algorithm 5 Computation of the SatEU(φ1,△, a, φ2)

Input: A TWFT-net N ′, SRG, TDCTL formula φ
Output: SatEU(φ1,△, a, φ2);

1: Q1 = Q2 = Qold = Qnew = ∅;
2: for c ∈ Sat(φ2) ∧ c.time△a do
3: Qnew = Qnew ∪ c;

4: Q2 = Qnew

5: for c ∈ Sat(φ1) ∧ c.time△a do
6: Q1 = Q1 ∪ c;

7: while Qold ̸= Qnew do
8: Qold = Qnew;
9: Qnew = Q2 ∪ (Q1 ∩ {c ∈ C|Post(c.time△a) ∩Qnew ̸= ∅});

10: Return Qold.

For a TBPMS illustrated in Figure 4, we require that once a user completes
the payment, they must undergo a blood draw within 8-time units. This design
requirement can be described using a TDCTL formula φ = E(∃id ∈ RU≤8p6).
Based on the SRG shown in Figure 5 and Algorithm 5, we calculate the Sat(φ)
process as follows:

1. Sat(φ2) = Sat(p6) = {c5, c6, c29, c30};
2. Sat(φ2 ∧ φ2.c.time ≤ 8) = {c5, c6};
3. Sat(φ1) = Sat(∃id ∈ R) = {c0, c1, . . . , c58};
4. Sat(φ1 ∧ φ1.c.time ≤ 8) = {c0, . . . , c7, c25, . . . , c28, c31, c49, . . . , c58};
5. Qold = Sat(pre(c5)) ∩ Sat(φ1 ∧ φ1.c.time ≤ 8) = {c0, c1, c2, c3, c4, c5}; and
6. Sat(φ) = Qold ∪ (Sat(pre(c6)) ∩ Sat(φ1 ∧ φ1.c.time ≤ 8)) = {c0, c1, c2, c3, c4, c5}.

Algorithm 5 calculates the set of states that satisfy E(φ1U△aφ2) based on the
traditional CTL model checking algorithm, denoted as SatEU(φ1,△, a, φ2). First,
the algorithm initializes the sets Q1, Q2, Qold, and Qnew as empty, then iterating
through states c satisfying φ2 and c.time△a, adding them to Qnew, and updating Q2

to match Qnew. Subsequently, states c satisfying φ1 and c.time△a are added to Q1.
During the while loop where Qold ̸= Qnew, Qold is updated to Qnew, and a new
Qnew = Q2 ∪ (Q1 ∩ {c ∈ C|Post(c.time△a) ∩Qnew ̸= ∅}) is computed. Finally, the
algorithm returns Qold as the output result.

Algorithm 6 shows a process of computing SatAU(φ1,△, a, φ2). First, the algo-
rithm initializes the sets Q1, Q2, Qold, and Qnew as empty, then iterating through

1340 J. Song, G. Liu

states c satisfying φ2 and c.time△a, adding them to Qnew, and updating Q2 to
match Qnew. Subsequently, states c satisfying φ1 and c.time△a are added to Q1.
During the while loop where Qold ̸= Qnew, Qold is updated to Qnew, and a new
Qnew = Q2 ∪ (Q1 ∩ {c ∈ C|Post(c.time△a) ⊆ Qnew}) is computed. Finally, the
algorithm returns Qold as the output result.

Algorithm 6 Computation of the SatAU(φ1,△, a, φ2)

Input: A TWFT-net N ′, SRG, TDCTL formula φ
Output: SatAU(φ1,△, a, φ2);

1: Q1 = Q2 = Qold = Qnew = ∅;
2: for c ∈ Sat(φ2) ∧ c.time△a do
3: Qnew = Qnew ∪ c;

4: Q2 = Qnew

5: for c ∈ Sat(φ1) ∧ c.time△a do
6: Q1 = Q1 ∪ c;

7: while Qold ̸= Qnew do
8: Qold = Qnew;
9: Qnew = Q2 ∪ (Q1 ∩ {c ∈ C|Post(c.time△a) ⊆ Qnew});

10: Return Qold.

For a TBPMS illustrated in Figure 4, we require that all users undergo a blood
draw within 8-time units after completing their payment. This design requirement
can be described using the TDCTL formula φ = A(∀id ∈ RU≤8p6). Based on the
SRG shown in Figure 5 and Algorithm 6, we calculate the Sat(φ) process as follows:

1. Sat(φ2) = Sat(p6) = {c5, c6, c29, c30};

2. Sat(φ2 ∧ φ2.c.time ≤ 8) = {c5, c6};

3. Sat(φ1) = Sat(∀(id ∈ R)) = ∅;

4. Sat(φ1 ∧ φ1.c.time ≤ 8) = ∅;

5. Qold = Sat(pre(c5)) ∩ Sat(φ1 ∧ φ1.c.time ≤ 8) = ∅; and

6. Sat(φ) = Qold ∪ (Sat(pre(c6)) ∩ Sat(φ1 ∧ φ1.c.time ≤ 8)) = ∅.

Since user id2 took more time than the system’s specified limit (4 > 3) during
the blood draw, the blood test failed. Therefore, the TDCTL formula φ is not
satisfied.

