Evaluation Measures for Text Summarization
keywords: Text summarization, automatic extract, summary evaluation, latent semantic analysis, singular value decomposition
We explain the ideas of automatic text summarization approaches and the taxonomy of summary evaluation methods. Moreover, we propose a new evaluation measure for assessing the quality of a summary. The core of the measure is covered by Latent Semantic Analysis (LSA) which can capture the main topics of a document. The summarization systems are ranked according to the similarity of the main topics of their summaries and their reference documents. Results show a high correlation between human rankings and the LSA-based evaluation measure. The measure is designed to compare a summary with its full text. It can compare a summary with a human written abstract as well; however, in this case using a standard ROUGE measure gives more precise results. Nevertheless, if abstracts are not available for a given corpus, using the LSA-based measure is an appropriate choice.
reference: Vol. 28, 2009, No. 2, pp. 251–275