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Abstract. Combating illegal drone activities is an important task for national de-
fense and security. How to spot drones quickly and accurately is the key. While
there are many ways to detect drones, their reasoning is generally slow and com-
plex. Therefore, in this work, we propose an improved and efficient UAV detection
method YOLOv8s-C3AS based on YOLOv8s. There are three main improvements
to this approach: First, we propose a new Coordinate Channel Spatial Attention
Module (CCSM) and add it to the backbone of the model to enable better fea-
ture extraction. Secondly, in order to solve the scale inconsistency problem of
YOLOv8s PANet, we propose a new adaptive fusion feature network (PANet-AF),
which enables the model to fuse the features of the three scales better, which
enables the model to better integrate features of different scales. Third, we use
a more reasonable bounding box regression loss function SIoU, which improves the
detection accuracy of the model without cost. Finally, we refined and made pub-
lic the drone dataset and conducted a series of experiments combined with the
PASCCOL VOC dataset. Our proposed approach achieves 77.2% mAP, 98.9%
mAP50, 87.1% mAP75 and 120.5 FPS on the drone dataset. Experiments demon-
strate that our proposed method outperforms other methods by achieving high
detection accuracies while maintaining faster inference speed and lower model pa-
rameters. The drone datasets used for this research has been uploaded to kaggle:
https://www.kaggle.com/datasets/zhangtutu123/drone-dataset123/dat.
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1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs), also known as drones, are being used more and
more widely due to the rapid technology development. Although we are under
the impression that the impact of drones is mostly beneficial, e.g. some military
applications and the exploration of farmland in remote areas [1]. However, drones
have also been used for illegal activities such as drug trafficking, gun smuggling,
or posing a threat to security-sensitive sites such as airports and nuclear power
plants [2]. Combating illegal drone activities is an important task for national
defence and security, and how to detect drones quickly and accurately is the key.
Recently proposed detection methods primarily rely on radar [3], or utilize radio
frequency and acoustic technologies [4, 5] to achieve detection tasks. However, UAV
targets are characterised by the high flight altitude, speed and miniaturisation [6],
making the radar and RF detection methods very difficult and costly [7, 8]. Although
the sound detection method is simple, the detection position of the target may be
disturbed by noise [9]. Therefore, there is an urgent need to investigate an advanced
UAV detection method.

In the past decade, deep learning has developed rapidly and has been applied
to a large number of fields, such as agriculture, facial recognition, medical imaging,
and drone detection tasks [10]. At this stage, the object detection algorithms are
mainly divided into two-stage and one-stage algorithms. The most classic two-stage
representatives are the Faster R-CNN [11] of the R-CNN series and FPN [12]. The
representative of the first-stage algorithm is SSD [13], RetiNet [14], FCOS [15] and
the YOLO series. Due to the rise of CNNs, so many researchers use CNNs for
drone detection. Mahdavi and Rajabi use a CNNs as backbone of model to detect
drones [16]. Compared with the SVM and nearest neighbor algorithms compared
in this paper, it achieves better results, but the method in [16] has the problem of
large number of parameters and slow reasoning speed, which cannot complete the
task of real-time detection well. But YOLO has come up with a good solution to
this problem.

Singha and Aydin chose the then state-of-the-art target detection algorithm
YOLOv4 to detect UAVs and achieved 74.3% mAP in a self-built dataset [17].
However, YOLOv4 officially does not provide a lightweight version, so the model
itself still has a large number of parameters. Aiming at the problem of large number
of parameters in the YOLOv4 model, Cheng et al. present a novel drone detec-
tion method, YOLOv4-MCA [18], based on the lightweight MobileViT and Coor-
dinate Attention. This method is improved compared to the YOLOv4 framework
method, replacing YOLOv4 backbone with lightweight MobileViT, incorporating
coordinate attention into YOLOv4’s PANet. This method achieves 92.81% mAP50

and 40FPS on the self-built drone dataset. However, the accuracy of the model
compared with the YOLOv4 benchmark under the VOC dataset decreases. In the
above methods, there are trade-offs between model accuracy, speed, and parame-
ters.
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In order to better weigh these indicators, we propose an efficient real-time
lightweight drone detection method YOLOv8s-C3AS, which is improved based on
YOLOv8s. This article offers the following contributions:

1. We propose a new Coordinate Channel Spatial Attention Module (CCSM) that
allows attention blocks to capture remote dependencies between channels along
the channel direction while retaining precise location information along another
spatial direction, while also giving the model a spatial sense, which helps the
network locate pairs of interest more accurately.

2. In order to solve the scale inconsistency problem of YOLOv8s PANet, we propose
a new adaptive fusion feature network PANet-AF, which enables the model to
fuse the features of the three scales better.

