Privacy Aware Parallel Computation of Skyline Sets Queries from Distributed Databases
keywords: Skyline sets, convex skyline, parallel computation, agent-based computation, compromisable situations
A skyline query finds objects that are not dominated by another object from a given set of objects. Skyline queries help us to filter unnecessary information efficiently and provide us clues for various decision making tasks. However, we cannot use skyline queries in privacy aware environment, since we have to hide individual's records values even though there is no ID information. Therefore, we considered skyline sets queries. The skyline set query returns skyline sets from all possible sets, each of which is composed of some objects in a database. With the growth of network infrastructure data are stored in distributed databases. In this paper, we expand the idea to compute skyline sets queries in parallel fashion from distributed databases without disclosing individual records to others. The proposed method utilizes an agent-based parallel computing framework that can efficiently compute skyline sets queries and can solve the privacy problems of skyline queries in distributed environment. The computation of skyline sets is performed simultaneously in all databases which increases parallelism and reduces the computation time.
reference: Vol. 33, 2014, No. 4, pp. 831–856