We assume that n is the size of the set C, m is the size of the set Sat(φ(Dj
i)),

x is the size of the set Sat(φ1), and y is the size of the set Sat(φ2). Then the time
complexity of Algorithm 3 is O(|m| + |n|), the time complexity of Algorithm 4 is
O(|n|), and the time complexity of Algorithm 5 and 6 are both O(|n|+ |x|+ |y|).

Modeling and Analysis of BPMS Using TWFT-Net 1341

5.3 Soundness Verification

Soundness is employed extensively to define the correctness of workflow models [51,
50, 52]. However, traditional soundness is only considered from the control flow
perspective. It requires every activity in a workflow model to be executed except
for requiring the workflow model to be terminated. For a TBPMS, its correctness
depends on control flow, data flow, and time elements. Therefore, this paper rede-
fines soundness, which primarily consists of three components: logical control layer,
data design requirements, and time constraints. The redefined soundness not only
preserves the traditional definition but also provides effective guarantees for the
workflow model in terms of data flow and time constraints.

Definition 10 (Soundness). Let N ′ be a TWFT-net with initial state c0 = ⟨m0, θ0,
ϑ0, σ0, I0⟩ and final state cend = ⟨mend, θend, ϑend, σend, Iend⟩. Let R(N ′) be a set of
reachable states of N ′ and ι stands for a firing sequence. Θ = (φ1, φ2, . . . , φn) is
a set of TDCTL formulas representing data design requirements and time constraint
requirements of N ′. Cend is a set of end states, cend is a end state, and pend is a end
place. τ stands for the time sequence. A TWFT-net is sound if all the following
properties hold:

1. P1. ∀c ∈ R(N ′), ∃Cend ∈ cend : c
(ι,τ)−−→ cend;

2. P2. ∀c ∈ R(N ′) : c(M) ≥ c(pend) ⇒ c(m) = c(pend); and

3. P3. ∀φi ∈ Θ, N ′ ⊨ φi.

The first condition means that for each non-end state, there exists a reachability
path from it to an end state. The second condition means that the end state is always
reachable and there is no additional token in the N ′. The last condition means that
N ′ satisfies all TDCTL formulas.

Referring to the example in Figure 4, TWFT-net is not sound since P1 and
P2 do not hold. When a patient id2 misses a blood draw, the examination stops,
and the activity cannot reach the final state. From an SRG shown in Figure 5, we
can see that since id1 completes all the examinations within the specified time, id1

reaches the final state. However, id2 does not. Compared to the SRG in Figure 3,
Figure 5 considers the time constraints. Therefore, TWFT-net is more accurate in
describing TBPMS.

Model checking techniques are widely used for workflow system verification.
Leveraging the syntax and semantics of TDCTL, we convert the soundness property
into corresponding TDCTL formulas. Consequently, the verification of soundness
becomes a matter of assessing whether the logical formulas specified in TDCTL are
satisfied by the system, as shown in Table 1.

6 TOOL AND EXPERIMENTS

In this section, we evaluate our method and tool through relevant experiments.

1342 J. Song, G. Liu

Property Explain TDCTL formula

P1
There exist some reachability paths where
the states along those paths can reach
the final state.

φp1 = AG(EF cend)

P2
In all reachability paths, the end state can
be reached without deadlock states.

φp2 = AF (Cend.p = pend)

P3
N ′ satisfies all data design requirements
and time design requirements.

φp4 = ∀φi ∈ Θ, N ′ ⊨ φi

Table 1. TDCTL formula corresponding to soundness

Section 6.1 introduces our tool and development environment, and shows our
tool through motivating example. In Section 6.2, we conduct experiments on the
motivating example using various performance metrics to demonstrate the effective-
ness and feasibility of our method and tool. In Section 6.3, we conduct experiments
on established benchmark cases, comparing our method with existing modeling ap-
proaches to further highlight its superiority.

6.1 Tool

We have implemented our algorithm and developed a tool for TWFT-net model
checking. Our experiments and development environment were conducted on a PC
with an Intel Core i5-8500 CPU (3.00GHz) and 8.0GB of memory. Our tool is
written in the C++ programming language. The input to our tool includes two text
files: one describing the TWFT-net and the other specifying the design requirements
using TDCTL formulas. After our tool reads the text files, it automatically outputs
the verification results for TDCTL formulas and displays the number of states and
arcs in the SRG. Figure 6 a) shows the text file of the WFT-net in Figure 2, 6 b)
shows an initial table, 6 c) shows the guards, 6 d) represents a TDCTL formula
φ1 = A(∃(id1 ∈ R, id2 ∈ R)Up5) with time is 0, and 6 e) shows the experimental
verification results 2.