3. Since the CIoU used by YOLOv8s bbox loss lacks the angle factor, we replace
it with a more suitable SIoU [19].

4. Since the dataset made public by [20] lacked labels, we relabelled it and made
it public.

2 RELATED WORK

This section is mainly used to introduce the development and application of related
methods, including the development of the YOLO series, the method of attention
mechanism, ASFF, and some research work of bbox loss.

2.1 The Development of the YOLO Series

Since the rise of convolutional neural networks, efforts to achieve higher precision
have resulted in models becoming larger and deeper, which led to the fact that the
model of the object detection algorithm at that time was very large, difficult to
train, and the inference speed of the model was very slow. To address these issues,
Redmon et al. proposed You Only Look Once (YOLO) [21], a simple architecture,
and its one-stage model, which is faster than other object detection models. How-
ever, the trade-off for fast speed is a lack of sufficient accuracy. In order to solve the
accuracy problem, Redmon et al. proposed YOLOv2, v3 [22, 23], while maintain-
ing speed they improved accuracy, and thus YOLOv3’s accuracy is comparable to
SOTA technology at that time. Subsequent versions are all improved on the basic
framework of YOLOv3, the latest is YOLOv8, which has excellent performance and
provides different sizes of models to achieve a balance of accuracy and speed, so that
developers can choose the most suitable model to complete their tasks.

2.2 Attention Mechanisms

With the rise of Transformer in recent years, more and more researchers have begun
to pay attention to the attention mechanisms. Attention mechanisms that have been
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shown to be effective include SE (Squeeze and Excitation), CBAM (Convolutional
Block Attention Module), CA (Coordinate Attention), etc. [24, 25, 26]. Cao and
Yuan proposed a real-time detection of mango based on improved YOLOv4 [27]. By
adding CBAM module to YOLOv4 to improve the detection accuracy, the improved
model is 3.93% higher than YOLOv4, which can identify mangos more accurately.
Cheng et al. present a novel drone detection method, YOLOv4-MCA [18], based on
the lightweight MobileViT and coordinate attention. It utilizes coordinate attention
to improve YOLOv4’s PANet. This method achieves a high detection accuracy for
multi-scale drone targets.

2.3 Multi-Scale Feature Fuse

In previous works, the multi-scale problems in object detection were usually solved
by the pyramidal feature representation. However, the inconsistency across different
feature scales is a primary limitation for the single-shot detectors based on the
feature pyramid. So Liu et al. propose a novel and data driven strategy for pyramidal
feature fusion, referred to as adaptively spatial feature fusion (ASFF) [28]. It fuses
spatial information of different scales to suppress inconsistency between different
feature scales.

2.4 Bbox loss

In addition to improving the structure of the model, the improvement of bbox loss
is also one of the important parts of object detection. From the initial L1, L2 Loss,
to IoU, GIoU, DIoU, CIoU Loss, and the recently proposed SIoU Loss, etc. [19,
29, 30, 31], bbox loss design is becoming more and more reasonable and efficient.
Lv et al. [32] replaced the original DIoU loss with α-DIoU loss to improve the
accuracy of boundary box regression in UAV detection. Therefore, it is essential to
select a suitable bbox loss.

Combined with the improvement of the above related work, we propose an ef-
ficient and lightweight real-time UAV detection method YOLOv8s-C3AS based on
YOLOv8s.

3 MODEL DESIGN

This section mainly introduces the overall model structure of YOLOv8s-C3AS and
the principles of related improvement methods.

3.1 YOLOv8s-C3AS

In this section, we will introduce the overall structure of the YOLOv8s-C3AS model,
which are Backbone, Neck, and Head. The overall structure of the model is shown
in Figure 1. A brief description of how to improve each section follows:
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Bakcbone: This algorithm enhances the original backbone of YOLOv8s, and we
add a new coordinate channel spatial attention module (CCSM) after the first
three stages in the backbone. The specific location of this insertion is shown in
Figure 1. After integrating the CCSM module, the model not only gains the
ability to capture the relationships between channels and coordinate information
but also develops spatial awareness. This enhancement helps suppress irrelevant
feature information, improving the model’s feature extraction capability and
increasing its focus on small targets.

Neck: We propose a new feature fusion network, PANet-AF, which allows the orig-
inal three independent branches to fuse and enhance information of different
scales through an attention mechanism. It is the addition of three adaptive
fusion modules (AFM) to the original PANet of YOLOv8s.

