Lossy Compressive Sensing Based on Online Dictionary Learning
keywords: Hyperspectral imaging, compression algorithms, dictionary learning, sparse coding
In this paper, a lossy compression of hyperspectral images is realized by using a novel online dictionary learning method in which three dimensional datasets can be compressed. This online dictionary learning method and blind compressive sensing (BCS) algorithm are combined in a hybrid lossy compression framework for the first time in the literature. According to the experimental results, BCS algorithm has the best compression performance when the compression bit rate is higher than or equal to 0.5 bps. Apart from observing rate-distortion performance, anomaly detection performance is also tested on the reconstructed images to measure the information preservation performance.
mathematics subject classification 2000: 68U10, 94A08
reference: Vol. 38, 2019, No. 1, pp. 151–172