A similar analysis, Figure 7 (a) shows the text file of a TWFT-net from Figure 4;
7 (b) shows an initial table, 7 (c) shows the guards; 7 (d) presents a TDCTL formula
φ2 = A(∃(id1 ∈ R, id2 ∈ R)U≤15p5) with a time not equal to 0; and 7 (e) shows
the experimental verification results (the red dashed lines in Figure 7 pertain to
the time constraints). By analyzing the experimental results shown in Figure 6 (e),
we find that the SRG consists of 97 states and 100 state arcs. Since the WFT-
net is not considered with time constraints, the φ1 formula is evaluated as true.
Compared with Figure 6 (e), the experimental results in Figure 7 (e) show a total of
59 states and 60 state arcs. Since the time constraints considered in the TWFT-net
resulted in the user id2 process being incomplete, the TDCTL formula φ2 verification
result is false. It confirms the accuracy of our previous analysis. Because id2 does

2 In Figure 6, E represents ∃, BT represents ∈, and represents ∧, and not represents ¬.

Modeling and Analysis of BPMS Using TWFT-Net 1343

(a)

(b)

(d)

(c)

(e)

Figure 6. a) A WFT-net; b) an initial table; c) guards; d) a TDCTL formula; e) the
verification result

not complete the blood draw before the hospital’s specified deadline, id2 could not
complete the blood draw and subsequent examination. However, in the WFT-net,
where time constraints are not considered, id2 is not bound by any time constraints,
meaning the blood draw can be completed at any time. It is contrary to the actual
hospital procedures.

6.2 Soundness Verification

To validate the effectiveness of our method and demonstrate that TDCTL can de-
scribe more design requirements. We convert soundness definitions into the cor-
responding TDCTL formulas. We have introduced 6 performance metrics (PMs)
based on the motivating example. These PMs correspond to the design require-

1344 J. Song, G. Liu

(b)

(a)

(e)(d)

(c)

Figure 7. a) A TWFT-net; b) an initial table; c) guards; d) a TDCTL formula; (e) the
verification result

ments in soundness and convert them into TDCTL formulas (researchers can also
write corresponding PMs based on their design requirements). We have converted
property P1 into PM1 and P2 into PM2. As for property P3, since it involves data
design requirements and time constraints, P3 consists of PM3, PM4, and PM5, i.e.,
P3 = {PM 3,PM 4,PM 5}. We use our tool to validate various PMs and give their
verification results. Detailed information about the PMs and experimental results
are shown in Table 2.

The experimental results from Table 2 indicate that the PM2 and PM5 have
incorrect calculations. It is because id2 missed the blood draw time, resulting in a
process failure.

Modeling and Analysis of BPMS Using TWFT-Net 1345

Proper-
ties

PMs TDCTL formulas Examples Results

P1 PM1 φ1 = AG(EFcend) φ1 = AG(EFc24) True
P2 PM2 φ2 = AFpend φ2 = AFp18 False

P3
PM3

φ3 = AG(∀(d1 ∈ R, d2 ∈ R),
[d1 ̸= d2] → di1 ̸= di2)

φ3 = AG(∀(id1 ∈ R, id2 ∈ R),
[id1 ̸= id2] → id1.blood1 ̸= id2.blood2)

True

PM4 φ4 = A(∀(d1 ∈ R, d2 ∈ R)U≤time[p]) φ4 = A(∀(id1 ∈ R, id2 ∈ R)U≤40[p18]) False
PM5 φ5 = AF≤time(d1 ∈ R → pi) φ5 = AF≤15(id1 ∈ R → p5) True

Table 2. Performance Metrics

6.3 Experiments

In this part, we further do some experiments to compare the existing models in state
space (i.e., the number of states and arcs), the construction time of SRG, and the
soundness verification result. These experiments use the following benchmarks:

B1 is a system for merchants to handle customer complaints. It is required to
conduct a questionnaire survey and evaluate the complaints within a specified
time [53].

B2 is a system for merchants to handle orders. It represents a simple order pro-
cessing, with four participants: the customer, the Front-office Service, The Pro-
duction department and the Invoicing [54].

B3 is an example of a company seeking monthly write-ups from a selected set of
employees for publication in its newsletter or on its website [55].

B4 is an online shopping system, and merchants will determine whether there is
a malicious purchase based on the customer’s credibility [56].

B5 is an electronic document management system. The system presented is used
to manage medical certificates, check deadlines and validate documents [36].

B6 is a case of a loan application process where the staff decides whether to approve
the loan based on the lender’s information [19].

B7 is a job interview system. Human resources select candidates from among ap-
plicants [13]3.

B8 is our motivating example.

For each benchmark, we first use WFD-net, WFT-net, and TWFT-net to model
these benchmarks in our tool and then respectively obtain their SRG. Furthermore,
the soundness verification result is detected based on SRG. Each benchmark is tested
10 times, and the result of running time is their average.

