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Abstract. The goal of the 3D action prediction task is to predict the action label
corresponding to an incomplete 3D skeleton sequence. Existing studies are limited
to the supervised framework. To eliminate the dependence of supervised learning
on expensive labels, we propose a self-supervised learning method for 3D action
prediction. We use three self-supervised tasks of action completeness perception,
motion prediction, and global regularization to allow the network to learn the past
and future information embedded in the sequence of unfinished actions, i.e., the
action completeness that has occurred and the future motion trend, and to opti-
mize the feature space learned by the model. Some models ignore the past and
future information embedded in partial sequences, which is the key to action pre-
diction by humans. Based on our self-supervised method, we design two modules,
an action completeness perceptron, and a motion predictor, to complete missing
information in partial inputs. And a novel network structure is proposed to fuse
partial and complete prediction to achieve more reasonable action prediction. We
have conducted extensive experiments on different datasets, and the results validate
the effectiveness of our proposed method.

Keywords: 3D action prediction, self-supervised learning, multi-task, skeleton
data, motion prediction

1 INTRODUCTION

With the development of computer vision, more and more researchers are focusing
on the understanding of human actions. With the ability of understanding human
actions, computers can play an important role in many fields such as intelligent
surveillance, human-computer interaction, video understanding, etc. Human action
understanding consists of many subtasks. Unlike action recognition, which has been
widely studied, action prediction involves predicting classes of actions from incom-
plete sequences of actions. This is a very challenging task because partial sequences
often contain insufficient discriminative information, so relatively little research has
been done on action prediction. However, computers often need to recognize hu-
man actions before they are fully executed in many real-world scenarios, so action
prediction has broader application scenarios than action recognition.

Depending on the form of input data, the mainstream action understanding
methods can be divided into two categories: image action understanding based on
video data and 3D action understanding based on skeleton data. Many studies on
action prediction have focused on video data [1, 2]. Compared to video sequences, 3D
skeleton sequences obtained using depth cameras [3] or pose estimation algorithms [4,
5] are robust to changes in background, appearance, and viewpoint, and can protect
the privacy of the object, thus gaining widespread attention in recent years. From
hand-crafted features to deep learning [6, 7], action recognition methods based on 3D
skeleton data have been extensively studied and achieved good results. These action
recognition methods all use supervised learning and they rely heavily on large-scale
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labeled datasets, but manually labeling data is often expensive and time-consuming,
so the question of how to train models using unlabeled data has attracted the interest
of many researchers. A series of self-supervised or unsupervised methods that do not
require labels are proposed [8, 9, 10]. Most of these methods use the idea of contrast
learning, i.e., forcing the sample features to be similar to those of the corresponding
positive samples and becoming distant from the negative samples.

Observed Unobserved

observation rate 50%

Incomplete Action Action Label
action prediction

stand up

Figure 1. Goal of 3D action prediction is to infer the action label

Not many works focused on skeleton-based 3D action prediction, and only a few
new papers have appeared in this area recently [11, 12, 13]. Depending on the
feature extraction models, they can be broadly classified into three categories: RNN-
based methods [12], CNN-based methods [13, 14, 15], and GCN-based methods [16,
17]. However, current studies on 3D action prediction are limited to a supervised
framework, which requires a large amount of labeled data, while the labeling of
the data is expensive and time-consuming. Therefore, in this paper, we propose
a self-supervised framework for 3D action prediction to avoid the reliance on labels.

3D action prediction (or skeleton-based early action recognition) is shown in
Figure 1, where the model needs to infer the action label of an incomplete action
sequence with an unknown observation rate. This is an example on how a human
would determine the action category (e.g. stand up) of this sequence. Firstly, the
human would realize that the target has risen a little from the chair, and then the
human would naturally imagine the target moving from a semi-sitting posture to
a full standing posture sometime later. With this information, one can easily guess
that the sequence is a “stand up” action.

Based on the fact that humans perform action prediction, we propose that there
is rich information of past completeness and future trend contained in the sequence
of uncompleted actions, and this information helps to predict the class of actions.
We design three self-supervised tasks – action completeness perceptron, motion pre-
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diction, and global regularization – to allow the network to learn the past and future
information embedded in the skeleton sequence data to obtain discriminative fea-
ture representations. Different from the “completeness” of the action localization
task [18, 19, 20], which describes the localization effect, the completeness proposed
in this paper is characteristic of the action prediction task and corresponds to the
observation rate of an incomplete action sequence.

In the action completeness perception task, the model is trained to perceive
the observation rate of the current incomplete action sequence. Unlike previous re-
search [21] in which the observation rate regression task was used to discern whether
the samples were effectively enhanced, the proposed task perceives the observation
rate directly from the features and serves as a self-supervised task to supervise the
training of the feature extractor. Inspired by the researches on human motion trajec-
tory prediction [22, 23], the motion prediction task is proposed as a self-supervised
task to train the model to learn future trend information by reconstructing the com-
plete action sequence from the features of partial sequences. In addition, contrast
learning is a common unsupervised learning method. In this paper, the global reg-
ularization task based on contrast learning is used to optimize the feature space
so that global information from the complete sequence is introduced into the fea-
ture representation. To the best of our knowledge, this is the first work to explore
self-supervised learning on the 3D action prediction task.