Head: For the structure of the prediction header we follow YOLOv8s and keep
it unchanged. However, in terms of the loss function, we replace the box loss,
which is used in YOLOv8s, with the more appropriate SIoU loss, which has
proved to be effective after experiments.
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Figure 1. YOLOv8s-C3AS model structure diagram



450 B. Su, J. Zhang, Y. Lin

Other modules, CBS block is composed of a convolution block, a normalization
layer, and an activation function (SiLU). The convolution block in the figure uses
the default parameters (kernel = 3, stride = 2, padding = 1) if the parameters are
not specifically labeled. The Stage Layer module and the CCSM module are the
main structures of the backbone. CSPLayer is the key component of Stage Layer
block, which is not only used in backbone, but also in neck. CSPLayer is composed
of several DB blocks. The SPPF block consists mainly of 3 maximal pooling layers
with different pooling cores. Note that SPPF is included in the Stage Layer4 Block,
which is also different from the previous Stage Layer blocks. Figure 1 shows the
overall structure of YOLOv8s-C3AS and the structure of each block.

3.2 Channel Coordinate Spatial Module

3.2.1 Other Common Shortcomings of the Attention Module

Hu et al. [24] proposed a Squeeze-and-Excitation (SE) block to obtain the corre-
sponding weights for each channel. But it only has channel attention, ignoring the
importance of spatial attention. Woo et al. [25] proposed the Convolutional Block
Attention Module (CBAM), which combines channel attention and spatial attention.
As a plug-and-play module, it can be embedded into convolutional neural networks
to improve network performance. Although SE and CBAM enable the network to
achieve good performance, Hou et al. [26] found that the compression characteristics
of SE and CBAM lost too much information and ignored the coordinate informa-
tion. Therefore, they proposed Lightweight Coordinate Attention (CA) to solve this
problem.

However, CA also has shortcomings, it only focuses on the information of fea-
tures in the horizontal and vertical directions, missing the information of the overall
spatial position, such as the bias of the target of interest in the overall space, we
simply call this process spatial sense. The coordinate information can only let the
model know where the target is located (only one (x, y) coordinate vertical informa-
tion), but it cannot let the model know where the target appears in the overall target
deviation, whether it is centered or it is left or right, or up and down. Than means
it cannot let the model have a sense of space. Therefore, we propose a CCSM mod-
ule that captures the relationships and coordination information between channels
while also providing the model with a sense of space.

3.2.2 CCSM Module Details

CCSM combines the advantages of CBAM and CA, as shown in Figure 2 c), which
is mainly divided into two parts.

The top half. In the first half, the remote dependencies between channels are cap-
tured along the channel direction, while the precise location information is re-
tained along the other spatial direction, which helps the network locate the
object of interest more accurately.
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Figure 2. Structure comparison of a) CBAM, b) CA and c) CCSM

The calculation of input feature map can be divided into two parts: coordinate
information embedding and coordinate information generation.

Coordinate Information Embedding. The embedded part is abstracted
into two one-dimensional features in the horizontal and vertical directions.
The specific operation is, using the pooling check of size (H, 1) or (1,W ) to
pool the input feature X, then the output of channel c with height H can
be expressed as:

zhc (h) =
1

W

∑
0≤i<W

xc(h, i). (1)

Similarly, the output of cth channel with width w can be written as:

zwc (w) =
1

H

∑
0≤j<H

xc(j, w). (2)

Coordinate Information Generation. The steps for generating coordinate
information are as follows: First, coordinate information is embedded in
Equation (1) and the aggregate feature maps generated by Equation (2) are
connected, and then they are sent to the shared 1× 1 convolution transform
function f to obtain the concatenated features, and then through a Batch-
Norm and nonlinear activation function, it can be expressed as:

Fh,w = δ(⟨f 1×1([zh, zw])⟩), (3)

where δ is the nonlinear activation function, ⟨ ⟩ is the BatchNorm layer, and
[×] denotes the concatenation operation along the spatial dimension.
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Then, we first divide Fh,w into two tensors, Fh and Fw, along the spatial
dimension. And then use two other 1 × 1 convolution transformations f ,
to transform Fh and Fw, respectively, into tensors with the same channel
number as the input x.

gh = σ(f 1×1
h (Fh)),

gw = σ(f 1×1
w (Fw)).

(4)

Finally, the output of our coordinate attention block Y can be written as:

yc(i, j) = xc(i, j)× ghc (i)× gwc (j). (5)

The bottom half. This part is mainly used to generate spatial attention and give
the model a sense of space. It is only necessary to send the input feature through
the channel pooling layer (Pc), and then through a 7× 7 size convolution layer,
which can be written as:

ys = f 7×7(Pc(x)). (6)

Finally, the process of CCSM module can be summarized as follows:

F1 = yc(x)⊗ x,

F2 = ys(F1)⊗ F1,
(7)

where ⊗ represents element-by-element multiplication with feature mappings; x
represents the input feature; yc represents the upper half of CCSM to capture the
relationship and coordinate information between feature channels; ys represents
the computational spatial attention feature to give the model a sense of space,
and F2 is the final feature obtained by the CCSM module.