Table 3 is the result of our experiments. It shows each model’s state scale,
construction time, and soundness results. It can be found from the experimental
results in the table that since BM1, BM4, BM6, and BM8 did not consider the time
elements, there are errors in the process model. Specifically, the reason for the error
of BM4 is also related to the control flow in the model. After a buyer purchases a

3 https://dbis.ipd.kit.edu/research 2134.php

1346 J. Song, G. Liu

BM

Model SRG Sound

TimeWFD-net
WFT-
net

TWFT-
net

WFD-net WFT-net TWFT-net WFD
-net

WFT
-net

TWFT
-net|T | |P | |F | |D| |G| |R| |DI (t)| State Arcs State Arcs State Arcs

BM1 11 11 24 4 0 3 11 25 49 79 135 72 122 Yes Yes No 22.54
BM2 12 13 26 6 2 3 12 18 21 30 35 30 35 Yes Yes Yes 29.581
BM3 16 16 34 8 4 3 16 47 54 99 116 139 162 Yes Yes Yes 31.715
BM4 17 16 36 14 6 2 17 44 65 87 130 87 130 No No No 29.067
BM5 10 10 20 5 2 2 10 13 12 25 24 25 24 Yes Yes Yes 28.881
BM6 12 12 25 7 4 3 12 21 22 61 66 51 55 Yes Yes No 23.643
BM7 12 10 24 10 6 3 12 16 15 46 45 46 45 Yes Yes Yes 26.831
BM8 20 19 41 13 4 4 20 49 50 121 141 107 120 Yes Yes No 34.138

Table 3. Experimental results

product, the seller needs to verify the buyer’s payment voucher and credit level. If
the buyer’s credit level is low, there may be a possibility of malicious purchases, and
the seller rejects the buyer’s purchase request, resulting in the transaction failure.
Compared to WFD-net, which only considers abstract data elements, WFT-net
considers the value of concrete data items without considering the time elements.
TWFT-net considers the control flow, concrete data item values, and time elements,
making it more accurate in detecting defects in the process model.

7 CONCLUSION

This paper gives a modeling method of a TWFT-net, which makes up for the lack
of conventional modeling methods to describe the TBPMS. This model simulates
TBPMS in actual scenarios by adding time elements in transitions. We extend
the traditional CTL model checking operator, give a timed database computation
tree logic model checking method, propose the corresponding algorithm, develop the
related tool, and realize the soundness verification of a TBPMS. Our future work will
mainly focus on three parts: (1) The TWFT-net does not involve resource scheduling
issues. How to effectively and correctly utilize resources is a critical concern for
future research; (2) We will optimize the TWFT-net to avoid the problem of state
space explosion during the modeling process; and (3) Some tasks in the hospital
have higher priority over other tasks, such as the severity of the patient’s illness.
Considering priority issues in the process model is also the main task of future
research.

Acknowledgements

This paper was supported by the National Nature Science Foundation of China
(Nos. 62172299, 62032019), the Space Optoelectronic Measurement and Perception
Lab of Beijing Institute of Control Engineering (No. LabSOMP-2023-03) and the
CCF-Huawei Populus Grove Fund (No. CCF-HuaweiFM202305).

Modeling and Analysis of BPMS Using TWFT-Net 1347

REFERENCES

[1] Lapeña, R.—Pérez, F.—Pastor, Ó.—Cetina, C.: Leveraging Execution Traces
to Enhance Traceability Links Recovery in BPMN Models. Information and Software
Technology, Vol. 146, 2022, Art. No. 106873, doi: 10.1016/j.infsof.2022.106873.

[2] Li, Y.—Ding, Y.—Guo, Y.—Cui, H.—Gao, H.—Zhou, Z.—Zhang, N.A.—
Zhu, S.—Chen, F.: An Integrated Decision Model with Reliability to Support
Transport Safety System Analysis. Reliability Engineering & System Safety, Vol. 239,
2023, Art. No. 109540, doi: 10.1016/j.ress.2023.109540.

[3] van der Aalst, W.M.P.—De Masellis, R.—Di Francescomarino, C.—
Ghidini, C.—Kourani, H.: Discovering Hybrid Process Models with Bounds on
Time and Complexity: When to Be Formal and When Not? Information Systems,
Vol. 116, 2023, Art. No. 102214, doi: 10.1016/j.is.2023.102214.

[4] Zhao, F.—Xiang, D.—Liu, G.—Jiang, C.: Behavioral Consistency Measurement
Between Extended WFD-Nets. Information Systems, Vol. 119, 2023, Art. No. 102274,
doi: 10.1016/j.is.2023.102274.

[5] Liu, G.: Petri Nets: Theoretical Models and Analysis Methods for Concurrent Sys-
tems. Springer Nature Singapore, 2022, doi: 10.1007/978-981-19-6309-4.

[6] Lonetti, F.—Bertolino, A.—Di Giandomenico, F.: Model-Based Security
Testing in IoT Systems: A Rapid Review. Information and Software Technology,
2023, Art. No. 107326, doi: 10.1016/j.infsof.2023.107326.

