Low-Light Image Enhancement via Weighted Fractional-Order Model

keywords: Low-light image enhancement, fractional-order, adaptive enhancement, Retinex model, multi-illumination fusion
Low-light image enhancement (LLIE) enables to serve high-level vision tasks and improve their efficiency. Retinex-based methods have well been recognized as a representative technique for LLIE, but they still suffer from inflexible regularization terms in decomposing illumination and reflectance. In this paper, we propose a new weighted fractional-order variational model based on the Retinex model. First, the constructed weighted fractional-order variational model estimates piecewise smoothed and weakly pixel-shifted illumination by aware structures and textures. Then, to solve this problem accurately, we chose a semi-decoupled approach and an alternating minimization method. Finally, the designed multi-illumination fusion method accurately enhances the structure-rich dark regions of the image through well-exposedness and local entropy weights, while realizing adaptive enhancement based on a naturalness-preserving parameter estimation algorithm. The results of subjective and objective experiments on several challenging low-light datasets demonstrate that our proposed method shows better competitiveness in enhancing low-light images compared with the state-of-the-art methods.
mathematics subject classification 2000: 68-U10
reference: Vol. 43, 2024, No. 2, pp. 343–368