3.3 PANet-AF

We refer to the idea of [28] to improve the neck of YOLOv8s. The improved neck is
called PANet-AF. However, in [28] the required parameter cost is so high that we
have simplified it, which we will call the Adaptively Fusion Module (AFM) in this
article. It enables the model to learn how to spatially filter conflicting information
to suppress inconsistencies, thereby improving scale invariance.

AFM. Its key idea is to adaptively learn the spatial weight of fusion for feature
maps at each scale. AFM consists of two steps: feature map scaling and adaptive
fusion, as shown in Figure 3.

1) Feature Resizing. Set the resolution of the L layer (L ∈ 1, 2, 3) to xL. For
the other layers N (N ̸= L) the feature xN will be adjusted to the same shape
as xL. Since the three scales of features in YOLOv8 have different resolutions
and channels, corresponding adjustment strategies are also required, where
for the up-sampling and down-sampling strategies we follow [28].
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CSPLayer ASF3 Detect3
Neck 20x20x512

ASF3

＋ ＋

Figure 3. Adaptive spatial feature fusion mechanism process, where the cat image is
from [28]

2) Adaptive Fusion. Let xN→L
ij be the feature vector of the N th layer adjusted

to the position corresponding to (i, j) of the Lth layer feature. The features
of the L layer are fused as follows:

yLij = αL
ijx

1→L
ij + βL

ijx
2→L
ij + γL

ijx
3→L
ij , (8)

where yLij denotes the fusion output of the corresponding (i, j) feature vector

in the Lth layer. αL
ij, β

L
ij, γ

L
ij are importance weights for the feature maps at

three different levels after feature resizing to level L, which are adaptively
learned by the network. Provided that αL

ij + βL
ij + γL

ij = 1 and αL
ij, β

L
ij, γ

L
ij ∈

[0, 1], and we can define:

αL
ij =

e
λL

αL
ij

e
λL

αL
ij + e

λL

βL
ij + e

λL

γL
ij

, (9)

where λL
αL
ij
, λL

βL
ij
, λL

γL
ij

are computed using a 1 × 1 convolution for the three

feature maps x1→L, x2→L, x3→L, and a softmax function is used to define the
αL
ij, β

L
ij, γ

L
ij. The feature resizing and adaptive fusion described above will

operate at each of the three different scales.

AFM-sim. For the simplified version of AFM-sim, the overall process is the same
as the previous AFM, except that the Feature Resizing part is different. Instead
of using convolution for downsampling and channel scaling, the Focus layer in
YOLOv5 [33] is used to increase the channels of the feature map and reduce
the resolution. At the same time, an averaging operation is used for channel
compression. Note: The AFM modules we used in this experiment are all AFM-
sim.

3.4 SIoU Loss

YOLOv8s bbox loss uses the CIoU Loss, which takes into account only the aspect
ratio of the prediction box and gtbox, the IoU, and the distance between the box
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centers. An important influencing factor angle cost is ignored. We therefore use
the SIoU Loss recently proposed by Gevorgyan [19] to replace the CIoU Loss. SIoU
Loss function consists of 4 cost functions: Angle cost, Distance cost, Shape cost,
IoU cost. Follow-up experiments also proved that our idea was right.

1) Angle cost. The basic idea is to return the prediction box to the X or Y axis
first (prioritizing smaller angles) and then continue along the X or Y axis. Based
on this idea, the model will first try to minimize α if α ≤ π/4 during training,
otherwise minimize β = π/2− α. Angle cost is defined as follows:

A = 1− 2 ∗ sin2(arcsin(x)− π/4),

x =
ch
σ

= sin(α),

A = 1− 2 ∗ sin2(α− π/4) = cos(2α− π/2) = sin(2α),

(10)

where

σ =
√
(bgtcx − bcx)

2 + (bgtcy − bcy),

ch = max(bgtcy , bcy)−min(bgtcy , bcy).

(11)

Some of the specific variables are shown in Figure 4.

2) Distance cost. Combine the angle cost defined above into the new distance
cost:

D =
∑
t=xy

(1− e−γρt),

ρx =

(
bgtcx − bcx

cw

)2

, ρy =

(
bgtcy − bcy

ch

)2

, γ = 2− A.