Moreover, the action prediction task is fundamentally different from the action
recognition task. The input to the action recognition task is a completed sequence,
so the action recognition model only needs to capture information about what has
happened in the past. However, the input to the action prediction task is incomplete
sequence, and the model does not know not only what will happen later but also
how much of the current action has been executed. Existing 3D action prediction
methods all employ various strategies during training, such as using soft labels
[11] or loss associated with observation rates to prevent overfitting [12, 13, 17],
using regularization [36] or adversarial learning [15] to force the network to learn
implicit global information, and storing indistinguishable instance pairs to allow
the network to mine subtle discriminative information [16]. However, the design of
these network structures all follow the idea of action recognition, i.e., the encoder-
classifier structure: features of partial sequences are firstly extracted and then fed
to the classifier to obtain the prediction results. These approaches ignore the past
and future information about the action embedded in incomplete sequences, which
has been shown by psychological studies [24] to be the key to action prediction
by humans. In fact, when humans watch a certain action sequence, they already
know what the target is currently doing and what the target will do in the future
when they observe it for a certain time, i.e., when a certain observation ratio is
reached, and this temporal completeness and trend information can help humans
to accurately predict action categories. Therefore, we introduce two modules into
the 3D action prediction network, an action completion perceptron and a motion
predictor, and train their weights in the self-supervised process. Unlike previous
video action prediction methods in [25] that predict future video features, we let
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the network directly predict future motion sequences to generate complete action
sequences due to the more compact and intuitive skeletal sequence representation of
actions compared to video representations, as well as inspired by recent developments
in motion prediction research [22, 23, 26]. Based on this, we propose a new network
structure that fuses the prediction results of incomplete sequences with those of
the complete sequences reconstructed by the network to achieve a better action
prediction.

The contribution of this paper can be summarized as follows:

• We propose a novel multi-task self-supervised learning framework, which guides
the 3D action prediction network to learn more discriminative feature repre-
sentations by taking full advantage of past information, future information and
co-occurrence information in sequences with different observation rates.

• Unlike previous methods which only extract features from incomplete sequence,
we introduce two self-supervised trained modules into the 3D action prediction
network to generate complete sequence, making and fusing predictions based
on original incomplete sequence and generated complete sequence to obtain the
final prediction.

• We have conducted sufficient experiments on different datasets, and the results
validate the superiority of the multi-task self-supervised framework and network
structure proposed in this paper.

2 RELATED WORK

2.1 Supervised 3D Action Recognition

Early skeleton-based action recognition use hand-crafted features. Wang et al. [6]
proposed an ensemble model to represent each action and capture intra-class vari-
ance, then designed a new feature suitable to depth data. In [7], histogram-based
3D human pose representation was employed and an HMM classifier was used to
identify the actions. Hussein et al. [27] introduced a novel descriptor for human ac-
tion recognition based on covariance matrices and used multiple covariance matrices
to encode the relationship between joint movement and time. Seidenari et al. [28]
used joint positions to align multiple parts of the human body and proposed a multi-
part bag-of-posed solution. Vemulapalli et al. [29] modeled human actions as curves
in the Lie group using a new skeletal representation, and then mapped the action
curves from the Lie group to its Lie algebra followed by a classifier.

Compared to traditional methods, deep learning has greatly improved the ability
of models to extract features. The emergence of the NTU-RGBD dataset [30] has
greatly facilitated the development of related research. Researchers initially tried
to use RNN-based models for action recognition. Shahroudy et al. [30] proposed
a novel part-aware extension of the LSTM model according to the physical charac-
teristics of human body motion, which learns the long-term patterns specifically for
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each body part by splitting the memory cell of the LSTM into part-based sub-cells.
Then, a CNN-based method was introduced in [14], which used deep CNNs to learn
hierarchical features from the generated images. Because of the natural adaptability
of the human skeleton to graph data structures, Yan et al. [31] applied graph-based
neural networks to action recognition for the first time. Most of the subsequent work
was based on the improvement of ST-GCN. Shi et al. [32] proposed a two-stream
framework to adaptively learn the topology of the graph for different GCN layers and
skeleton samples, with explicitly formulating and combining the first-order informa-
tion and the second-order information of the skeleton data. A novel channel-wise
topology refinement graph convolution network [33] was proposed to dynamically
learn different topologies in different channels, that is, learn a shared topology as
a generic prior for all channels and refine it with channel-specific correlations for
each channel.

2.2 Unsupervised 3D Action Recognition

In recent years, self-supervised and unsupervised learning methods that can learn
feature representations from unlabeled data have attracted the interest of many
researchers. Zheng et al. [8] first explored unsupervised learning approaches for
skeleton-based action recognition, they proposed a framework consisting of three
sub-networks: an encoder extracts feature, a decoder reconstructs the randomly
masked input sequence, and a discriminator learns to distinguish the original from
the reconstructed sequence. Subsequent studies have mostly used contrastive learn-
ing strategies. MS2L [9] designed three tasks to learn skeleton dynamics, temporal
evolution, and regularized feature space respectively, with a new training strategy.
Si et al. [10] proposed a novel framework for semi-supervised 3D action recognition,
which tightly couples self-supervised learning into a semi-supervised algorithm via
neighbor relation exploration and adversarial learning.

There have been many unsupervised learning studies using contrast learning [34,
35, 36] in recent years, Li et al. [34] proposed that the rows and columns of the fea-
ture matrix of the data correspond to the instance and clustering representations.
Li et al. [35] unified deep clustering into a framework of representation learning, Lin
et al. [36] maximized the mutual information of different views through contrastive
learning. In the field of 3D action recognition, more and more researchers pay atten-
tion to contrast learning. The key to contrast learning is the construction of positive
and negative samples, and a series of works have been done to investigate this. Gao
et al. [37] enhanced the sample through the composition of view transformation and
distance transformation. CrosSCLR [38] leveraged multi-view complementary su-
pervision signal to examine the similarity of samples, and mined positive pairs from
similar negative samples. Su et al. [39] proposed a self-supervised approach to drive
the network to learn the discriminative motion representation features by construct-
ing speed-changed and motion-broken clips. Wang et al. [40] proposed a novel un-
supervised representation learning framework that simultaneously captures skeletal
postures and motion dynamics by performing contrastive learning between the two
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representations which are learned from skeleton coordinate sequences and velocity
sequences respectively. Thoker et al. [41] proposed inter-skeleton contrasting to learn
from a pair of skeleton representations in a cross-contrastive fashion and introduced
several skeleton-specific spatial and temporal augmentations. Guo et al. [42] per-
formed contrastive learning with distributional divergence minimization loss based
on extreme augmentations and NNM.

