
Computing and Informatics, Vol. 43, 2024, 1416–1431, doi: 10.31577/cai 2024 6 1416

SCALABLE CLOUD APPLICATION DEPLOYMENT
SERVICE FOR VERSATILE CLOUD SERVICE
DEPLOYMENT AND CONFIGURATION

Ondrej Habala∗, Martin Šeleng

Institute of Informatics
Slovak Academy of Sciences
Dúbravská cesta 9
845 07 Bratislava, Slovakia
e-mail: {ondrej.habala, martin.seleng}@savba.sk

Michal Habala, Ľubor Stuhl

Demtec, s.r.o.
Hraničná 18
821 05 Bratislava, Slovakia
e-mail: {michal.habala, lubor.stuhl}@demtec.sk

Michal Staňo, Ladislav Hluchý

Institute of Informatics
Slovak Academy of Sciences
Dúbravská cesta 9
845 07 Bratislava, Slovakia
e-mail: {michal.stano, ladislav.hluchy}@savba.sk

Abstract. We present a cloud management service called RAIN. It has been de-
signed specifically for versatility and scalability of operation, allowing for the pro-
cessing of a large number of requests at the same time. Its operation is transactional
and controlled by a workflow of operations forming one requisition. Requisitions

∗ Corresponding author

https://doi.org/10.31577/cai_2024_6_1416

Scalable Cloud Application Deployment Service 1417

and their operations can be executed in parallel, allowing for high throughput and
scalability of the controlled cloud environment(s). The service is being used in day-
to-day operations in a commercial environment. It is also designed for high failure
tolerance, which is necessary when operating on third party cloud infrastructures.
It has been developed and actively used for several years now, giving us a mature
tool with many important features added over time, allowing for practical day-to-
day operations. The architecture of the service is open and easily extendable to
allow the inclusion of new cloud services of various types – PaaS providers as well
as providers of higher-level services. The service is accessed via an asynchronous
REST API. It allows the caller to resume execution and not wait for cloud deploy-
ment operations to take an arbitrary amount of time to finish, receiving progress
updates via a simple callback REST API.

Keywords: Cloud computing, cloud application deployment, cloud automation,
REST service

Mathematics Subject Classification 2010: 68-U35

1 INTRODUCTION

Hundreds of millions of cloud instances of all types are being run every day. Cloud
computing has become the mainstream method of deploying computing infrastruc-
ture and applications. The market in cloud services is worth hundreds of billions
of dollars, and data stored in the cloud range in the zettabytes [1]. On the cloud,
architectures of systems able to process exascale amounts of data are being designed
and deployed [2, 3]. In this environment, manual deployment and configuration of
cloud infrastructure and cloud applications is unthinkable, and numerous automa-
tion tools for these tasks have been developed. We will talk more about some of
them in Section 2.

We have also developed one such tool, and are actively using, maintaining and
expanding it. It is a generic system for cloud infrastructure as well as application
deployment and (re)configuration, its name is RAIN (for Robotized Automatic In-
stance Nagger). It has the form of a service with a REST API. The folowing are
the reasons why we have developed another such tool:

• At the time we have started the development (2017), many of the currently
existing tools were not yet available.

• We needed a tool which would be highly scalable.

• We needed an infrastructure-agnostic tool which could work with any cloud
infrastructure from any provider, and mix them freely (which can be a difficult
task, often requiring specialized methodologies [4]).

1418 O. Habala, M. Šeleng, M. Habala, Ľ. Stuhl, M. Staňo, L. Hluchý

• We needed a flexible, easily extendable tool which would potentially cover more
than cloud infrastructure and applications management.

• Since the tool was to be part of a web-based infrastructure, we preferred a service
with a REST API instead of a command-line tool.

• We needed a tool which would be transactional yet provide sufficient feedback,
including some parameters of the created infrastructure or application.

• As the tool was meant for the deployment and configuration of commercially of-
fered applications, high fault-tolerance was of paramount importance – a failure
to flawlessly deploy the customer’s required application could lead to the loss of
the customer’s business.