(12)

β

α
B

BGT

σ

Cw

Ch

β

α
B

BGT

σ

Cw

Ch

Figure 4. Schematic diagram of SIoU Loss variables

When α → 0, then the angle loss A = 0, γ = 2, the effect of angle loss becomes
smaller and the contribution of distance loss in the whole SIoU Loss becomes
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larger, so that the distance loss is mainly optimized. When α → π/4, γ = 1,
the angle has the greatest effect on the distance loss, and the contribution of
the distance loss becomes smaller, so the angle will be optimized first. Thus as
the angle increases, the priority of the angle becomes progressively greater than
that of the distance.

3) Shape cost. Shape loss definition:

S =
∑
t=w,h

(1− e−ωt)θ,

ωw =
|w − wgt|

max(w,wgt)
, ωh =

|h− hgt|
max(h, hgt)

.

(13)

θ value controls how much the model focuses on shape cost. We follow the
setting of [19] and also set θ to 4 in this paper.

4) Total formula of SIoU loss function. The formula of SIoU loss can be ob-
tained by combining the three loss functions mentioned above, namely Angle
loss, Distance loss and Shape loss:

Lbox = 1− IoU +
D + S

2
,

IoU =
|B ∩BGT |
|B ∪BGT |

.

(14)

4 DATASET AND EXPERIMENT DETAILS

4.1 Dataset Preparation

The drone dataset used in this paper is a publicly available dataset constructed by
Aksoy et al. [20]. Since the data set provided in literature [20] lacked labels, we used
labeling software to re-label and expose it. The drone dataset consists of 3 sizes of
targets, small, medium and large, totaling 3752 images and 4784 targets. We divide
the dataset into training set and test set in the ratio of 8:2, i.e., 3002 images in the
training set and 750 images in the test set. The distribution of the drone dataset is
specifically shown in Table 1.

In addition to using the UAV dataset, this paper also uses the PASCAL VOC
07 + 12 dataset for generalization performance experiments. The VOC dataset [34]
has a total of 20 categories containing images and labels for classification, detection,
segmentation, and human body layout. VOC 07 + 12 is a union of the training
and test sets of PASCAL 2007 and 2012, which were then tested on the test set of
PASCAL 2007. A total of 16 551 training images and 4 952 test images are included.
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Class
Number

of Images
Number

of Targets
Large Medium Small

train 3 002 3 829 1 118 1 686 1 025
test 750 955 262 435 258
total 3 752 4 784 1 380 2 121 1 283

There may be multiple targets in a single image.
We removed several images that are difficult to identify
by human eyes, and added several untargeted images to
enhance the generalization ability of the model. As for the
test set, it is the same as the test set.

Table 1. Drone-dataset’s targets information

4.2 Experimental Environment and Training Details

The experimental equipment uses a Tesla V100 (32G) for training and a 3070ti
(8G) to test the inference speed of the model.

YOLOv8s-C3AS are still augmented with the Mosica dataset from YOLOv5 [33],
while the Mosica dataset augmentation is turned off for the last 10 epochs of the
training phase as proposed by YOLOX [35]. Table 2 shows the hyperparameter
information used in model training. Figure 5 shows the trend of the model train-
ing loss. Where loss cls represents the classification loss, loss bbox represents the
bounding box regression loss, and loss dfl is the Distribution Focal Loss proposed
in [36]. The total loss is obtained by applying a certain percentage of weighting to
the other three losses.

For the VOC 07+12 dataset we used the AP50 metrics to evaluate. Instead, the
drone dataset is evaluated using MSCOCO-style evaluation metrics Average Preci-
sion, including AP,AP50, AP75, APs, APm, and APl, where APs, APm, APl represent
the average precision of small, medium, and large scale objects.

Type Parameter Note

Image size 640× 640 Image input size
Epoch 200 Total training times
Batch size 16 or 8 Freeze size or Normal size
Learning rate 0.01 and 0.0001 Initial and Minimum rate
Optimizer SGD Optimizer type
Momentum 0.937 Momentum of optimizer
Weight decay 0.0005 The decay of weights
Learning rate schedule Linear Learning rate adjustment strategy

Table 2. The hyperparameter setting of model training
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Figure 5. The loss value of YOLOv8s-C3AS on drone dataset

5 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we will use a series of methods to validate our proposed approach.
First, ablation experiments are conducted on the YOLOv8s-C3AS algorithm in the
drone dataset and the utility of each improved strategy is explored. Secondly, the
effectiveness comparison experiment is carried out on the drone dataset, which ver-
ifies that our algorithm is more effective for UAV detection than other algorithms.
Finally, we conduct a comparison experiment with other commonly used algorithms
on the PASCAL VOC 07+12 dataset, and prove that YOLOv8s-C3AS model is not
only suitable for specific data sets but also has a strong generalization ability.