2.3 3D Action Prediction

Compared to video-based action prediction, 3D action prediction using skeletal co-
ordinate sequences as input has gained the attention of researchers in recent years.
Hu et al. [11] used RGB-D sequences as input to fuse 3D skeleton information,
used local cumulative frame features to represent RGB-D sequences, and also used
soft labels to mitigate the interference caused by different action sequences having
the same sub-actions in the early stages of training. Jain et al. [12] introduced
a sensory-fusion architecture that jointly learns to anticipate and fuse information
from multiple sensory streams with LSTM to capture temporal dependencies. Ke
et al. [13] proposed a global regularizer to force the network to extract global in-
formation from incomplete partial action sequences and assign different weights to
sequences with different observation rates during training. Liu et al. [43] stacked
multiple dilated convolutional layers with different perceptual ranges and regressed
the starting position of the current action to select the appropriate causal convo-
lutional kernel while encoding spatial features using different levels of dilated tree
convolutional kernels. Ke et al. [15] proposed to use adversarial learning to minimize
the difference between partial and complete sequences in the feature space. Weng
et al. [44] introduced category exclusion into action prediction by using reinforcement
learning to train an agent to generate a series of masks to exclude interfering nega-
tive categories, thereby improving prediction accuracy. Because many actions have
small differences at early stages and can be easily misclassified as another action,
Li et al. [16] used Hard Instance-Interference Class (HI-IC) Bank to dynamically
store similar pairs of indistinguishable action samples and enhanced the network’s
ability to mine subtle discriminative information through adversarial learning. Li
et al. [17] introduced an adaptive graph convolutional network to the action predic-
tion task and used adversarial learning to make the features of partial and complete
sequences as similar as possible, and also introduced a temporal-dependent loss
function to prevent the network from over-focusing on partial sequences with small
observation rates.

3 METHOD

In this section, we present our self-supervised learning framework and network in
details. We firstly describe the problem formulation and symbols in Section 3.1, then
we outline the general framework of self-supervised learning in Section 3.2, specify
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each self-supervised task in Section 3.3, and provide a description of our 3D action
prediction network with its training strategy in Section 3.4. The main symbols are
summarized in Table 1.

Notations Definitions

X complete 3D skeleton sequence
xi ith frame in X
O the observation ratio
XO the partial skeleton sequence under the observa-

tion ratio O corresponding to X
XP the reconstructed complete skeleton sequence

corresponding to X
E the feature encoder
Cls the action classifier
HO the action completeness perceptron
HM the motion predictor
HR the global regularization head
F the feature extracted from XO

Foriginal the feature extracted from X
Fcomplete the feature extracted from XP

Cat the number of action categories XP

LO the loss of action completeness perceptron
LM the loss of motion prediction
LR the loss of global regularization
Lself total loss of the self-supervised training phase
Laction the loss of the action prediction training phase

Table 1. Notations and definitions

3.1 Problem Formulation

3D action prediction requires predicting the action category before the action is fully
executed, as shown in Figure 1. A skeleton sequence with a total of T frames is given
as X = {x1, x2, x3, . . . , xT−1, xT}, where xt denotes the skeleton joint coordinates at
frame t. For each sample XO, the value of the observation rate O is between 0.1
and 0.9 (O ∈ (0, 1)). The input for 3D action prediction is a partial sequence XO ={
x1, x2, x3, . . . , x⌊O×T ⌋−1, x⌊O×T ⌋

}
, i.e., only the first ⌊O × T ⌋ frames of the complete

action are known. The goal of 3D action prediction is to learn a predictor P , which
predicts the action label of an incomplete action sequence, i.e., Y = P (XO), where
Y is the action class probability distribution of the sequence. The predictor usually
consists of two parts, the feature encoder E and the classifier Cls. The skeleton
sequence is firstly fed into E to extract the features F = E (XO), and then the
features are input to Cls to obtain the prediction result Y = Cls (F ), and the
overall process can be formulated as

Y = P (XO) = Cls (E (XO)) . (1)
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Unlike previous approaches to 3D action prediction that focus on supervised
learning, we use self-supervised learning to train the encoder E, and propose a 3D
action prediction network PS using past and future information in the skeleton. To
achieve this, we sample each sequence in the action recognition dataset at different
observation rates (0.1–0.9) to obtain data with different lengths of the observed
parts.

3.2 Multi-Task Self-Supervised Learning Framework
for 3D Action Prediction

In order to extract the past and future information embedded in the skeleton se-
quence, while making the learned feature representations more general, we use sev-
eral self-supervised tasks to train the network together: an action completeness
perception task corresponding to past information in the skeleton sequence, a mo-
tion prediction task corresponding to future information in the skeleton sequence,
and a global regularization task to optimize the feature space.

The overall framework of multi-task self-supervised learning is shown in Fig-
ure 2. Different tasks have a shared feature encoder E and respective task head
H ∈ {HO, HM , HR}. For the input samples, after extracting features using the
shared feature encoder, the features are fed into different task heads to achieve dif-
ferent tasks. The gradients of multiple task loss functions L ∈ {LO, LM , LR} are
back-propagated simultaneously to supervise the training of the network. Here, we
use a bidirectional GRU network [45, 46] as the feature encoder. The dimension
of incomplete skeleton sequence XO is T × (C × V ×M), and after feature encod-
ing, the dimension of feature F is T × C mid, where C, V , M are the coordinate
dimension of each joint, the number of joints, and the number of human bodies,
respectively, and C mid = 2× hidden size, and hidden size is the number of hidden
units of bidirectional GRU.

With the above self-supervised learning framework, it is possible to train a fea-
ture extractor suitable for action prediction tasks without action labels, while the
multi-task design can improve the generalizability of the feature extractor. In ad-
dition, the action completeness perceptron and motion predictor trained by the
self-supervised tasks are the basis of the 3D action prediction network based on past
and future.