In the end, after analyzing the existing systems, we have come to the conclusion
that using an existing system and developing for it the required plugins for the
infrastructure and applications which we would need, while having to learn the
internals of the selected system, would be more cumbersome than developing a light-
weight backbone service tailored precisely for our needs, and then extend it with the
plugins which we will need. This approach also allowed us to research and address
cloud automation challenges better than if we would use an existing system, which
has already fixed design choices and trade-offs.

In Section 2 we will provide a brief state-of-the-art of the most used cloud
infrastructure and application deployment automation tools. In Section 3 we will
describe the architecture of RAIN. In Section 4 we will explain the internal workings
of RAIN, the most important concepts it uses and the most used plugins which access
various infrastructure and application components. In Section 5 we will define the
methods of parametrization of the cloud management process, which is the main
tool with which RAIN users can influence their workflows. In Section 6 we provide
a summary and outlook towards the future of RAIN.

2 STATE OF THE ART OF THE IT INFRASTRUCTURE
AUTOMATION TOOLS, APPLICATION MANAGEMENT
AND TOOLS FOR INTEGRATION WITH DEVELOPMENT
PROCESS

In this section we describe several existing automation tools for infrastructures and
applications deployment. Also, we deal with tools responsible for the application
management and with tools used for integration with the development process.

One of the most popular and known tool is the Ansible [5]. Ansible is an open
source IT automation engine that automates provisioning, configuration manage-
ment, application deployment, orchestration, and many other IT processes. Ansible
is an automation tool for IT infrastructure automation and server management.
It automates various configuration tasks, application deployment, and software de-
livery. Ansible uses YAML files to define the infrastructure state, and establishes
remote access over SSH.

Scalable Cloud Application Deployment Service 1419

SaltStack [6] is an open-source tool for configuration management, orchestration,
and remote execution. The tool automates jobs in large-scale infrastructures from
a single site. SaltStack utilizes a master-slave architecture with a central control
server for remote hosts.

AWS CloudFormation [7] is an Amazon Web Services tool for provisioning and
managing AWS resources. The solution uses a templating approach to describe IaC
through YAML or JSON files.

GitLab CI/CD [8] (Continuous Integration and Continuous Delivery) is a built-
in GitLab CI/CD tool. The tool automates software development and deployment.
GitLab automates building, testing, and deploying code.

CircleCI [9] is a cloud-based CI/CD platform for streamlining development work-
flows. The tool automates building, testing, and deploying applications at different
software development levels than Ansible.

Azure DevOps Server [10] (previously Microsoft Team Foundation Server) is
a Microsoft platform for collaborative development. The tools suite provides func-
tionalities to maintain the full application lifecycle management (ALM) process.

Azure Automation [11] is a cloud-based automation solution by Microsoft Azure.
The service automates tasks across Azure cloud services to simplify resource man-
agement and deployment.

Terraform [12] is an open-source IaC tool which uses human-readable language
to define and provide infrastructure resources such as virtual machines, storage,
networks, and other cloud and on-the-premises resources.

Rudder [13] is an open-source automation tool for streamlining IT infrastructure
and configuration management. The tool helps teams manage large-scale IT infras-
tructures through a centralized platform. The Rudder is an agent-based architecture
with a web-based visual interface.

Chef Infra [14] is an Infrastructure as Code (IaC) framework for automating IT
infrastructure configuration and maintenance. The tool uses DevOps infrastructure
automation in both small and large-scale environments. Chef uses a domain-specific
language called Ruby DSL for describing system states.

Jenkins [15] is a CI/CD tool for automating, building, and testing applications.
The tool automates software development workflows, including code compiling, test-
ing, and packaging software. Jenkins uses a master-slave architecture to execute
tasks on remote machines.

Puppet[16] is an open-source IaC tool for managing infrastructure configura-
tion and deployment. The solution uses declarative code to create and implement
the desired system state. Puppet has an agent-based architecture and focuses on
managing resource states.

CFEngine [17] is an automation and configuration management tool for main-
taining large IT infrastructures. The open-source tool helps ensure compliance and
consistency across distributed systems. CFEngine uses an agent-based architec-
ture that constantly evaluates the system’s current state compared to the desired
results.

1420 O. Habala, M. Šeleng, M. Habala, Ľ. Stuhl, M. Staňo, L. Hluchý

Semaphore [18] is a cloud-based CI/CD platform for streamlining application
delivery. The tool aims to simplify processes in the CI/CD pipeline with automated
workflows.