[7] Zhou, J.—Reniers, G.—Cozzani, V.: A Petri-Net Approach for Firefight-
ing Force Allocation Analysis of Fire Emergency Response with Backups. Re-
liability Engineering & System Safety, Vol. 229, 2023, Art. No. 108847, doi:
10.1016/j.ress.2022.108847.

[8] Estañol, M.—Sancho, M.R.—Teniente, E.: Ensuring the Semantic Correct-
ness of a BAUML Artifact-Centric BPM. Information and Software Technology,
Vol. 93, 2018, pp. 147–162, doi: 10.1016/j.infsof.2017.09.003.

[9] Sidorova, N.—Stahl, C.—Trčka, N.: Workflow Soundness Revisited: Check-
ing Correctness in the Presence of Data While Staying Conceptual. In: Pernici, B.
(Ed.): Advanced Information Systems Engineering (CAiSE 2010). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 6051, 2010, pp. 530–544, doi:
10.1007/978-3-642-13094-6 40.

[10] Käppel, M.—Schönig, S.—Jablonski, S.: Leveraging Small Sample Learning
for Business Process Management. Information and Software Technology, Vol. 132,
2021, Art. No. 106472, doi: 10.1016/j.infsof.2020.106472.

[11] Combi, C.—Oliboni, B.—Weske, M.—Zerbato, F.: Conceptual Modeling
of Inter-Dependencies Between Processes and Data. Proceedings of the 33rd An-
nual ACM Symposium on Applied Computing (SAC ’18), 2018, pp. 110–119, doi:
10.1145/3167132.3167141.

[12] Xiang, D.—Liu, G.—Yan, C.—Jiang, C.: Detecting Data-Flow Errors Based on
Petri Nets with Data Operations. IEEE/CAA Journal of Automatica Sinica, Vol. 5,
2018, No. 1, pp. 251–260, doi: 10.1109/JAS.2017.7510766.

https://doi.org/10.1016/j.infsof.2022.106873
https://doi.org/10.1016/j.ress.2023.109540
https://doi.org/10.1016/j.is.2023.102214
https://doi.org/10.1016/j.is.2023.102274
https://doi.org/10.1007/978-981-19-6309-4
https://doi.org/10.1016/j.infsof.2023.107326
https://doi.org/10.1016/j.ress.2022.108847
https://doi.org/10.1016/j.infsof.2017.09.003
https://doi.org/10.1007/978-3-642-13094-6_40
https://doi.org/10.1016/j.infsof.2020.106472
https://doi.org/10.1145/3167132.3167141
https://doi.org/10.1109/JAS.2017.7510766

1348 J. Song, G. Liu

[13] Von Stackelberg, S.—Putze, S.—Mülle, J.—Böhm, K.: Detecting Data-
Flow Errors in BPMN 2.0. Open Journal of Information Systems (OJIS), Vol. 1, 2014,
No. 2, pp. 1–19, https://www.ronpub.com/ojis-2014v1i2n01_stackelberg.html.

[14] Vogel, T.—Carwehl, M.—Rodrigues, G.N.—Grunske, L.: A Property
Specification Pattern Catalog for Real-Time System Verification with UPPAAL.
Information and Software Technology, Vol. 154, 2023, Art. No. 107100, doi:
10.1016/j.infsof.2022.107100.

[15] Pakonen, A.—Buzhinsky, I.—Björkman, K.: Model Checking Reveals Design
Issues Leading to Spurious Actuation of Nuclear Instrumentation and Control Sys-
tems. Reliability Engineering & System Safety, Vol. 205, 2021, Art. No. 107237, doi:
10.1016/j.ress.2020.107237.

[16] Sbäı, Z.—Missaoui, A.—Barkaoui, K.—Ayed, R.B.: On the Verification of
Business Processes by Model Checking Techniques. 2010 2nd International Confer-
ence on Software Technology and Engineering, IEEE, Vol. 1, 2010, pp. 97–103, doi:
10.1109/ICSTE.2010.5608905.

[17] Mönnich, H.—Raczkowsky, J.—Wörn, H.: Model Checking for Robotic Guided
Surgery. In: Kostkova, P. (Ed.): Electronic Healthcare (eHealth 2009). Springer,
Berlin, Heidelberg, Lecture Notes of the Institute for Computer Sciences, So-
cial Informatics and Telecommunications Engineering, Vol. 27, 2010, pp. 1–4, doi:
10.1007/978-3-642-11745-9 1.

[18] Trčka, N.—Van der Aalst, W.M.P.—Sidorova, N.: Data-Flow Anti-
Patterns: Discovering Data-Flow Errors in Workflows. In: van Eck, P., Gordijn, J.,
Wieringa, R. (Eds.): Advanced Information Systems Engineering (CAiSE 2009).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 5565, 2009,
pp. 425–439, doi: 10.1007/978-3-642-02144-2 34.