3.3 Self-Supervised Tasks Based on Past and Future

3.3.1 Action Completeness Perception

In the 3D action prediction task, the only input to the network is the sequence of
uncompleted skeletal actions XO. The degree of completeness of the action, i.e.,
the observation rate O, is unknown to the network. For an action that is being
executed, it is possible to perceive how much it has been executed by observing
the part that has been completed. Perceiving the degree of completeness of the
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Figure 2. Multi-task self-supervised learning framework for 3D action prediction. The
network contains a shared feature encoder and different downstream task heads. a) The
partial sequence XO under the observation ratio O and its corresponding complete se-
quence X are fed into the network separately. b) F and Foriginal extracted by the feature
extractor are the features of partial and original complete sequences, respectively. c) The
network is trained to perform three different self-supervised tasks of the action complete-
ness perception task, the motion prediction task and the global regularization task.

current action can help the model better understand the action. This is the past
information embedded in the sequence of unfinished skeletons, and we propose to
design the action completeness perception task based on it. As shown in Figure 2,
in order for the feature extractor E to learn the past information contained in the
action sequence, i.e., to gain the ability to perceive the degree of action complete-
ness, this self-supervised task takes an unfinished partial skeleton action sequence
as input, and after applying a shared encoder to obtain the feature representation
F = E (XO) for the partial sequence, F is fed into the action completeness-aware
network HO to predict the observation rate of the sequence. We use a two-layer
multilayer perceptron as the action completeness perceptron HO. The last layer of
the multilayer perceptron converts the feature dimension to 1 dimension and uses
a sigmoid function as the activation function to obtain the predicted observation
rate

OP = HO (F ) = sigmoid (FC (F )) . (2)

The loss is obtained based on the predicted observation rate from the network
and the actual observation rate. We use the mean square error loss as the loss
function

LO =

∑N
i=1 ∥OP,i −Oi∥22

N
, (3)
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where N is the size of the batch, OP , i and Oi refers to the predicted observation
rate and real observation rate of the ith sample in the batch. The weights of the
shared feature encoder E and the action completeness perceptron HO are trained
by back-propagation using this loss.

3.3.2 Motion Prediction

Action incompleteness is a characteristic of action prediction input, which leads to
missing information in the feature. It is possible for humans to infer the trajectory
of the subsequent human joints when they observe only the skeletal movement that
has occurred (the observed portion). As shown in Figure 1, for the skeletal sequence
of the “stand up” action, the target has already stood up halfway, and we can infer
that the target will continue to stand up in the future until fully standing. That
is, the incomplete action sequence already contains certain trend information, and
this trend information about the future can help humans predict and determine the
class of the action. We therefore propose the motion prediction task to make the
features extracted by the feature encoder E contain such information. As shown
in Figure 2, for an unfinished partial action sequence XO with observation rate O,
which corresponds to a complete action with frame number T , its valid frames are
the first ⌊O × T ⌋ frames, and we use the skeleton coordinates of the ⌊O × T ⌋th
frame to fill the T − ⌊O × T ⌋ blank frames that follow. After applying the shared
encoder to obtain the feature representation F of the partial sequence XO, F is fed
to the motion predictor to generate future movements Xfuture. We adopt a residual
design that allows the motion predictor to predict the relative motion of the human
body that will occur, i.e., the motion of the human joints in the future relative to the
⌊O × T ⌋th frame, and then add it to XO to generate the complete skeleton sequence.
The motion predictor consists of a GRU and a fully connected layer, where the GRU
works as a feature decoder to transform the feature distribution and the FC layer
transforms the dimension of the feature from T ×C mid to T × (C × V ×M). The
motion predictor HM is formulated as following

XP = HM (F,XO) = FC (GRU (F )) +XO, (4)

where XP is the complete action sequence generated by the motion predictor.

After generating the reconstructed sequence XP through the network, we use
the mean square error loss between it and the original complete sequence X as the
reconstruction loss for the motion prediction task

LM =

∑N
i=1 ∥XP,i −Xi∥22

N
, (5)

where N is the batch size. The weights of the shared feature encoder E and the
motion predictor HM are trained by back-propagation using this loss.
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3.3.3 Global Regularization

As shown in Figure 2, we propose the global regularization task to optimize the
feature space, which takes the partial action sequence XO and its corresponding
complete action sequence X as input, and feeds their features extracted by the
feature encoder E into the global regularization head HR for feature mapping to
obtain Fobserved and Ffull, respectively{

Fobserved = HR (E (XO)) ,

Ffull = HR (E (X))
(6)

expecting the mapped features Fobserved and Ffull to be similar in distance. HR is
a two-layer multilayer perceptron.

To measure the feature similarity, we consider both the distance of features in
terms of direction and numerical values. We use the cosine function to measure the
similarity between two feature vectors in terms of direction.

similarity (x1, x2) =
x1 · x2

max (∥x1∥2 · ∥x2∥2 , ϵ)
, (7)

where x1 and x2 are two feature vectors and ϵ is a constant. For the difference
between the features in terms of values, we measure them using statistical measure-
ments. Then the loss of global regularization can be formulated as

LR =

∑N
i=1 (1− similarity (Fobserved,i, Ffull,i))

N

+

∑N
i=1 ∥mean (Fobserved,i)−mean (Ffull,i)∥22

N
(8)

+

∑N
i=1 ∥var (Fobserved,i)− var (Ffull,i)∥22

N
,

where N is the batch size, mean (·) is the mean of the feature vector, and var (·) is the
variance of the feature vector. The first term in (8) is the cosine loss, which forces
the partial and complete features to be similar in direction, and the second and third
terms supervise the partial and complete features to be similar in mean and variance,
respectively. The weights of the shared feature encoder E and the global regularizer
HR are trained by back-propagation of the global regularization loss, thus learning
a feature space in which incomplete sequences and their corresponding complete
sequences have similar feature representations.