The tools mentioned in this chapter, and many others, provide subsets of the
capabilities which we need for our infrastructure and application deployment needs,
but none of them provide the whole set. Therefore, we have designed our tool,
RAIN, that is described in the following chapters.

Requisition processor
Takes out new and partially
processed requisitions from
the database and executes

them step by step, controlled
by pre-configured workflows

composed of primitives

Requisition processor
Takes out new and partially
processed requisitions from
the database and executes

them step by step, controlled
by pre-configured workflows

composed of primitives

REST interface
Handles incoming

requisition requests,
extracts their

parameters and stores
them in the database

Database
Contains

requsition

Requisition processor
Takes out new and partially
processed requisitions from
the database and executes

them step by step, controlled
by pre-configured workflows

composed of primitives

Primitives pool
The basic steps which

comprise the
requisition workflows.

Examples:
graph_create
graph_user_add

graph_plugin_upload
graph_restart
graph_delete
droplet_create
droplet_delete
domain_create
domain_delete

ssh_license_upload
ssh_config_upload

ssh_gl_start
ssh_gl_stop

ssh_neo4j_start
ssh_neo4j_stop

REST
clients

The clients that
perform basic
requests on the

used
infrastructure

Configuration
Contains constants controlling program
execution and configurable parameters

(which are deployment-specific)

Stores
requisitions

Reads and updates
requisitions

Calls primitives

SSH client
Performs

remote calls
and data

transfers via the
SSH protocol

Start of execution
Processes command line arguments,
starts the Requisition Processor in a

separate thread, creates and starts the
REST interface

Entry

point

Figure 1. Architecture of RAIN cloud infrastructure and application deployment and con-
figuration tool

3 RAIN ARCHITECTURE

RAIN is a scalable, extendable cloud infrastructure and application deployment, con-
figuration and management service. It offers a RESTful API and is transactional –
it executes the required task, returns metadata about the created infrastructure,
but does not store any state for later reuse. In Figure 1 we show the high-level
architecture of RAIN. It is divided into two main parts.

The first part is formed by the REST interface which handles incoming requests.
This part of RAIN runs synchronously with the request originator (the client), and
is therefore designed to handle the incoming request and return quickly the control
back to the client. It only registers the request – creates a requisition, and notifies

Scalable Cloud Application Deployment Service 1421

the caller of the result of this registration – success, or failure if the request is
malformed.

The second part, running asynchronously from the REST interface, is the requi-
sition processor. It takes a requisition (a single request for some infrastructure work)
input parameters, selects the appropriate workflow, executes it and stores the final
cloud infrastructure metadata in the database. The processor can run in multiple
independent instances in order to increase the throughput of RAIN. Since most of
the time during requisition processing is spent waiting on the cloud infrastructure,
running multiple requisition processors can significantly increase the responsiveness
of the system. The different requisition processor instances are observing resource
exclusivity, so no two requisition processor instances work on the same requisition,
or relater requisitions requesting modifications of the same resource, which must be
processed sequentially.

The database is the connecting point between the interface which communi-
cates with the client, and the requisition processors which communicate with the
cloud infrastructure. Incoming requisitions are stored in the database, and req-
uisition processors access and process them asynchronously. The database stores
information about all requisitions in the form of key-value pairs – requisition pa-
rameters.

Expandability and multi-infrastructure support are provided by the pool of so-
called primitives. A primitive in our case is one operation, for example a PaaS
instance creation, or a reconfiguration step. When access to new infrastructure is
necessary, a new set of primitives for handling this infrastructure can be written and
added into RAIN, using simple rules – every primitive has the same signature, and
is stored in a source file in a pre-configured directory. New primitives can make use
of existing ones, or of the underlying infrastructure of a hierarchy of REST client
classes for different infrastructures.

4 REQUISITIONS, WORKFLOWS, OPERATIONS, PARAMETERS
AND PRIMITIVES

By experimenting with cloud automation, we have arrived at a set of connected
concepts which serve us well and which we believe are optimal for the class of cloud
automation tools to which the RAIN belongs – services with high scalability, fault
tolerance and responsiveness necessary for the commercial environment, and easy
extensibility.