5.1 Ablation Experiments

5.1.1 Ablation Experiment of CCSM Module

To verify the effectiveness of our proposed CCSM module, we conducted ablation
experiments on the basis of YOLOv8s. We compare commonly used Attention
modules such as SE (Squeeze and Excitation), CBAM (Convolutional Block Atten-
tion Module), CA (Coordinate Attention), and our proposed CCSM (Coordinate
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Channel Spatial Attention Module). We add these four modules respectively to the
backbone of YOLOv8s, and the specific insertion location is shown in CCSM in
Figure 1.

Model FLOPS(G) Param(M) FPS mAP mAP50 mAP75

YOLOv8s 28.5 11.147 130.6 76.2 98.5 84.7
+ SE 28.7 11.189 128.6 76.3 98.5 85.1
+ CBAM 28.9 11.213 123.3 76.5 98.6 85.7
+ CA 28.6 11.171 125.3 76.7 98.5 86.5
+ CCSM (our) 28.7 11.165 128.3 76.8 98.7 86.9

Table 3. Experimental results of different attention modules on drone dataset

As it can be seen from Table 3, the CCSM module we proposed only adds a little
FLOPS and the number of parameters, the speed is almost the same as YOLOv8s,
but the accuracy is better than other attention modules.

5.1.2 YOLOv8s-C3AS Model Ablation Experiment

In order to verify that each of our proposed improvements is effective, we conducted
additional ablation experiments. We experimented with each of the improved parts
of YOLOv8s-C3AS one by one on the drone dataset.

Model Method mAP mAP50 mAP75 FPS
Parame-
ter (M)

CCSM PANet-AF SIoU

YOLOv8s × × × 76.2 98.5 84.7 130.6 11.136
YOLOv8s-C3 ✓ × × 76.8 98.7 86.9 128.3 11.147
YOLOv8s-A × ✓ × 76.9 98.8 85.7 122.2 12.240
YOLOv8s-C3A ✓ ✓ × 77.0 98.8 86.9 120.5 12.251
YOLOv8s-C3AS ✓ ✓ ✓ 77.2 98.9 87.1 120.5 12.251

Table 4. The ablation experiment based on drone dataset

From the results in Table 4, it can be seen that YOLOv8s has an accuracy of
76.2% for mAP, 98.5% for mAP50, 84.7% for mAP75, an inference speed of 130.6 f/s,
and a model parameter count of 11.136M. The improvement based on CCSM is
very good, resulting in a 0.6% improvement in the model’s mAP with a negligible
decrease in the FPS and negligible increase in the number of parameters. The AP50

improves by 0.2% and the AP75 improves by 2.2%.
C3 indicates that 3 CCSM modules are inserted (see Figure 1 for details), here

we only chose to insert CCSM after the first 3 Stage Layers because Stage Layer 4
is immediately followed by the SPPF module. Because the bottom half of CCSM
(the part that computes spatial attention features) will conflict with the role of
MaxPool2d layer in the SPPF module, which both operate on spatial information.
MaxPool2d layer will filter the spatial information extracted by the CCSM module,
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which results in the reduction of the role of CCSM. The experiments in Table 5 also
prove our conjecture that C4, which means adding CCSM module after each Stage
Layer, can only reach 76.5 mAP in the end, which is far less effective than that
of C3.

The neck improvement based on PANet-AF was also significant. It improves
the mAP of the benchmark YOLOv8s by 0.8%, mAP50 by 0.3%, and mAP75 by
1%, but it also carries the largest burden, with a drop in FPS of 8 f/s and an
increase in the number of parameters by 1M. The improvement in bbox loss is the
SIoU, which improves the model accuracy without adding any additional burden.
Finally, compared to YOLOv8s, our algorithm YOLOv8s-C3AS improves mAP by
1%, mAP50 by 0.4%, and mAP75 by 2.3%.

Despite the 1M increase in model parameters, there is only a small impact
on the model inference speed, which is reduced by only 10 f/s, which is negligible
compared to the increase in accuracy. In conclusion, our model achieves an effective
balance between accuracy, FPS and model complexity, and it is suitable for UAV
target detection tasks.

Model Position mAP mAP50 mAP75

YOLOv8s (×, ×, ×, ×) 76.2 98.5 84.7
YOLOv8s-C3 (✓, ✓, ✓, ×) 76.8 98.8 86.9
YOLOv8s-C4 (✓, ✓, ✓, ✓) 76.5 98.5 86.3

Tick to add CCSM after the corresponding stage layer.