[19] Trecka, N.—van der Aalst, W.—Sidorova, N.: Workflow Completion Pat-
terns. 2009 IEEE International Conference on Automation Science and Engineering,
2009, pp. 7–12, doi: 10.1109/COASE.2009.5234170.

[20] Popova-Zeugmann, L.: Time and Petri Nets. Springer, 2013, doi: 10.1007/978-3-
642-41115-1.

[21] Dotoli, M.—Fanti, M.P.—Iacobellis, G.—Martino, L.—
Moretti, A.M.—Ukovich, W.: Modeling and Management of a Hospital
Department via Petri Nets. 2010 IEEE Workshop on Health Care Management
(WHCM), 2010, pp. 1–6, doi: 10.1109/WHCM.2010.5441248.

[22] He, L.—Liu, G.: Prioritized Time-Point-Interval Petri Nets Modelling Multi-
Processor Real-Time Systems and TCTLx. IEEE Transactions on Industrial Infor-
matics.

[23] Bresolin, D.—Zavatteri, M.: Supervisory Control of Business Processes with Re-
sources, Parallel and Mutually Exclusive Branches, Loops, and Uncertainty. Vol. 119,
2023, doi: 10.1016/j.is.2023.102288.

[24] Gouyon, D.—Pétin, J. F.—Cochard, T.—Devic, C.: Architecture Assess-
ment for Safety Critical Plant Operation Using Reachability Analysis of Timed Au-
tomata. Reliability Engineering & System Safety, Vol. 199, 2020, Art. No. 106923,
doi: 10.1016/j.ress.2020.106923.

https://www.ronpub.com/ojis-2014v1i2n01_stackelberg.html
https://doi.org/10.1016/j.infsof.2022.107100
https://doi.org/10.1016/j.ress.2020.107237
https://doi.org/10.1109/ICSTE.2010.5608905
https://doi.org/10.1007/978-3-642-11745-9_1
https://doi.org/10.1007/978-3-642-02144-2_34
https://doi.org/10.1109/COASE.2009.5234170
https://doi.org/10.1007/978-3-642-41115-1
https://doi.org/10.1007/978-3-642-41115-1
https://doi.org/10.1109/WHCM.2010.5441248
https://doi.org/10.1016/j.is.2023.102288
https://doi.org/10.1016/j.ress.2020.106923

Modeling and Analysis of BPMS Using TWFT-Net 1349

[25] Tao, X.—Liu, G.—Yang, B.—Yan, C.—Jiang, C.: Workflow Nets with Tables
and Their Soundness. IEEE Transactions on Industrial Informatics, Vol. 16, 2020,
No. 3, pp. 1503–1515, doi: 10.1109/TII.2019.2949591.

[26] Idel Mahjoub, Y.—Chakir El-Alaoui, E.H.—Nait-Sidi-Moh, A.: Mod-
eling and Developing a Conflict-Aware Scheduling in Urban Transportation Net-
works. Future Generation Computer Systems, Vol. 107, 2020, pp. 1026–1036, doi:
10.1016/j.future.2018.04.022.

[27] Alur, R.—Dill, D. L.: A Theory of Timed Automata. Theoretical Computer Sci-
ence, Vol. 126, 1994, No. 2, pp. 183–235, doi: 10.1016/0304-3975(94)90010-8.

[28] Van der Aalst, W.M.P.: Challenges in Business Process Management: Verifica-
tion of Business Processes Using Petri Nets. Bulletin of the European Association for
Theoretical Computer Science (EATCS), Vol. 80, 2003, No. 32, pp. 174–199.

[29] Geiger, M.—Harrer, S.—Lenhard, J.—Wirtz, G.: BPMN 2.0: The State of
Support and Implementation. Future Generation Computer Systems, Vol. 80, 2018,
pp. 250–262, doi: 10.1016/j.future.2017.01.006.

[30] Valderas, P.—Torres, V.—Serral, E.: Modelling and Executing IoT-
Enhanced Business Processes Through BPMN and Microservices. Journal of Systems
and Software, Vol. 184, 2022, Art. No. 111139, doi: 10.1016/j.jss.2021.111139.

[31] Felli, P.—de Leoni, M.—Montali, M.: Soundness Verification of Decision-
Aware Process Models with Variable-to-Variable Conditions. 2019 19th Interna-
tional Conference on Application of Concurrency to System Design (ACSD), 2019,
pp. 82–91, doi: 10.1109/ACSD.2019.00013.

[32] Batoulis, K.—Weske, M.: A Tool for Checking Soundness of Decision-Aware
Business Processes. In: Clarisó, R., Leopold, H., Mendling, J., van der Aalst, W.,
Kumar, A., Pentland, B., Weske, M. (Eds.): Proceedings of the BPM Demo Track and
BPM Dissertation Award Co-Located with 15th International Conference on Business
Process Management (BPM 2017). CEUR Workshop Proceedings, Vol. 1920, 2017,
pp. 1–5, https://ceur-ws.org/Vol-1920/BPM_2017_paper_184.pdf.