When GCN, which is more sensitive to spatial information, is used as the back-
bone of our method, we employ various data augmentation methods to transform
the input sequence XO and its corresponding complete sequence X. We introduce
the key encoder E k and the key contrastive head HR k. The weights of them are
updated using momentum. We also introduce a two-layer MLP to map queries to
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Figure 3. The overall structure of the proposed 3D action prediction network based on
past and future. a) Previous methods for action prediction derived results based only on
the features of incomplete sequences. b) Our network generates complete sequence from
incomplete sequence and combines both partial and complete predictions.

keys. The loss of the mapped query and key is formulated as

L (q, k) = −2 · ⟨MLP (q), k⟩
∥MLP (q)∥2 ∥k∥2

, (9)

where q is the feature of the input sequence encoded by E and HR in turn, k is
the feature of the input sequence encoded by E k and HR k in turn, and MLP is
a two-layer multilayer perceptron.

By performing data augmentation on the input sequence XO and its correspond-
ing complete sequence X, we are able to obtain four samples. Their corresponding
queries and keys can be formulated as

qO = HR (E (XO)) ,

q = HR (E (X)) ,

qO,aug = HR (E (aug (XO))) ,

qaug = HR (E (aug (X))) ,

kO = HR k (E k (XO)) ,

k = HR k (E k (X)) ,

kO,aug = HR k (E k (aug (XO))) ,

kaug = HR k (E k (aug (X))) ,

(10)

where aug is data augmentation.

We use the loss in (9) to measure the differences between XO and X, XO and
aug(XO), X and aug(X), aug(XO) and aug(X), respectively. The global regular-
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ization loss LR can be written as

LR = L(qO, k) + L(q, kO) + L(qO, kO,aug) + L(qO,aug, kO)

+ L(q, kaug) + L(qaug, k) + L(qO,aug, kaug) (11)

+ L(qaug, kO,aug)

The graph convolutional network can be better trained to optimize the distribution
of features through the contrast learning between data augmented sequences.

3.4 3D Action Prediction Network Based on Past and Future

Based on the proposed self-supervised tasks, we design a novel 3D action prediction
network using past and future information without additional training. The overall
network structure is shown in Figure 3.

3.4.1 Network Structure

We use the action completeness perceptron and motion predictor trained by the
self-supervised tasks in Section 3.3 to generate complete sequences based on partial
sequences. As shown in Figure 4, the observation rate O of an incomplete action
sequence is unknown, and the length lfull of its corresponding complete action se-
quence is also unknown. At first, we input the incomplete sequence XO into the
feature encoder E to get the feature F = E (XO) of the partial sequence. The
observation rate OP of the sequence is then estimated by the action completeness
perceptron HO, and the length of the complete action is obtained by dividing the
number of frames of the observed sequence lobserved with the predicted observation
rate

lfull = ⌊lobserved/OP ⌋ . (12)

At the same time, feature F of the partial sequence is sent to the motion predictor
HM to generate the human motion in the future period, and the complete skeleton
sequence XP can be obtained by intercepting the first Lfull frames of the generated
sequence. Similarly, we feed the generated complete sequence XP into the feature
encoder to obtain the complete feature Fcomplete, which can be seen in Figure 3. We
use a fully connected layer as the action classifier Cls, which converts the dimensions
of features into the number of action categories. The partial and global feature are
fed into Cls to obtain the prediction result predict based on the partial sequence and
the prediction result predictcomplete based on the generated full sequence, respectively.
As the observation ratio increases, the partial sequence contains more and more
information, and the prediction based on it becomes more and more reliable. We
fuse these two together to obtain the final prediction.

predictfinal =
(
predict + predictcomplete

)
/2

= (Cls (E (XO)) + Cls (E (HM (E (XO))))) /2. (13)
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Complete Sequence Generation
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Figure 4. Our sequence generation strategy

3.4.2 Network Training

The training of this network consists of two phases: self-supervised training and
action prediction training.

In the self-supervised training phase, we use the self-supervised task in Sec-
tion 3.3 to train the feature encoder E, the action completeness perceptron HO, and
the motion predictor HM . The total loss in this phase is

Lself = LO + LM + LR, (14)

where the first term supervises the training of E and HO, the second term supervises
the training of E and HM , and the third term supervises the training of E and HR.
E, HO, and HM are applied to the proposed 3D action prediction network.

In the action prediction training phase, the network includes the feature en-
coder E, the action completeness perceptron HO, the motion predictor HM , and
the action classifier Cls. For K-nearest neighbor (KNN) evaluation, a KNN classi-
fier without training is used as Cls to classify the output features of the network.
For linear evaluation, according to the network structure shown in Figure 3, we get
the local prediction result predict and the complete prediction result predictcomplete.
Since both of them are important, we calculate the losses of these two predictions
separately and then add them together, for the total loss function below

Laction =
N∑
i=1

(CE (predicti, labeli) /2) /N +
N∑
i=1

(
CE

(
predictcomplete,i, labeli

)
/2
)
/N,

(15)
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where N is the batch size, Cat is the number of action categories, and label is the
action label. The weights of E, HO, and HM are frozen during the training, and
only the weights of Cls (a single fully connected layer) are supervised by the action
labels.

4 EXPERIMENTS

4.1 Datasets

NTU RGB+D dataset [30] is a large-scale multimodal human action recogni-
tion dataset containing 60 action categories and 56 800 skeleton sequences. The
recordings were performed by 40 volunteers and captured with the Microsoft
Kinect v2 sensor. Each action is captured by 3 cameras at the same time, those
have the same height but different horizontal angles: −45◦, 0◦ and 45◦. Two
evaluation benchmarks are provided for this dataset:

1. Cross-Subject (CS): The dataset is divided into a training set and a test-
ing set by subject, where the training set and the testing set each contains
20 subjects. For this evaluation, the training and testing sets have 40 320
and 16 560 samples, respectively.