In Figure 2 we present the relationships between the main concepts used in the
internal model of RAIN. The unit of work required by the user is called a requi-

sition. A requisition is initiated by calling RAIN’s REST interface. A requisition
consists of a set of steps – a workflow. Each workflow consists of one or more
operations. An operation is implemented by a primitive, which is a function
programmed by RAIN maintainers, offering a prescribed signature. A primitive
consumes and produces the parameters of a requisition.

1422 O. Habala, M. Šeleng, M. Habala, Ľ. Stuhl, M. Staňo, L. Hluchý

Figure 2. The Entity-Relationship Diagram of the main concepts used in RAIN

Each requisition at any point of time during its processing is described by a set
of key-value pairs – parameters. The initial parameters are included in the client’s
REST call which creates the requisition, and more parameters are usually created
by each operation in a requisition. Some of those parameters are returned in the
(asynchronous) reply to the client’s request. They usually describe parameters of
the created infrastructure or application component, such as the IP address of a new
PaaS instance. Primitives communicate with each other only through these param-
eters – some produce them, others consume them.

As of this paper, RAIN is a single-user tool, intended to work inside trusted
company infrastructure, without any authentication and authorization. There is no
user concept in the entity relationship diagram (Figure 2). We plan to change it,
and allow RAIN to be deployed outside of the trusted infrastructure, as well as to
be used by multiple users (or multiple cloud application administrative domains)
at the same time. For this purpose we will introduce users in the RAIN database,
and tie all requisitions, operations, their parameters and log outputs to a particular
user. All of them will be accessible only once that user has authenticated, and
each user will have access only to those parts of the database which are tied to
them.

Scalable Cloud Application Deployment Service 1423

Figure 3. Sequence diagram of the processing of a simple requisition by RAIN

In Figure 3 we illustrate the processing of a simple requisition. This requisition
consists of a simple workflow of 3 operations:

• GRAPH CREATE – instantiate a Neo4J [19] graph database in GrapheneDB

• DROPLET CREATE – instantiate new virtual server in the Digital Ocean infras-
tructure

• SSH GL START – start the Graphlytic application, using the created droplet to
run it and the Neo4J instance to store its data

As shown in Figure 3, the requisition processing is asynchronous from the API
call itself. As soon as the requisition’s initial parameters (provided in the API call)
are stored in the database, the API returns a reply to the user, stating that the
requisition has been initiated. The requisition processor then chooses the appro-
priate workflow, and starts executing its operations. After each operation the user
is notified (via a provided callback service) of the requisition’s progress. Once the
whole workflow is finished, the callback service will receive the final RESPONSE with
the parameters needed for the use of the created application. This approach allows
us to give sufficient responsiveness to the whole, sometimes very lengthy, application
creation process, which is very important for a commercial service which has to show
the user that the work on their request is processing.

1424 O. Habala, M. Šeleng, M. Habala, Ľ. Stuhl, M. Staňo, L. Hluchý

5 WORKFLOW DEFINITION

From the point of view of the RAIN user, the most visible component, and practically
the only one which is easy to modify, are the workflow definitions.

Currently the workflow definitions are stored as Python scripts inside the direc-
tory structure of the RAIN installation – that is, they are static for users without
administrator access. This is not a significant problem in a single-user installation
of RAIN, but as noted in Section 4, we plan to introduce a multi-user version of
RAIN. Not all of the users will have the administrator level access to the RAIN
installation, and so they will not be able to update the workflow scripts. Therefore,
in the future, we will move the workflow definitions into the RAIN database, and
introduce a REST API for working with them. This API will as a minimum allow
to

• list available workflow definitions,

• add new workflow definitions,

• remove existing workflow definitions, or

• update existing workflow definitions.

A workflow definition is a Python script, containing one variable named
workflow list. This variable is a dictionary, containing pairs of names of workflow
definitions and the definitions itself. Each workflow definition is a list of operation
definitions. Each operation definition can be either a simple string representing the
operation’s name, if this operation has no additional parameters, or it can be a tuple
consisting of the operation’s name (string) and a dictionary of operation parameters.
An example is shown in Listing 1.