[33] Van der Aalst, W.M.P.: The Application of Petri Nets to WorkflowManagement.
Journal of Circuits, Systems, and Computers, Vol. 8, 1998, No. 1, pp. 21–66, doi:
10.1142/S0218126698000043.

[34] Morimoto, S.: A Survey of Formal Verification for Business Process Modeling. In:
Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (Eds.): Computational
Science – ICCS 2008. Springer, Berlin, Heidelberg, Lecture Notes in Computer Sci-
ence, Vol. 5102, 2008, pp. 514–522, doi: 10.1007/978-3-540-69387-1 58.

[35] Wang, J.—Wang, J.: Real-Time Adaptive Allocation of Emergency Department
Resources and Performance Simulation Based on Stochastic Timed Petri Nets. IEEE
Transactions on Computational Social Systems, Vol. 10, 2023, No. 4, pp. 1986–1996,
doi: 10.1109/TCSS.2023.3266501.

[36] Ramos, D. S.—Rocha, F.—Soares, M. d. S.: A Bottom Up Approach for Mod-
eling Business Process Using Time Petri Nets. Proceedings of the XVIII Brazilian
Symposium on Information Systems (SBSI ’22), 2022, doi: 10.1145/3535511.3535539.

[37] Nguyen Thanh, T.—Le Thanh, N.—Hoang Thi Thanh, H.: Formalization of
Business Processes and Business Rules Model Using Colored Petri Nets. Proceedings

https://doi.org/10.1109/TII.2019.2949591
https://doi.org/10.1016/j.future.2018.04.022
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/j.future.2017.01.006
https://doi.org/10.1016/j.jss.2021.111139
https://doi.org/10.1109/ACSD.2019.00013
https://ceur-ws.org/Vol-1920/BPM_2017_paper_184.pdf
https://doi.org/10.1142/S0218126698000043
https://doi.org/10.1007/978-3-540-69387-1_58
https://doi.org/10.1109/TCSS.2023.3266501
https://doi.org/10.1145/3535511.3535539

1350 J. Song, G. Liu

of the 5th International Conference on Future Networks and Distributed Systems
(ICFNDS ’21), 2021, pp. 42–47, doi: 10.1145/3508072.3508080.

[38] Zhu, A.—Sala, A.—Wang, J.: Colored Petri Nets Based Patient Flow Mod-
eling and Optimal Staffing in Emergency Healthcare. 2022 International Con-
ference on Cyber-Physical Social Intelligence (ICCSI), 2022, pp. 686–691, doi:
10.1109/ICCSI55536.2022.9970562.

[39] Song, W.—Ma, X.—Cheung, S. C.—Hu, H.—Lü, J. J.: Preserving Data Flow
Correctness in Process Adaptation. 2010 IEEE International Conference on Services
Computing, 2010, pp. 9–16, doi: 10.1109/SCC.2010.24.

[40] van der Aalst, W.M.P.—van Hee, K.M.—ter Hofstede, A.H.M.—
Sidorova, N.—Verbeek, H.M.W.—Voorhoeve, M.—Wynn, M.T.: Sound-
ness of Workflow Nets: Classification, Decidability, and Analysis. Formal Aspects of
Computing, Vol. 23, 2011, pp. 333–363, doi: 10.1007/s00165-010-0161-4.

[41] Liu, W.—Du, Y.—Yan, C.: Soundness Preservation in Composed Logical Time
Workflow Nets. Enterprise Information Systems, Vol. 6, 2012, No. 1, pp. 95–113, doi:
10.1080/17517575.2011.617472.

[42] Barkaoui, K.—Ayed, R.B.—Sbäı, Z.: Workflow Soundness Verification Based on
Structure Theory of Petri Nets. International Journal of Computing and Information
Sciences, Vol. 5, 2007, No. 1, pp. 51–61.

[43] Zhou, G. F.—Du, Z.M.: Petri Nets Model of Implicit Data and Control in Program
Code. Ruanjian Xuebao/Journal of Software, Vol. 22, 2011, No. 12, pp. 2905–2918
(in Chinese).

[44] He, L.—Liu, G.—Zhou, M.: Petri-Net-Based Model Checking for Privacy-Critical
Multiagent Systems. IEEE Transactions on Computational Social Systems, Vol. 10,
2022, No. 2, pp. 563–576, doi: 10.1109/TCSS.2022.3164052.

[45] Song, J.—Xiang, D.—Liu, G.—He, L.: Guard-Function-Constraint-Based Re-
finement Method to Generate Dynamic Behaviors of Workflow Net with Ta-
ble. Computing and Informatics, Vol. 41, 2022, No. 4, pp. 1025–1053, doi:
10.31577/cai 2022 4 1025.