2. Cross-View (CV): The dataset is divided by camera, where samples from
cameras 2 and 3 are used for the training set while samples from camera 1
are used for the testing set. For this evaluation, the training and testing sets
have 37 920 and 18 960 samples, respectively.

SYSU 3D HOI dataset [47] contains 12 categories of actions performed by 40 vol-
unteers, with a total of 480 samples. All these actions are human-object inter-
actions, captured by a Kinect camera. Since the skeleton data cannot represent
the manipulated objects and some actions have the same manipulated objects
and motions, it is more difficult to predict 3D actions on this dataset. We adopt
the same-subject and cross-subject criterion provided by the authors to evalu-
ate the proposed method. In the first setting, for each activity class, half of the
samples are selected for training and the rest for testing. In the second setting,
samples performed by half of the subjects are used as the training set and the
remaining half as the testing set. The authors provided 30 random splits, we
evaluate the model under each split separately, and finally report the average
accuracy.

NTU RGB+D 120 dataset [48] is an extension of the NTU RGB+D dataset,
expanding its size to 120 action categories with 113 945 samples. This dataset
provides two evaluation criteria:

1. Cross-Subjects (X-Sub): samples from 53 subjects are used for training, and
samples from other 53 subjects for testing.
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2. Cross-Setup (X-Set): samples with even collection setup IDs are used as
training set and samples with odd IDs are used as test set, i.e., 16 settings
are used for training and the remaining 16 settings are left for testing.

UAV-Human dataset [49] is a large-scale human action understanding dataset col-
lected via UAV, including video and skeleton multiple modalities. The dataset
was collected by UAVs in urban and rural areas in daytime and nighttime scenar-
ios, respectively. The dataset contains 23 031 skeleton samples and 155 action
categories for action understanding. The dataset provides two rubrics, v1 and
v2, both of which divide the dataset based on subjects, with samples from 89 sub-
jects under each division as the training set and samples from the remaining 30
subjects as the testing set.

After processing, all four datasets are expanded to 9 times of their original size,
with 511 200, 4 320, 1 025 505 and 207 279 samples, respectively.

4.2 Implementation Details

Because the action prediction dataset needs to generate samples at each observation
ratio, the number of total samples is 9 times larger than that of the original action
recognition dataset. To speed up the training, we downsample all samples to shorten
the length of individual sequences. All experiments are done on a single Nvidia GTX
1080Ti GPU, using PyTorch 1.1.0.

The output of the network trained by the self-supervised tasks and the target
task do not match. In order to evaluate the performance of our proposed self-
supervised learning method, we need to convert the output of the network. Referring
to [42], we conducted experiments under both KNN and linear evaluation protocols.

KNN Evaluation Protocol. The process of KNN evaluation is to apply the KNN
classifier directly on the features of the encoder trained by self-supervised learn-
ing where no ground-truth action labels are needed.

Linear Evaluation Protocol. The process of linear evaluation is to train the fea-
ture encoder by self-supervised learning, fix its weights and then train a single
layer FC to match the output of the model in the action prediction task and
dataset.

For NTU RGB+D dataset, we adopt the data pre-processing method in [50].
After pre-processing, we downsample all samples uniformly to half of the original
sequence, and truncate the part that exceeds 64 frames. Then each sequence is
divided into 9 samples with different observation rates from 0.1 to 0.9. We fill the
blank frames with the last frame for samples less than 64 frames. Adam optimizer is
used to train the network with the batch size of 256. In the self-supervised training
phase, the training epoch is set to 10, the initial learning rate is set to 5× e−4, and
decays with a factor of 0.1 at epoch 6. For the KNN evaluation criterion, partial
feature F and complete feature Fcomplete are averaged and fed directly into a KNN
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classifier with K-value set to 25 to obtain the prediction results. For the linear
evaluation criterion, the training epoch is set to 30, the initial learning rate is set to
1× e−2, and with a decay factor of 0.1 every 10 epochs.

For SYSU 3D HOI dataset, we apply the same data generation approach as on
NTU RGB+D. We evaluate the proposed method under the same-subject and cross-
subject protocols respectively, both of which provide 30 different dataset divisions.
In the self-supervised training phase, the training epoch is set to 10, the initial
learning rate is set to 1 × e−3, and decays with a factor of 0.1 every 3 epochs. For
KNN evaluation criterion, the value of K is set to 6. For linear evaluation criterion,
in the action prediction training phase, the training epoch is set to 300, the initial
learning rate is set to 5× e−2, and decays with a factor of 0.1 at epoch 200.

4.3 Ablation Study

We verify the effectiveness of each self-supervised task and different network struc-
ture in ablation study. We use “ACP” for the action completeness perception task,
“MP” for the motion prediction task, “GR” for the global regularization task, and
“PN”, “CN” and “FN” for the partial prediction network, complete prediction net-
work and final prediction network, respectively.

We evaluate the performance of each of the above methods following the CS
and CV criteria respectively. The experimental results are shown in Table 2 and
Figure 5 a), Table 3 and Figure 5 b).

As seen in the tables, while the model parameters are self-supervised trained,
the average accuracy of the prediction has been improved by 16.37% and 18.58%
for the two criteria of cross-subject and cross-view, respectively, when the partial
prediction network is used, compared to the random initialization. When the com-
plete prediction network is used, the average accuracy of the prediction is improved
by 18.14% and 19.76% for the cross-subject and cross-view criteria, respectively.
When the fusion prediction network was used, the average accuracy of the predic-
tion improved by 17.56% and 18.89% under the two criteria of cross-subjects and
cross-views, respectively. This indicates that the multi-task self-supervised learn-
ing framework proposed in this paper can effectively train the model to extract 3D
action feature representations suitable for action prediction.