1 workflow_list =\
2 {
3 "workflow_name_1":
4 (
5 "OPERATION_1",
6 "OPERATION_2",
7 "OPERATION_3"
8),
9 "workflow_name_2":

10 (
11 "OPERATION_1",
12 ("OPERATION_4":
13 {
14 "delay": 60,
15 "timeout": 600
16 }
17)
18)
19 }

Listing 1. Example of a workflow definition script

In Listing 1, we see two workflow definitions – workflow name 1 and
workflow name 2. The first one contains three operations – OPERATION 1,

Scalable Cloud Application Deployment Service 1425

OPERATION 2, OPERATION 3. The second workflow definition contains OPERATION 1

and a parametrized OPERATION 4 with two parameters, delay and timeout.
Workflow parameters can be either intended for the control of operation execu-

tion (described in Section 5.1), or for the control of the execution of the operation
itself. The latter ones are usually different for each operation and their meaning
is context-dependent, while the former ones control operation timing, re-execution,
failure or success conditions, and failure handling and recovery.

5.1 Basic Operation Parameters

1 ’REBOOT_APPLICATION ’:
2 (
3 (’REBOOT_DROPLET ’, {’continueAfterError ’: True}),
4 ’POWERCYCLE_DROPLET ’,
5),
6 ’HARD_POWERCYCLE_DROPLET ’:
7 (
8 (’POWEROFF_DROPLET ’, {’continueAfterError ’: True}),
9 (’SLEEP’, {’delay’: 20}),

10 ’POWERON_DROPLET ’
11),
12 ’RESIZE_DROPLET ’:
13 (
14 (’POWEROFF_DROPLET ’,
15 {’condition ’: ((’$appSnapshot ’, ’==’, "offline"),)}
16),
17 (’SNAPSHOT_DROPLET ’,
18 {’condition ’: (
19 (’$appSnapshot ’, ’==’, "offline"),
20 (’$appSnapshot ’, ’==’, "online"),
21 "or"
22)
23 }
24),
25 (’POWERON_DROPLET ’,
26 {’condition ’: ((’$appSnapshot ’, ’==’, "offline"),)}
27),
28 ’DOCKER_DF_SET_GL_MEMORY ’,
29 (’NEO4J_SET_CONFIG ’,
30 {’dockerComposeFile ’: ’docker -compose.yml’,
31 ’sshLogin ’: ’redacted ’}
32),
33 (’SSH’,
34 {’commandLine ’: ’cd gd && docker -compose up --build -d’,
35 ’sshLogin ’: ’redacted ’}
36),
37 ’RESIZE_DROPLET ’,
38 ’POWERON_DROPLET ’,
39 (OpType.DROPLET_WAIT_ACTIVE ,
40 {’timeout ’: 300}
41),
42 ’SET_SWAP ’
43)

Listing 2. Illustration of various workflow parametrization options

Listing 2 illustrates the use of several operation parameters available to the user.
• Line 10 contains the operation POWERON DROPLET without any parameters.

1426 O. Habala, M. Šeleng, M. Habala, Ľ. Stuhl, M. Staňo, L. Hluchý

• Line 8 contains the operation POWEROFF DROPLET with one parameter
continueAfterError, which allows the workflow to continue execution even
after this operation fails.

• Line 9 contains the operation SLEEP with the parameter delay equal to 20. This
will pause the execution of the worlfow for 20 seconds before this operation is
initiated.

• Line 39 contains the operation DROPLET WAIT ACTIVE with the parameter
timeout equal to 300. This means that if this operation is unable to finish
in 300 seconds, it will be aborted rather than forcing the whole workflow to wait
an arbitrary amount of time.

• Line 29 contains the operation NEO4J SET CONFIG with two parameters,
dockerComposeFile and sshLogin. These parameters do not influence the
execution of the workflow, instead they are operation-specific variables which
provide necessary details to the primitive implementing the operation.

• Line 17 contains the operation SNAPSHOT DROPLET with one parameter called
condition. This allows to make the operation’s execution conditional, depend-
ing on the current state of some parameters. The details of using conditions will
be explained below.

Apart from these parameters, there are several others not shown in Listing 2.

• repeats and repeatDelay influence how many times will an operation be at-
tempted before the workflow execution is considered unsuccessful, and how long
will the workflow execution wait after every failed repeat of the operation before
it is attempted again. The default values are 3 repeats, and 30 seconds, but
the parameters can change those values. As practice has shown, sometimes it is
necessary to allow some operations on infrastructure to be repeated to receive
a positive result.