[46] Wang, J.: Emergency Healthcare WorkflowModeling and Timeliness Analysis. IEEE
Transactions on Systems Man and Cybernetics - Part A: Systems and Humans,
Vol. 42, 2012, No. 6, pp. 1323–1331, doi: 10.1109/TSMCA.2012.2210206.

[47] Liu, G.—Jiang, C.—Zhou, M.: Time-Soundness of Time Petri Nets Modelling
Time-Critical Systems. ACM Transactions on Cyber-Physical Systems, Vol. 2, 2018,
No. 2, Art. No. 11, doi: 10.1145/3185502.

[48] Clarke, E.M.—Emerson, E.A.: Design and Synthesis of Synchronization Skele-
tons Using Branching Time Temporal Logic. In: Grumberg, O., Veith, H. (Eds.):
25 Years of Model Checking: History, Achievements, Perspectives. Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 5000, 2008, pp. 196–215, doi:
10.1007/978-3-540-69850-0 12.

[49] Baier, C.—Katoen, J. P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press, 2008.

[50] Lohmann, N.: Compliance by Design for Artifact-Centric Business Processes. Infor-
mation Systems, Vol. 38, 2013, No. 4, pp. 606–618, doi: 10.1016/j.is.2012.07.003.

https://doi.org/10.1145/3508072.3508080
https://doi.org/10.1109/ICCSI55536.2022.9970562
https://doi.org/10.1109/SCC.2010.24
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1080/17517575.2011.617472
https://doi.org/10.1109/TCSS.2022.3164052
https://doi.org/10.31577/cai_2022_4_1025
https://doi.org/10.1109/TSMCA.2012.2210206
https://doi.org/10.1145/3185502
https://doi.org/10.1007/978-3-540-69850-0_12
https://doi.org/10.1016/j.is.2012.07.003

Modeling and Analysis of BPMS Using TWFT-Net 1351

[51] Clarke, E.M.: Model Checking. In: Ramesh, S., Sivakumar, G. (Eds.): Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS 1997).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 1346, 1997,
pp. 54–56, doi: 10.1007/BFb0058022.

[52] Liu, G.: Some Complexity Results for the Soundness Problem of Workflow Nets.
IEEE Transactions on Services Computing, Vol. 7, 2013, No. 2, pp. 322–328, doi:
10.1109/TSC.2013.36.

[53] van der Aalst, W.M.P.: Workflow Verification: Finding Control-Flow Errors
Using Petri-Net-Based Techniques. In: van der Aalst, W., Desel, J., Oberweis, A.
(Eds.): Business Process Management: Models, Techniques, and Empirical Studies.
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 1806, 2002,
pp. 161–183, doi: 10.1007/3-540-45594-9 11.

[54] Rachdi, A.—En-Nouaary, A.—Dahchour, M.: DataFlow Analysis in BPMN
Models. Proceedings of the 19th International Conference on Enterprise Information
Systems - Volume 2: ICEIS, 2017, pp. 229–237, doi: 10.5220/0006271202290237.

[55] Meda, H. S.—Sen, A.K.—Bagchi, A.: On Detecting Data Flow Errors in Work-
flows. Journal of Data and Information Quality (JDIQ), Vol. 2, 2010, No. 1, Art. No. 4,
doi: 10.1145/1805286.1805290.

[56] Wang, P.—Liu, W.—Du, Y.: Business Process Modeling and Analysis Based
on Logical Data Petri Net. Jisuanji Jicheng Zhizao Xitong/Computer Inte-
grated Manufacturing Systems (CIMS), Vol. 23, 2017, No. 5, pp. 921–930, doi:
10.13196/j.cims.2017.05.001 (in Chinese).

Jian Song received his M.Sc. degree from the School of Me-
chanics and Optoelectronics Physics, Anhui University of Sci-
ence and Technology, Huainan, China, in 2019. He is currently
working toward his Ph.D. degree in the Department of Computer
Science and Technology, School of Electronics and Information
Engineering, Tongji University, Shanghai, China. His current re-
search interests include model checking, Petri net, control-flow,
and data-flow.

Guanjun Liu received his Ph.D. degree in computer software
and theory from the Tongji University, Shanghai, China, in 2011.
He was Post-Doctoral Research Fellow with the Singapore Uni-
versity of Technology and Design, Singapore, from 2011 to 2013.
He was Post-Doctoral Research Fellow with the Humboldt Uni-
versity of Berlin, Germany, from 2013 to 2014, funded by the
Alexander von Humboldt Foundation. In 2013, he joined the
Department of Computer Science of Tongji University as As-
sociate Professor, and now is Professor. His research interests
include Petri net theory, model checking, Web service, workflow,

discrete event systems, machine learning and credit card fraud detection.

https://doi.org/10.1007/BFb0058022
https://doi.org/10.1109/TSC.2013.36
https://doi.org/10.1007/3-540-45594-9_11
https://doi.org/10.5220/0006271202290237
https://doi.org/10.1145/1805286.1805290
https://doi.org/10.13196/j.cims.2017.05.001

