Steganography Approach to Image Authentication Using Pulse Coupled Neural Network
keywords: Image steganography, pulse coupled neural network, position matrix, image authentication
This paper introduces a model for the authentication of large-scale images. The crucial element of the proposed model is the optimized Pulse Coupled Neural Network. This neural network generates position matrices based on which the embedding of authentication data into cover images is applied. Emphasis is placed on the minimalization of the stego image entropy change. Stego image entropy is consequently compared with the reference entropy of the cover image. The security of the suggested solution is granted by the neural network weights initialized with a steganographic key and by the encryption of accompanying steganographic data using the AES-256 algorithm. The integrity of the images is verified through the SHA-256 hash function. The integration of the accompanying and authentication data directly into the stego image and the authentication of the large images are the main contributions of the work.
reference: Vol. 42, 2023, No. 3, pp. 591–614