As seen in Table 2 and Table 3, when using the partial prediction network, the
average prediction accuracy of the model is decreased by 6.26% and 4.3% under
cross-subject and cross-view, respectively, by removing the action completeness per-
ception task. Without the motion prediction task, the average prediction accuracy
of the model is decreased by 0.61% and 1.53% under the two divisions, respectively.
This indicates that the two self-supervised tasks of action completeness perception
based on past completeness and motion prediction based on future trend proposed
in this paper can effectively train the model to learn discriminative feature repre-
sentations.

When both the action completeness perception and the motion prediction tasks
are included in the multi-task self-supervised learning framework, the weights of the
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Figure 5. Ablation experiment results on NTU RGB+D dataset
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Self-Supervised Tasks

Network Average
Action

Completeness
Perception

Motion
Prediction

Global
Regularization

× × × Partial Prediction 30.75

× × × Complete Prediction 29.75

× × × Final Prediction 31.70√
×

√
Partial Prediction 46.51

×
√ √

Partial Prediction 40.86√ √
× Partial Prediction 47.25√ √
× Complete Prediction 47.15√ √
× Final Prediction 48.97√ √ √

Partial Prediction 47.12√ √ √
Complete Prediction 47.89√ √ √
Final Prediction 49.26

Table 2. Ablation experiment results (%) on NTU RGB+D (Cross-Subject)

Self-Supervised Tasks

Network Average
Action

Completeness
Perception

Motion
Prediction

Global
Regularization

× × × Partial Prediction 33.88

× × × Complete Prediction 32.58

× × × Final Prediction 34.88√
×

√
Partial Prediction 50.93

×
√ √

Partial Prediction 48.16√ √
× Partial Prediction 50.98√ √
× Complete Prediction 49.93√ √
× Final Prediction 52.55√ √ √

Partial Prediction 52.46√ √ √
Complete Prediction 52.34√ √ √
Final Prediction 53.77

Table 3. Ablation experiment results (%) on NTU RGB+D (Cross-View)

action completeness perceptron HO and the motion predictor HM can be obtained,
and thus the complete sequence generation module is constructed as described in
Section 3.4.1 to obtain the complete and fused predictions. Therefore, to verify the
usefulness of the global regularization task, after removing this task from the multi-
task self-supervised learning framework, comparison experiments are conducted on
three networks, i.e., partial prediction, complete prediction, and final prediction,
respectively. It can be seen in Table 2 and Table 3 that, after removing the global
regularization task, the average prediction accuracy of the partial prediction net-
work is decreased by 1.48% under the cross-view, the complete prediction network
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is decreased by 0.74% and 2.41% under the cross-subject and cross-view, respec-
tively, and the final prediction network is decreased by 0.29% and 1.22% under
the two divisions, respectively. This fully validates the effectiveness of the global
regularization task proposed in this paper.

Self-Supervised Tasks Cross-Subject Cross-View

Action Completeness Perceptron 0.00968 0.00902

Motion Prediction 0.00559 0.00506

Table 4. Self-supervised tasks loss on NTU RGB+D

The detailed prediction accuracies of the models under different combinations
of the various self-supervised tasks at different observation rates are shown in Fig-
ure 5 a) and Figure 5 b). It can be visualized from the figures that the accuracy
of the partial prediction model at different observation rates all show a significant
decrease when there is no supervision of the action completeness perception task or
the motion prediction task. In the absence of a global regularization task to optimize
the feature space, the accuracy of all three prediction models yielded degradation.
This further illustrates the role of each self-supervised task in the multi-task self-
supervised learning framework proposed in this paper.

In addition, compared to partial prediction based on incomplete sequence only
and complete prediction based on generated sequence only, the average accuracy of
the final prediction is improved considerably under both cross-subject and cross-view
divisions. This is because the partial prediction is based on incomplete sequence with
missing discriminative information, and the complete prediction based on generated
sequence can make up for the missing information to a certain extent in the early
stage of the action, while the partial prediction can provide increasingly reliable
predictions as the action proceeds and more information is contained in the observed
incomplete sequences. Therefore, final prediction that combines partial prediction
and complete prediction can achieve higher prediction accuracy.

We also provide in Table 4 the difference between the experimental results of
the proposed self-supervised tasks and the ground truth.

4.4 Comparison with Other Methods

To evaluate the ability of the learned feature representation capturing action infor-
mation, we evaluate our model on the action prediction task. In addition, the action
prediction task becomes an action recognition task when the observation ratio of
a sequence reaches 1.0, so we also evaluate the performance of the ACP+MP+GR
+PN proposed in this paper which discriminates the category of action based on
the observed segment only on the action recognition task as a complementary ex-
periment to illustrate the effectiveness of our self-supervised training.
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4.4.1 Action Prediction

There are still relatively few studies on 3D action prediction (or skeleton-based
early action recognition). Therefore we compare with other supervised 3D action
prediction methods as a reference for the performance of our proposed self-supervised
method.

The experimental results on the NTU RGB+D dataset are shown in Tables 5
and 6. We follow the Cross-Subject criteria in Table 5 as other methods do. We
present the performance of ACP+MP+GR+FN under linear evaluation protocol.
It can be seen that our proposed RNN-based self-supervised ACP+MP+GR+FN
has outperformed some supervised methods [12, 14, 13] which require a large num-
ber of action labels to train the entire model, while we have only trained a single
fully connected layer with labels. The weights of the feature extractor E, action
completeness perceptron HO, and motion predictor HM of our model are obtained
and fixed by self-supervised training without labels. More specifically, the accuracy
of our method is on average 16.61% higher than [12], 8.42% higher than [14], and
1.97% higher than [13]. Compared to the state-of-the-art GCN-based supervised
approach [16], our method is only 20.86% lower on average at each observation
ratio. Note that our approach uses only the simple GRU as the baseline, which
has a faster speed and fewer parameters than GCN. And the performance of our
method has greatly outperformed the supervised method [12] that also uses RNN
as the baseline, which is on average 16.61% lower than ours at each observation ra-
tio. Compared to supervised RNN method using reinforcement learning for category
exclusion [44], our self-supervised approach remains competitive, with an average
accuracy of only 7.63% lower than that at all observation rates. The performance of
our method is further improved with GCN as the backbone. It can be seen that our
GCN-based ACP+MP+GR+FN achieves a large performance improvement when
the observation rate is small. Compared to our RNN-based approach, it improves
the accuracy by 3.85% at an observation rate of 0.2, 5.92% at 0.3, and 2.46% at
0.4.