• overrides contains a dictionary of parameter names and their values, which
can override actual parameter values. Normally, primitive parameters, as shown
in Listing 2, operation NEO4J SET CONFIG on line 29, are used only if such pa-
rameter is not already in the list of parameters of the workflow, available in the
database. But parameters listed in the overrides dictionary have priority even
over the parameters existing in the database.

5.2 Operation Execution Conditions

RAIN allows for conditional execution of some operations of the workflow which
defines a requisition. This behavior is controlled by a logical formula consisting of
conditions and logical operators (and, textitor, textitnegation and textitexclusive
or) and conditions. It is written in postfix format as a Python list. For example the
logical formula (a > b) and (b > c) will be written as ((a > b), (b > c), ’and’).

The conditions in the formula are evaluated to true or false. They can contain
variables, constants, and several unary or binary operators, and are written as a list.

Scalable Cloud Application Deployment Service 1427

In the case of binary operators infix notation is used, that is the operator in between
the two operands. Currently available operators are:

• equals, written as == or eq. This operator evaluates to true if the operands are
equal, where comparison is done by applyting the Python operator == to the
operands.

Example: $parameter == 30, written as (′$parameter′, ′==′, 30).

• not equal, written as != or ne. This operator evaluates to true if the operands
are not equal, where comparison is done by applying the Python operator != to
the operands.

Example: $parameter! = 30, written as (′$parameter′, ′! =′, 30).

• greater than, written as > or gt. This operator evaluates to true if the first
operand is greater than the second operand, where comparison is done by ap-
plying the Python operator > to the operands.

Example: $parameter > 30, written as (′$parameter′, ′ >′, 30).

• less than, written as < or lt. This operator evaluates to true if the first operand is
less than the second operand, where comparison is done by applying the Python
operator < to the operands.

Example: $parameter < 30, written as (′$parameter′, ′ <′, 30).

• greater or equal, written as >= or ge. This operator evaluates to true if the first
operand is greater or equal to the second operand, where comparison is done by
applying the Python operator >= to the operands.

Example: $parameter >= 30, written as (′$parameter′, ′ >=′, 30).

• less or equal, written as <= or le. This operator evaluates to true if the first
operand is less or equal to the second operand, where comparison is done by
applying the Python operator <= to the operands.

Example: $parameter <= 30, written as (′$parameter′, ′ <=′, 30).

• exists, written as exists or ex. This unary operator evaluates to true if the given
parameter exists in the list of parameters available to the operation.

Example: exists loginName, written as (′ex′, ′loginName′).

• empty, written as empty or em. This unary operator evaluates to true if the
given parameter is empty (has no value).

Example: empty loginName, written as (′em′, ′loginName′).

As can be seen in the provided examples of conditions, an operator can be prefixed
by the $ sign. That will force the evaluation of the operator from the list of available
parameters, by its name. Otherwise, the operator is treated as a value. This allows
the conditional execution of operations, based on the current state of the requisition
(by the state we mean the list of parameters at the time of the evaluation of the
condition).

1428 O. Habala, M. Šeleng, M. Habala, Ľ. Stuhl, M. Staňo, L. Hluchý

The definition of conditions, as described above, is certainly cumbersome. It is
currently a prototype, meant to evaluate the feasibility of conditional execution of
operations. It has already proven useful, and we are now working on a more practical
and streamlined format of conditions, written as strings and using completely the
infix notation.

6 SUMMARY AND FUTURE WORK

In this paper, we have described the basic architecture and concepts of a cloud
automation tool, designed specifically for commercial operations and successfully
working in a commercial environment for several years. Its main attributes are
infrastructural agnosticism, high fault tolerance, easy adaptation to new infrastruc-
ture, responsiveness and flexibility. The experimentation with the service’s design
has been ongoing for several years, and currently we believe that the architecture
and concepts described in this article serve our purpose well and are worth following
in similar endeavours.