Table 5. The insertion position of the CCSM module

5.2 Comparison with Other Methods

5.2.1 Comparative Experimental Results on Drone Dataset

To verify the effectiveness of our method in drone detection tasks, we conducted com-
parative experiments on drone datasets with other advanced algorithms. In the UAV
dataset, we use COCO’s evaluation index. As can be seen in Table 6, our method
has the highest accuracy among all algorithms, with 77.2% for mAP(0.5 : 0.95),
98.9% for mAP50, and 87.1% for mAP75. In addition, our model has the best AP
performance on all three scales. Note that since YOLOv7 [37] does not provide
an s-version of the model, we use YOLOv7 tiny, which has the closest parameters,
as a comparison.

As it can be seen from the effect comparison graph in Figure 6, our model
YOLOv8s-C3AS (lower six images) has better detection results compared to
YOLOv8 (upper six images). The second, fourth and sixth images are correctly
detected images while the first image is a missed detection image and the third and
fifth images are incorrectly detected images. It is clear that our model YOLOv8-
C3AS can avoid missed and wrong detection very well.
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Model
mAP
(%)

mAP50

(%)
mAP75

(%)
mAPs mAPm mAPl

Faster R-CNN 67.6 96.8 78.7 47.2 71.0 78.1
SSD 58.7 93.2 64.8 33.4 60.0 76.9
RetinaNet 62.5 94.7 73.6 41.3 67.3 73.2
YOLOv4-MCA [18] N/A 92.8 N/A 24.6 38.3 58.5
TDRD-YOLO [38] N/A 96.8 N/A N/A N/A N/A
SAG-YOLOv5s [32] N/A 97.6 N/A N/A N/A N/A
YOLOv5s 68.9 97.5 77.1 46.1 71.3 82.3
YOLOvxs 68.3 97.8 77.1 46.6 71.5 80.8
YOLOv6s 70.2 97.9 79.3 48.3 72.0 83.8
YOLOv7 tiny 67.0 96.2 76.4 45.2 68.8 81.5
YOLOv8s 76.2 98.5 84.7 49.1 77.7 94.9
YOLOv8s-C3AS (our) 77.2 98.9 87.1 50.4 79.0 95.1

N/A indicates not available.

Table 6. The performance comparison of algorithms on drone dataset

Model Input Size mAP50 (%) FPS (f/s) Parameter (M)

Faster R-CNN 1 000× 600 79.5 29.9 41.22
SSD 300×300 73.8 85.1 26.29
RetinaNet 1 000× 600 75.7 30.6 36.5
YOLOv4-MCA [18] 416×416 80.7 40 13.47
YOLOv5s 640× 640 76.4 97.6 7.07
YOLOvxs 640× 640 84.2 114.8 8.94
YOLOv6s 640× 640 85.0 44.1 17.20
YOLOv7 tiny 640×640 79.5 79.1 6.07
YOLOv8s 640× 640 84.8 130.6 11.14
YOLOv8s-C3AS (our) 640× 640 85.3 120.5 12.25

FPS was tested on the RTX 3070Ti.

Table 7. The performance comparison of algorithms on PASCAL VOC 07 + 12

5.2.2 Comparative Experimental Results on PASCAL VOC Dataset

To verify that our model is generalized and not only applicable to a specific dataset,
we also generalize all algorithms on the dataset of PASCAL VOC 07 + 12. The
indexes used in the generality experiment are mAP50 (IoU = 0.5), model inference
speed FPS, and model parameters.

From the experimental results in Table 7, our method mAP50 has the highest
accuracy among all algorithms. Although YOLOv6s can achieve 85.0% accuracy,
which is already better than the common YOLOv8s, it sacrifices too much speed to
meet the speed requirement of UAV detection. In contrast, our method outperforms
YOLOv6s in all aspects. Our model achieves an effective trade-off between the speed
and accuracy as well as parameters. It is also a good proof that our model YOLOv8s-
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Figure 6. YOLOv8s (top) and YOLOv8s-C3AS (bottom) comparison results

C3AS is not only suitable for UAV datasets, but also for general datasets with strong
generalization ability.

6 CONCLUSIONS

Aiming to address the issues of low precision, slow speed and high complexity of the
UAV detection model, an efficient and real-time UAV detection algorithm YOLOv8s-
C3AS was proposed based on YOLOv8s.