The experimental results on the NTU RGB+D dataset under the Cross-View
criteria are shown in Table 6. It can be seen that our self-supervised method is only
5.38% lower than the best supervised RNN-based method [44] at each observation
rate. Compared to the state-of-the-art GCN-based supervised approach [16], our
method is only 25.35% lower on average at each observation ratio.

The experimental results on the SYSU 3D HOI dataset under cross-subject
protocol are shown in Table 7 where performance of ACP+MP+GR+FN under
linear evaluation protocol is presented. The good performance in the early stage
of the action demonstrates the effectiveness of our proposal to capture past and
future information in the action sequence for the action prediction task. Compared
with the state-of-the-art GCN-based supervised approach [17], our method is only
20.97% lower on average at each observation ratio. Note that in [17], the authors
use parameters trained on the NTU RGB+D dataset as initialization, while we only
perform self-supervised training on the SYSU dataset.
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Currently no methods provide experimental results on the SYSU 3D HOI dataset
under the same-subject protocol. In Table 8, we present the performance of our
method to provide a baseline for the community.

In addition, to provide more sufficient validation, we have conducted experi-
ments on NTU RGB+D 120 and UAV-Human, two large-scale datasets with action
category numbers of 120 and 155, respectively, and the results are shown in Table 9.

The KNN evaluation results on the NTU RGB+D dataset and SYSU 3D HOI
dataset are shown in Table 10. Compared to ACP+MP+GR+PN, which uses only
partial sequence features, ACP+MP+GR+CN, which uses complete sequence fea-
tures, and ACP+MP+GR+FN, which combines both features, have substantially
improved their performance. This indicates that our complete sequence generation
module alleviates the missing information in incomplete sequences to some extent
and encodes features with more discrimination and integrity.

4.4.2 Action Recognition

Unlike 3D action prediction, there have been many self-supervised or unsupervised
methods of 3D action recognition. For fairness of comparison, we show in Table 11
the performance comparison with other self-supervised or unsupervised RNN-based
action recognition methods proposed in recent years using the same encoder as ours.

Methods X-Sub X-View

LongTGAN (AAAI 18) [8] 39.1 48.1

MS2L (ACM MM 20) [9] 52.6 –

* Gao et al. (NeurIPS Workshop 20) [37] 52.3 62.1

PCRP (TMM 21) [51] 53.9 63.5

CAE+ (Information Sciences 21) [52] 58.5 64.8

P&C FW-AEC (CVPR 20) [53] 50.7 76.1

3s-CrosSCLR (LSTM) (CVPR 21) [38] 62.8 69.2

CRRL (IEEE TIP 22) [40] 67.6 73.8

ACP+MP+GR+PN (Ours) 70.1 76.3

Table 11. Comparison of self-supervised or unsupervised RNN-based action recognition
methods on NTU RGB+D. “*” represents depth image based methods.

Protocols Methods Accuracy

Same-Subject
ACP+MP+GR+PN 63.44
ACP+MP+GR+CN 63.01
ACP+MP+GR+FN 63.48

Cross-Subject
ACP+MP+GR+PN 65.62
ACP+MP+GR+CN 65.40
ACP+MP+GR+FN 65.63

Table 12. Action recognition accuracy (%) on SYSU 3D HOI
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For the action recognition task, the input to the model is the complete sequence
and we do not need to predict the future motion of the human body. Therefore,
ACP+MP+GR+PN is adopted to accomplish this task. The encoder is trained
by self-supervised tasks (ACP+MP+GR) and then fixes its weights to train an
FC layer to perform action classification. As shown in the Table 11, applying our
ACP+MP+GR+PN directly to the skeleton-based action recognition task yields
superior performance. Our method has outperformed all the advanced unsupervised
RNN-based action recognition methods. Our method outperforms the state-of-the-
art RNN-based unsupervised method CRRL [40] by 2.5% in Cross-Subject criteria
and is 0.2% higher than P&C FW-AEC [53] in Cross-View criteria. Note that
3s-CrosSCLR (LSTM) [38] utilizes views from three data modalities and CRRL [40]
simultaneously uses information from two streams, while our ACP+MP+GR+PN
is a single stream network using only joint information. Most of these methods
employ complex contrastive learning strategies to construct positive and negative
samples for feature learning, while our method still achieves excellent performance
with only self-supervised tasks using past and future information. This indicates
that the feature representation learned by the self-supervised tasks based on past
and future information proposed in this paper has a strong ability to describe the
action.

In addition, to provide a baseline for the community to refer to, we also show
the performance of the proposed method for action recognition on the SYSU dataset
in Table 12.

5 CONCLUSION

In this paper, we have proposed a self-supervised learning approach for 3D action
prediction. We believe the unfinished skeleton sequence contains past and future
information contributing to action prediction. We designed three self-supervised
tasks to simultaneously guide the training of the network based on past complete-
ness and future trends, while optimizing the feature space. In addition, we proposed
a novel 3D action prediction network that employed the feature encoder and mod-
ules trained by self-supervised tasks as components to fuse both partial prediction
and complete prediction. Through ablation experiments and the performance com-
parisons on two datasets with two tasks, we demonstrated the effectiveness of our
proposed method. We hoped our work could inspire future researchers to conduct
more studies on label-free learning for 3D action prediction.
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