During our experimentation with cloud automation, we have identified several
important capabilities of the automation tool which significantly increase success
rate and customer comfort. These are:

• operation timing – delaying the start of the operation, as well as aborting an op-
eration after a given amount of time;

• failure recovery – repeating a failed operation several times and waiting between
consecutive operation executions, as well as ignoring certain errors which do not
impact the overall success of the whole requisition;

• conditional operation execution – we have found out that the used cloud infras-
tructure and services are sometimes controlled in a non-trivial manner, and we
need to be able to decide during run-time whether to do certain operations or
not, based on the results of the previous operations. That is the reason why we
have developed a system of operation conditions (see Section 5.2).

Our future work will be targeting expansion into the new infrastructure of other pro-
viders, support for specifics of handling applications using AI methods, and more
complex concepts of and capabilities of the currently used infrastructure (automated
backups, more complex network configurations and others).

Among the more practical expansion of our cloud automation tool, we plan
to introduce multi-user support (described in Section 4). We also plan to better
integrate user-side workflow handling by introducing a dedicated REST API com-
ponent for listing, adding, removing and updating workflow definitions (for details
see Section 5). Finally, as mentioned in Section 5.2, we will change the condition
notation into a more natural one, describing the logical formula as one string in infix
notation.

Scalable Cloud Application Deployment Service 1429

Acknowledgement

This work is supported by the VEGA grant No. 2/0131/23 and the APVV grants
No. APVV-20-0571 and APVV-23-0430.

REFERENCES

[1] AAG IT Services: Headline Cloud Computing Statistics for 2024. 2024, https://
aag-it.com/the-latest-cloud-computing-statistics/.

[2] Bobák, M.—Hluchy, L.—Belloum, A. S. Z.—Cushing, R.—Meizner, J.—
Nowakowski, P.—Tran, V.—Habala, O.—Maassen, J.—Somosköi, B.—
Graziani, M.—Heikkurinen, M.—Höb, M.—Schmidt, J.: Reference Exas-
cale Architecture. 2019 15th International Conference on eScience (eScience), 2019,
pp. 479–487, doi: 10.1109/eScience.2019.00063.

[3] Meizner, J.—Nowakowski, P.—Kapala, J.—Wojtowicz, P.—Bubak, M.—
Tran, V.—Bobák, M.—Höb, M.: Towards Exascale Computing Architecture and
Its Prototype: Services and Infrastructure. Computing and Informatics, Vol. 39, 2021,
No. 4, pp. 860–880, doi: 10.31577/cai 2020 4 860.

[4] Bobák, M.—Hluchý, L.—Tran, V.: Methodology for Intercloud Multicriteria
Optimization. 2015 12th International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD), 2015, pp. 1786–1791, doi: 10.1109/FSKD.2015.7382217.

[5] Hochstein, L.: Ansible: Up and Running. 1st Edition. O’Reilly Media, Inc., 2015.

[6] Myers, C.: Learning SaltStack. Packt Publishing, 2016.

[7] Tovmasyan, K.: Mastering AWS CloudFormation: Plan, Develop, and Deploy Your
Cloud Infrastructure Effectively Using AWS CloudFormation. Packt Publishing, 2020.

[8] Cowell, C.—Lotz, N.—Timberlake, C.: Automating DevOps with GitLab
CI/CD Pipelines: Build Efficient CI/CD Pipelines to Verify, Secure, and Deploy
Your Code Using Real-Life Examples. Packt Publishing, 2023.

[9] Belmont, J.M.: Hands-on Continuous Integration and Delivery: Build and Release
Quality Software at Scale with Jenkins, Travis CI, and CircleCI. Packt Publishing,
2018.

[10] Arora, T.—Shigihalli, U.: Azure DevOps Server 2019 Cookbook: Proven Recipes
to Accelerate Your DevOps Journey with Azure DevOps Server 2019 (formerly TFS),
2nd Edition. Packt Publishing, 2019.

[11] McKeown, M.: Microsoft Azure Essentials Azure Automation. Pearson Education,
2015.

[12] Krief, M.: Terraform Cookbook: Efficiently Define, Launch, and Manage Infras-
tructure as Code Across Various Cloud Platforms. Packt Publishing, 2020.

[13] Mott, L.V.: The Development of the Rudder: A Technological Tale. Texas A&M
University Press, 1997.