First, the YOLOv8s backbone network was improved. Except for the last level
of the backbone network, the coordinate channel space attention module (CCSM)
was added after each stage of the backbone network, so that the model could not
only capture the feature channel and coordinate information, but it also gives the
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model a spatial sense, so as to improve the feature extraction ability of the model.
Secondly, we add the adaptive fusion model (ASM) after the PANet of YOLOv8s,
and we call the improved neck PANet-AF. It can use the original three independent
scale branches of PANet to self-adapt the information fusion and enhancement of
different scales. Finally, we use a more appropriate SIoU Loss to replace the original
bbox loss of YOLOv8s, which makes up for CIoU lack of consideration of angle
factors in boundary box regression, so as to further improve the detection accuracy
of the model.

The experimental results indicate that the method performs well. It achieves
98.9% mAP50 accuracy on drone datasets and 85.3% mAP50 accuracy on VOC
datasets, with a high inference speed of 120 FPS and a parameter count of only
12.25M. While maintaining fast model inference speed and low model parameters,
it has higher detection accuracy than other mainstream UAV detection algorithms.
There is still room for improvement in the model’s speed and accuracy, which will
be addressed in future work.

REFERENCES

[1] Mandal, P.—Roy, L. P.—Das, S.K.: Internet of UAV Mounted RFID for Vari-
ous Applications Using LoRa Technology: A Comprehensive Survey. In: Dahal, K.,
Giri, D., Neogy, S., Dutta, S., Kumar, S. (Eds.): Internet of Things and Its Ap-
plications. Select Proceedings of ICIA 2020. Springer, Singapore, Lecture Notes in
Electrical Engineering, Vol. 825, 2022, pp. 369–380, doi: 10.1007/978-981-16-7637–
6 33.

[2] Basak, S.—Rajendran, S.—Pollin, S.—Scheers, B.: Combined RF-Based
Drone Detection and Classification. IEEE Transactions on Cognitive Communications
and Networking, Vol. 8, 2022, No. 1, pp. 111–120, doi: 10.1109/TCCN.2021.3099114.

[3] Mandal, P.—Roy, L. P.—Das, S.K.: Intruder Drone Detection Using Unmanned
Aerial Vehicle Borne Radar (UAVBR) via Reconfigurable Intelligent Reflective Sur-
face (IRS). 2022 IEEE 19th India Council International Conference (INDICON), 2022,
pp. 1–5, doi: 10.1109/INDICON56171.2022.10039834.

[4] Kang, H.Y.—Lee, K.: A General Acoustic Drone Detection Using Noise Reduction
Preprocessing. Journal of the Korea Institute of Information Security & Cryptology,
Vol. 32, 2022, No. 5, pp. 881–890, doi: 10.13089/JKIISC.2022.32.5.881 (in Korean).

[5] Fang, J.—Li, Y.—Ji, P.N.—Wang, T.: Drone Detection and Localization Us-
ing Enhanced Fiber-Optic Acoustic Sensor and Distributed Acoustic Sensing Tech-
nology. Journal of Lightwave Technology, Vol. 41, 2023, No. 3, pp. 822–831, doi:
10.1109/JLT.2022.3208451.

[6] Shao, S.—Zhu, W.—Li, Y.: Radar Detection of Low-Slow-Small UAVs in Com-
plex Environments. 2022 IEEE 10th Joint International Information Technology
and Artificial Intelligence Conference (ITAIC), Vol. 10, 2022, pp. 1153–1157, doi:
10.1109/ITAIC54216.2022.9836542.

https://doi.org/10.1007/978-981-16-7637--6_33
https://doi.org/10.1007/978-981-16-7637--6_33
https://doi.org/10.1109/TCCN.2021.3099114
https://doi.org/10.1109/INDICON56171.2022.10039834
https://doi.org/10.13089/JKIISC.2022.32.5.881
https://doi.org/10.1109/JLT.2022.3208451
https://doi.org/10.1109/ITAIC54216.2022.9836542


Efficient Drone Detection Method Based on YOLOv8s Improvement 463

[7] Mendis, G. J.—Randeny, T.—Wei, J.—Madanayake, A.: Deep Learning
Based Doppler Radar for Micro UAS Detection and Classification. MILCOM
2016 – 2016 IEEE Military Communications Conference, 2016, pp. 924–929, doi:
10.1109/MILCOM.2016.7795448.

[8] Bisio, I.—Garibotto, C.—Lavagetto, F.—Sciarrone, A.—Zappatore, S.:
Unauthorized Amateur UAV Detection Based on WiFi Statistical Fingerprint Anal-
ysis. IEEE Communications Magazine, Vol. 56, 2018, No. 4, pp. 106–111, doi:
10.1109/MCOM.2018.1700340.

[9] Liu, S.—Qi, L.—Qin, H.—Shi, J.—Jia, J.: Path Aggregation Network for In-
stance Segmentation. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018, pp. 8759–8768, doi: 10.1109/CVPR.2018.00913.
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