[14] Vetter, S.—Dhaliwal, N.—Mashhour, A.—Röll, A.—Rosca, L.: IBM AIX
Enhancements and Modernization. IBM Redbooks, 2020.

https://aag-it.com/the-latest-cloud-computing-statistics/
https://aag-it.com/the-latest-cloud-computing-statistics/
https://doi.org/10.1109/eScience.2019.00063
https://doi.org/10.31577/cai_2020_4_860
https://doi.org/10.1109/FSKD.2015.7382217

1430 O. Habala, M. Šeleng, M. Habala, Ľ. Stuhl, M. Staňo, L. Hluchý

[15] Pathania, N.: Learning Continuous Integration with Jenkins: A Beginner’s Guide
to Implementing Continuous Integration and Continuous Delivery Using Jenkins. 2nd

Edition. Packt Publishing, 2017.

[16] Uphill, T.: Mastering Puppet. Packt Publishing, 2014.

[17] Zamboni, D.: Learning CFEngine 3: Automated System Administration for Sites
of Any Size. O’reilly Media, 2012.

[18] Chintale, P.: DevOps Design Pattern: Implementing DevOps Best Practices for
Secure and Reliable CI/CD Pipeline (English Edition). BPB Publications, 2023.

[19] Vukotic, A.—Watt, N.—Abedrabbo, T.—Fox, D.—Partner, J.: Neo4j in
Action. Manning Publications Co., 2015.

Ondrej Habala is a researcher at the Institute of Informatics
of the Slovak Academy of Sciences. He works mainly with dis-
tributed computing systems and cloud systems, applying them
towards solving domain-specific problems mainly in meteorology
and hydrology. He has participated in more than 10 national and
international research projects, including EU FP5, FP6, FP7,
H2020 and HE projects. He is the author of more than 80 pub-
lications in his research field.

Martin �Seleng is a researcher at the Institute of Informatics
of the Slovak Academy of Sciences. He specializes in research
infrastructures, cloud computing, and machine learning. He has
participated in several research projects, including the FP5-FP7,
H2020 and HE European research programs. He is the author
of over 50 scientific publications.

Michal Habala is the Chief Executive Officer and co-founder
at Demtec, s.r.o. He is a visionary in the realm of breakthrough
graph visualization tools, leveraging his extensive background as
both an IT and business consultant. He holds Master of Science
degrees in both software engineering and business management,
he possesses a unique blend of technical expertise and strategic
insight. With a keen eye for innovation and a passion for solving
complex problems, he has dedicated his career to empowering
clients with transformative solutions. His unique blend of tech-
nical expertise and strategic understanding has enabled him to

spearhead the implementation of cutting-edge visualization technologies, changing the way
companies analyze and interpret their data.

Scalable Cloud Application Deployment Service 1431

Ľubor Stuhl is the Chief Technology Officer at Demtec, s.r.o.
He is an dynamic IT professional and a versatile full-stack devel-
oper with a profound grasp of a broad spectrum of technologies.
His academic prowess is underscored by his attainment of his
Master’s degree in economic informatics. Serving as the Chief
Technology Officer (CTO) at Demtec, he shoulders the respon-
sibility for steering the technological trajectory of the company.
His expertise extends even further as Demtec’s primary AI au-
thority, guiding the company through the uncharted waters of
this rapidly evolving field. His role as the company’s main AI ex-

pert is emphasized by his commitment to pushing the boundaries of technological advance-
ment, propelling Demtec towards a future where AI integration is not just a possibility
but a strategic imperative.

Michal Sta�no is a machine learning researcher at the Institute
of Informatics of the Slovak Academy of Sciences. He special-
izes in federated and distributed learning systems and blockchain
technologies, applying them to solve domain-specific problems.
He is currently involved in the AI4EOSC and AI4CC research
projects, focusing on federated learning models, blockchain, and
cryptocurrency applications using tools like TensorFlow and Py-
Torch. He has a background in data science, process engineering,
and digital technology and is pursuing his Ph.D. in computer
science. He has contributed to several research publications in
his field.

Ladislav Hluch�y is a senior researcher and the head of the
Department of Parallel and Distributed Information Processing
at the Institute of Informatics of the Slovak Academy of Sciences.
He has been active in European research programs since FP4,
and has led II SAS team in dozens of research projects in FP4,
FP5, FP6, FP7, H2020 and HE. Over his research career he
authored over 150 scientific publications. His specialization is
distributed information processing, cloud computing and data
science.

